CN109647401B - 一种三维多孔石墨烯复合材料及其制备方法和应用 - Google Patents

一种三维多孔石墨烯复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN109647401B
CN109647401B CN201811529505.1A CN201811529505A CN109647401B CN 109647401 B CN109647401 B CN 109647401B CN 201811529505 A CN201811529505 A CN 201811529505A CN 109647401 B CN109647401 B CN 109647401B
Authority
CN
China
Prior art keywords
composite material
dimensional porous
porous graphene
graphene composite
antibiotics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811529505.1A
Other languages
English (en)
Other versions
CN109647401A (zh
Inventor
徐乐瑾
安巧如
杨雨佳
陶渝杰
杨军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201811529505.1A priority Critical patent/CN109647401B/zh
Publication of CN109647401A publication Critical patent/CN109647401A/zh
Application granted granted Critical
Publication of CN109647401B publication Critical patent/CN109647401B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46176Galvanic cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Sorption (AREA)
  • Catalysts (AREA)

Abstract

本发明属于功能性复合材料领域,并公开了一种三维多孔石墨烯复合材料及其制备方法和应用。该制备方法包括:在室温并且无氧的条件下,向氧化石墨烯中滴加FeSO4和Al2(SO4)3的混合溶液,搅拌均匀获得固液混合物;向该固液混合物中添加KBH4溶液,并在无氧的环境下搅拌一段时间使其充分反应,然后将生成的沉淀进行预冻后冷冻干燥制得所述三维多孔石墨烯复合材料。本发明将纳米零价铁/铝包覆在石墨烯中,不仅能够避免纳米粒子的团聚,并且易于分离回收,能够减缓甚至阻止活性组分的失活,使其保持较高的催化活性;此外本发明制备的三维多孔石墨烯复合材料在无需外加药剂的条件下可以与废水中的抗生素反应,适用的pH范围较宽。

Description

一种三维多孔石墨烯复合材料及其制备方法和应用
技术领域
本发明属于功能性复合材料领域,更具体地,涉及一种三维多孔石墨烯复合材料及其制备方法和应用。
背景技术
抗生素是一种用于治疗各种细菌感染或抑制致病微生物感染的药物,在人们的日常生产和治疗疾病的过程中得到广泛的应用。我国是抗生素的使用大国,根据世界卫生组织的调查显示我国的抗生素使用率远高于世界平均废水平,抗生素滥用现象较为严重。抗生素结构复杂,属于生物难降解物质,一旦形成污染,便会通过各种途径进入地表废水和地下废水,污染人们的饮用废水源,并在环境中富集,诱导耐药菌株的产生,同时会抑制生物的生长繁殖、引起过敏反应,进一步可导致突变、畸形和癌症的发生。其中,抗生素在医疗以及养殖业中被大量使用,诱发了耐药性抗生素细菌和耐药性基因的产生,如铜绿假单胞菌、不动杆菌属、肠杆菌属、粘质沙雷菌、吲哚阳性变形杆菌属等。近期大量研究报道表明,不断增长的抗生素使用量造成了环境中抗生素免疫细菌(ARB)的增加,因而亟需研发一种高效、节能、经济的抗生素废水去除工艺。
目前废水体中抗生素的处理方法主要有微生物法、物理化学法、吸附分离等方法,但是由于抗生素浓度多在ng/L至μg/L之间,现有的污废水处理手段对于废水中抗生素的处理效果都不尽如人意。其中,物理化学法中的氧化还原方法尤其是高级氧化工艺(AOPs)可有效去除废水中的抗生素。高级氧化法的核心是通过外界能量(光能、电能等)和物质(O3、H2O2等)的持续输入,经过一系列物理过程和化学反应,产生具有强氧化性的羟基自由基(·OH),将废水中的有机污染物氧化成CO2、H2O和无机盐。由于·OH氧化电位高达2.80V,几乎可以氧化废水中的各种有机物,因此具有广泛的应用前景。
高级氧化法包括(类)Fenton氧化法、臭氧氧化法、电化学法、超声法、光催化氧化法、辐射法等。其中(类)Fenton法具有适用范围广、反应温和、环境友好、工艺简单等特点;但是传统(类)Fenton法存在适用pH范围窄(主要在pH 2~4)、药剂消耗量大(如加H2O2)、运行成本高等问题。
发明内容
针对现有技术的上述缺点和/或改进需求,本发明提供了一种三维多孔石墨烯复合材料及其制备方法和应用,其中通过对其制备过程的工艺条件进行设计,相应能够获得包裹纳米零价铁/铝双金属的三维多孔石墨烯,有效防止纳米粒子的团聚,因而尤其适用于去除废水中抗生素的应用场合。
为实现上述目的,按照本发明的一个方面,提出了一种三维多孔石墨烯复合材料的制备方法,其特征在于,该制备方法包括如下步骤:
(a)在室温并且无氧的条件下,向氧化石墨烯中滴加FeSO4和Al2(SO4)3的混合溶液,搅拌均匀获得固液混合物;
(b)向步骤(a)制得的固液混合物中添加KBH4溶液,并在无氧的环境下搅拌一段时间使其充分反应,从而生成零价铁和零价铝的纳米粒子并包裹在氧化石墨烯中,最后通过过滤将收集到的沉淀经预冻处理后冷冻真空干燥,制得包裹有纳米零价铁/铝双金属的三维多孔石墨烯复合材料。
作为进一步优选地,所述步骤(a)中氧化石墨烯的浓度优选为1mg/ml~6mg/ml,所述氧化石墨烯与混合溶液中FeSO4的质量比优选为0.4:1~4:1,所述混合溶液中Al2(SO4)3与FeSO4的物质的量之比优选为1:64~1:2,所述步骤(b)中KBH4与混合溶液中FeSO4的物质的量之比为6:1~13:1,搅拌时间优选为1h~28h,预冻的温度优选为-50℃~-65℃,冷冻真空干燥的温度优选为-5℃~-15℃,冷冻真空干燥的时间优选为20h~100h。
按照本发明的另一方面,提供了一种利用上述方法制备的三维多孔石墨烯复合材料。
按照本发明的又一方面,提供了一种利用上述三维多孔石墨烯复合材料去除废水中抗生素的方法,其特征在于,该方法包括如下步骤:
将所述三维多孔石墨烯复合材料加入含抗生素的废水中,在恒温条件下振荡促进该三维多孔石墨烯复合材料对抗生素的去除。
作为进一步优选地,所述含抗生素的废水pH值优选为2.0~12.6。
作为进一步优选地,所述三维多孔石墨烯复合材料的添加量优选为0.1g/L~1.0g/L。
作为进一步优选地,所述振荡的温度优选为10℃~60℃。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
1.本发明利用三维多孔石墨烯材料具有较大比表面积和持久性孔隙率的优势,将纳米零价铁/铝包覆其中,不仅能够避免纳米粒子的团聚,使负载的纳米粒子的平均粒径为100nm~450nm,并且易于分离回收,能够减缓甚至阻止活性组分的失活,使其保持较高的催化活性;
2.此外,本发明的制备方法工艺简单,反应温和并且对外界环境无特殊要求(即不需要高温高压条件),所用原料价廉易得,且不存在二次污染,因此具有较好的应用前景;
3.尤其是,本发明制备的三维多孔石墨烯复合材料在无需外加药剂的条件下可以与废水中的抗生素反应,并在pH为2.0~12.6的范围内高效快速去除废水中的抗生素,适用的pH范围较宽因此进废水无需酸化、出废水无需中和,能够有效降低应用成本;并且反应过程中不需要外加H2O2和O2,进一步简化了工艺流程,降低了应用成本,因此具有广泛的应用前景。
附图说明
图1是利用本发明制备的三维多孔石墨烯复合材料去除废水中抗生素的工艺流程图;
图2(a)~(b)是本发明实施例1制备的3D-GN@Fe0/Al0-1在不同放大倍数下的SEM表征谱图;
图3是本发明实施例1制备的3D-GN@Fe0/Al0-1的EDS谱图;
图4是本发明实施例1制备的3D-GN@Fe0/Al0-1的吸附-脱附等温线图;
图5是本发明实施例1制备的3D-GN@Fe0/Al0-1的孔径分布图;
图6(a)~(b)是本发明实施例1制备的3D-GN@Fe0/Al0-1的不同元素的XPS谱图;
图7是本发明实施例2制备的3D-GN@Fe0/Al0-2的SEM表征谱图;
图8是本发明实施例3制备的3D-GN@Fe0/Al0-3的SEM表征谱图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,本发明提出了一种三维多孔石墨烯复合材料的制备方法,其特征在于,该制备方法包括如下步骤:
(a)在室温并且无氧的条件下,向氧化石墨烯中滴加FeSO4和Al2(SO4)3的混合溶液,搅拌均匀获得固液混合物,其中氧化石墨烯的浓度优选为1mg/ml~6mg/ml,所述氧化石墨烯与混合溶液中FeSO4的质量比优选为0.4:1~4:1,所述混合溶液中Al2(SO4)3与FeSO4的物质的量之比优选为1:64~1:2;
(b)向步骤(a)制得的固液混合物中添加KBH4溶液,其中KBH4与步骤(a)混合溶液中FeSO4的物质的量之比为6:1~13:1,在无氧的环境下搅拌1h~28h使其充分反应并防止纳米粒子的团聚,从而生成零价铁和零价铝的纳米粒子并包裹在氧化石墨烯的空隙中,最后通过过滤将收集到的沉淀在-50℃~-65℃的温度下进行预冻处理后在-5℃~-15℃下冷冻真空干燥20h~100h制得所述三维多孔石墨烯复合材料,该三维多孔石墨烯复合材料为三维多孔石墨烯包裹纳米零价铁/铝双金属的复合材料。
进一步,所述氧化石墨烯的制备方法为:
(ⅰ)将可膨胀石墨与浓硫酸混合,并在冰废水浴中充分搅拌,然后加入高锰酸钾使其充分反应获得固液混合物,其中可膨胀石墨与浓硫酸的质量比优选为1:70~1:200,高锰酸钾与可膨胀石墨的质量比优选为1.5:1~6:1,并保持该固液混合物的温度不超过15℃;
(ⅱ)将步骤(i)中制得的固液混合物撤出冰废水浴,并在34℃~36℃下搅拌使石墨充分氧化获得前驱体;
(ⅲ)向步骤(ii)中制得的前驱体中分别加入三次超纯废水使氧化石墨分散,第一次加入40ml超纯废水并在59℃~61℃下搅拌,使氧化石墨初步分散;第二次加入40ml超纯废水并在89℃~91℃下保持一定时间直至氧化石墨充分分散,第三次加入40ml超纯废水;然后加入H2O2以去除高锰酸钾,最后进行离心处理获得沉淀物,其中H2O2与可膨胀石墨的质量比为4.5:1~13.5:1;
(ⅳ)将盐酸与超纯废水以1:10的体积比混合制得洗涤剂,用所述洗涤剂清洗步骤(ⅲ)中制得的沉淀物后获得氧化石墨烯,将其冷冻干燥备用。
按照本发明的另一方面,提供了一种利用上述方法制备的三维多孔石墨烯复合材料。
进一步,所述三维多孔石墨烯复合材料具有明显的三维孔洞结构,其比表面积为5m2/g~30m2/g,孔径为2.10nm~2.68nm,孔体积为0.10cm3/g~0.20cm3/g;该复合材料负载的纳米粒子的平均粒径为100nm~450nm。
按照本发明的又一方面,提供了一种利用上述三维多孔石墨烯复合材料去除废水中抗生素的方法,其特征在于,该方法包括如下步骤:
将所述三维多孔石墨烯复合材料加入含抗生素的废水中,在恒温条件下振荡促进该三维多孔石墨烯复合材料对抗生素的脱除。
进一步,所述含抗生素的废水pH值优选为2.0~12.6,所述三维多孔石墨烯复合材料的添加量优选为0.1g/L~1.0g/L,所述振荡温度优选为10℃~60℃。
所述三维多孔石墨烯复合材料去除废水中抗生素的主要反应原理为:
三维多孔石墨烯分别与负载的纳米零价铁和纳米零价铝之间存在电子转移,通过发生的一系列自由基反应将废水中的抗生素去除;酸性条件下,作为负极的纳米零价铁和纳米零价铝被氧化为Fe2+和Al3+,见反应式(1)和(2);在无氧条件下,正极上发生的反应为电子转移到溶液中的H+上生成·H,见式(3),·H具有较强的还原性,可去除废水中抗生素;在溶解氧存在下,电子转移到O2上生成H2O2和H2O,见式(4)和(5);继而溶液中发生催化反应,Fe2+、Fe0和Al0催化H2O2反应生成氧化性自由基(如·OH),见式(6)~(8),从而去除废水中抗生素;
负极:Fe0–2e-→Fe2+ (1)
Al0–3e-→Al3+ (2)
正极:H++2e-→·H (3)
O2+2H++2e-→H2O2 (4)
O2+4H++4e-→H2O (5)
催化反应:Fe2++H2O2→Fe3++·OH+OH- (6)
Fe0+H2O2→Fe2++·OH+OH- (7)
Al0+3H2O2→Al3++3·OH+3OH- (8)
中性或弱碱性条件下,Al0会废水解生成铝的氢氧化物,见式(9)和(10);同时在催化剂表面生成≡AlOH、≡AlOH2 +等物质,并通过离子交换、静电引力等作用去除废水中带负电的抗生素(A-),见式(11)和(12);
Figure BDA0001905283400000071
Figure BDA0001905283400000072
Figure BDA0001905283400000073
Figure BDA0001905283400000074
强碱性条件下,所述石墨稀复合材料表面生成了AlO2 -使材料表面带负电,从而对带负电荷的抗生素产生静电排斥,使其无法吸附在材料表面,而碱性条件下铁铝形成电极,发生微电解反应,从而将废水中抗生素去除,见式(13)和(14)。
负极:Al0–3e-+4OH-→AlO2 -+2H2O (13)
正极:O2+2H2O+4e-→4OH- (14)
下面结合具体实施例对本发明作进一步描述。
实施例1
首先制备氧化石墨烯,具体步骤如下:
(ⅰ)将1.0g可膨胀石墨与106ml浓硫酸混合加入反应容器中,并在冰废水浴中充分搅拌30min,然后加入5g高锰酸钾使其充分反应获得固液混合物,并保持该固液混合物的温度不超过15℃;
(ⅱ)将步骤(i)中制得的固液混合物撤出冰废水浴,并在35±1℃下恒温搅拌3天,使石墨充分氧化获得前驱体;
(ⅲ)向步骤(ii)中制得的前驱体中分别加入超纯废水使氧化石墨分散,第一次加入40ml超纯废水,并在60±1℃下搅拌60min,第二次加入40ml超纯废水,并在90±1℃下保持30min,第三次直接加入40mL超纯废水,然后加入10ml质量百分比为30%的H2O2以去除高锰酸钾,最后趁热在转速为12000r/min下离心30min,弃去上清液获得沉淀物;
(ⅳ)将盐酸(质量分数36%~38%)与超纯废水以1:10的体积比混合制得洗涤剂,用所述洗涤剂清洗步骤(ⅲ)中制得的沉淀物后获得氧化石墨烯,将其冷冻干燥制得氧化石墨烯。
然后制备三维多孔石墨烯复合材料,具体步骤如下:
(a)将0.4g浓度为3mg/ml氧化石墨烯在100mL超纯废水中超声分散2h(温度25℃、频率40kHz、功率300W),并将1.1120g FeSO4·7H2O和0.1666g Al2(SO4)3·18H2O溶于超纯废水中并定容至50mL,然后在氩气气氛下向氧化石墨烯中以1mL/min的速度滴加FeSO4和Al2(SO4)3的混合溶液,搅拌均匀获得固液混合物;
(b)将2.15g KBH4溶于超纯废水并定容至50ml,向步骤(a)制得的固液混合物中以1mL/min的速度添加KBH4溶液,并在氩气气氛下搅拌一段时间使其充分反应,其中保持无氧状态能够防止纳米粒子的团聚,然后将生成的沉淀在-65℃下经预冻处理后,在-10℃下真空冷冻干燥72h制得所述三维多孔石墨烯复合材料,记为3D-GN@Fe0/Al0-1。
对3D-GN@Fe0/Al0-1进行扫描电镜(SEM)表征,结果如图2(a)~(b)所示,其中图2(a)的标尺为2μm,图2(b)的标尺为200nm,结果显示3D-GN@Fe0/Al0-1具有明显的三维网状孔洞结构,孔洞表面包覆粒状晶体,纳米粒子平均粒径为300nm~450nm;
图3是对3D-GN@Fe0/Al0-1进行能谱分析(EDS)的结果图,该三维多孔石墨烯复合材料上Fe元素的原子百分比为37.76%、Al元素的原子百分比为2.55%、O元素的原子百分比为59.69%;
图4是3D-GN@Fe0/Al0-1的吸附-脱附等温线图,根据BDDT(Brunauer-Deming-Deming-Teller classification)分类法分析发现该复合材料呈现IV型吸脱附等温曲线带H3型回滞环,说明该复合物具有典型的介孔特征;
图5是对3D-GN@Fe0/Al0-1采用DFT模型得到的孔径分布图,结果表明该复合材料孔径分布主要集中在2.10nm和2.68nm左右,进一步证实了其为介孔结构,并且该复合材料的比表面为26.03m2/g,孔体积为0.15cm3/g;
对制得的3D-GN@Fe0/Al0-1进行X射线光电子能谱(XPS)分析,结果如图6(a)~(b)所示,Fe特征峰2p1/2的结合能为724.6eV,Fe 2p3/2的结合能为712.0eV、710.4eV和706.9eV,分别对应于Fe3+、Fe2+和Fe0三种价态形式,在图6(a)中,观察到结合能为706.9eV的特征峰,说明在该3D-GN@Fe0/Al0-1复合材料中存在Fe0;同时也观察到氧化铁的特征峰,说明Fe0颗粒为核-壳结构,具有Fe0内核和铁氧化物/氢氧化铁外壳,这是由于在液相合成和洗涤处理过程中,不可避免地会形成氧化层,图6(b)中结合能为73eV的特征峰说明在3D-GN@Fe0/Al0复合材料中存在Al0
实施例2
利用实施例1中制得的氧化石墨烯制备三维多孔石墨烯复合材料,具体步骤如下:
(a)将0.6g浓度为1mg/mL的氧化石墨在100mL超纯废水中超声分散3h(温度25℃、频率40kHz、功率300W),将0.15g FeSO4·7H2O和0.18g Al2(SO4)3·18H2O溶于超纯废水中并定容至50mL,然后在氮气气氛下向氧化石墨烯中以1mL/min的速度滴加FeSO4和Al2(SO4)3的混合溶液,搅拌均匀获得固液混合物;
(b)将0.3784g KBH4溶于超纯废水并定容至50ml,向步骤(a)制得的固液混合物中以1mL/min的速度添加KBH4溶液,并在氮气气氛下搅拌一段时间使其充分反应,然后将生成的沉淀在-60℃下经预冻处理后,在-5℃下真空冷冻干燥100h制得所述三维多孔石墨烯复合材料,记为3D-GN@Fe0/Al0-2。
对制得的3D-GN@Fe0/Al0-2复合材料进行扫描电镜(SEM)表征,结果如图7所示,该复合材料的三维网状孔洞结构显著,粒状晶体均匀地分布在三维网状结构中,纳米粒子的平均粒径为100nm~170nm。
实施例3
利用实施例1中制得的氧化石墨烯制备三维多孔石墨烯复合材料,具体步骤如下:
(a)将1.0g浓度为6mg/mL的氧化石墨烯在100mL超纯废水中超声分散2h(温度25℃、频率40kHz、功率300W),将0.5g FeSO4·7H2O和0.0187g Al2(SO4)3·18H2O溶于超纯废水中并定容至50mL,然后在氩气气氛下向氧化石墨烯中以1mL/min的速度滴加FeSO4和Al2(SO4)3的混合溶液,搅拌均匀获得固液混合物;
(b)将0.5821g KBH4溶于超纯废水并定容至50ml,向步骤(a)制得的固液混合物中以1mL/min的速度添加KBH4溶液,并在氩气气氛下搅拌一段时间使其充分反应,然后将生成的沉淀在-50℃下经预冻处理后,在-15℃下真空冷冻干燥20h制得所述三维多孔石墨烯复合材料,记为3D-GN@Fe0/Al0-3。
对制得的3D-GN@Fe0/Al0-3复合材料进行扫描电镜(SEM)表征,结果如图8所示,该复合材料的三维网状孔洞结构显著,粒状晶体均匀地分布在三维网状结构中,纳米粒子的平均粒径为100nm~260nm。
实施例4
将实施例1制得的3D-GN@Fe0/Al0-1复合材料用于去除废水中的氯霉素,具体步骤如下:
向氯霉素浓度为20mg/L的废水中以0.1g/L的添加量加入实施例1制得的3D-GN@Fe0/Al0-1,该废水的pH为8.2,然后在10℃的恒温摇床中进行振荡,不同反应条件(无氧、有氧、加H2O2)下氯霉素的去除效果如表1所示,其中氯霉素的浓度使用Waters 2489型高效液相色谱仪进行定量分析;
表1
Figure BDA0001905283400000101
表1的结果表明,3D-GN@Fe0/Al0-1在无氧气存在并且不外加H2O2的条件下,对氯霉素具有较好的去除效果,振荡90min后氯霉素的去除率可以达到100%;在有氧气存在的条件下,振荡120min后氯霉素的去除率达到85.7%;在外加H2O2的条件下,振荡120min后氯霉素的去除率为76.37%,并未得到明显提高;采用本发明的方法制备的三维多孔石墨烯复合材料在去除废水中氯霉素的过程中不需要外加H2O2和O2,因而可以进一步简化工艺流程,降低应用成本。
实施例5
将实施例1制得的3D-GN@Fe0/Al0-1复合材料用于去除废水中的氯霉素,具体步骤如下:
向氯霉素浓度为20mg/L的废水中以0.5g/L的添加量加入制得的3D-GN@Fe0/Al0-1,采用不同浓度的HNO3或NaOH溶液依次将溶液pH调至3.3、5.7、8.2、10.0和12.6,然后在30℃的恒温摇床中进行振荡,反应器开口保证溶液中有饱和溶解氧存在,在该反应条件下3D-GN@Fe0/Al0-1+O2体系去除氯霉素效果如表2所示,其中氯霉素的浓度使用Waters 2489型高效液相色谱仪进行定量分析;
表2
Figure BDA0001905283400000111
表2的结果表明,3D-GN@Fe0/Al0-1+O2体系可在宽pH范围内(pH3.2~2.6)并且不外加H2O2和不持续向体系中充氧的情况下,实现对氯霉素较好的去除效果,连续反应120min后氯霉素的去除率为68%~93%。
实施例6
将实施例1制得的3D-GN@Fe0/Al0-1复合材料用于去除废水中的氯霉素,具体步骤如下:
向氯霉素浓度为20mg/L的废水中以1.0g/L的添加量加入制得的3D-GN@Fe0/Al0-1,采用不同浓度的HNO3或NaOH溶液依次将溶液pH调至3.2、8.2、10.0,然后在60℃的恒温摇床中进行振荡,在无氧的反应条件下氯霉素的去除效果如表3所示,其中氯霉素的浓度使用Waters 2489型高效液相色谱仪进行定量分析;
表3
Figure BDA0001905283400000121
表3的结果表明,3D-GN@Fe0/Al0-1+Ar体系可在宽pH范围内(pH3.3~0.0)并且不外加H2O2和无氧的情况下,实现对氯霉素高效快速的去除,反应120min后的去除率都达到100%。
实施例7
将实施例2制得的3D-GN@Fe0/Al0-2复合材料用于去除废水中的甲硝唑,具体步骤如下:
向甲硝唑浓度为30mg/L的废水中以0.8g/L的添加量加入制得的3D-GN@Fe0/Al0-2,采用不同浓度的HNO3或NaOH溶液依次将溶液pH调至2.0、6.0、8.0、10.0、12.0,然后在25℃的恒温摇床中进行振荡,反应器开口保证溶液中有饱和溶解氧存在,在该反应条件下3D-GN@Fe0/Al0-2去除甲硝唑的效果如表4所示,其中甲硝唑的浓度使用Waters 2489型高效液相色谱仪进行定量分析;
表4
Figure BDA0001905283400000131
表4的结果表明,3D-GN@Fe0/Al0-2+O2体系可在宽pH范围内(pH2.0~2.0),并不外加H2O2和不持续向体系中充氧的情况下,实现对甲硝锉较好的去除效果,反应120min后的去除率可达到87%~100%。
实施例8
将实施例3制得的3D-GN@Fe0/Al0-3复合材料用于去除废水中的磺胺嘧啶,具体步骤如下:
向磺胺嘧啶浓度为10mg/L的废水中以0.4g/L的添加量加入制得的3D-GN@Fe0/Al0-3,采用H2SO4溶液将溶液pH调至7.0,然后在35℃的恒温摇床中进行振荡,反应器开口保证溶液中有饱和溶解氧存在,在该反应条件下3D-GN@Fe0/Al0-3去除磺胺嘧啶的效果如表5所示,其中磺胺嘧啶的浓度使用Waters 2489型高效液相色谱仪进行定量分析;
表5
Figure BDA0001905283400000132
表5的结果表明,3D-GN@Fe0/Al0-2+O2体系在pH 7.0并且不外加H2O2和不持续向体系中充氧的情况下,反应120min后对磺胺嘧啶的去除率达到70%。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种利用三维多孔石墨烯复合材料去除水中抗生素的方法,其特征在于,该方法包括如下步骤:
(a)在室温并且无氧的条件下,向氧化石墨烯中滴加FeSO4和Al2(SO4)3的混合溶液,搅拌均匀获得固液混合物,其中所述氧化石墨烯与混合溶液中FeSO4的质量比为0.4:1~4:1,所述混合溶液中Al2(SO4)3与FeSO4的物质的量之比为1:64~1:2;
(b)向步骤(a)制得的固液混合物中添加KBH4溶液,KBH4与混合溶液中FeSO4的物质的量之比为6:1~13:1,并在无氧的环境下搅拌一段时间使其充分反应,从而生成零价铁和零价铝的纳米粒子并包裹在氧化石墨烯的孔隙中,最后通过过滤将收集到的沉淀经预冻处理后冷冻真空干燥,制得包裹有纳米零价铁/铝双金属的三维多孔石墨烯复合材料;
(c)将所述三维多孔石墨烯复合材料加入含抗生素的水中,所述含抗生素的水pH为3.2~12.6,在恒温条件下振荡促进该三维多孔石墨烯复合材料对抗生素的吸附,从而在酸性条件、中性条件或碱性条件下去除水中的抗生素,并且不需要外加H2O2和O2
2.如权利要求1所述的利用三维多孔石墨烯复合材料去除水中抗生素的方法,其特征在于,所述步骤(a)中氧化石墨烯的浓度为1mg/ml~6mg/ml,所述步骤(b)中搅拌时间为1h~28h,预冻的温度为-50℃~-65℃,冷冻真空干燥的温度为-5℃~-15℃,冷冻真空干燥的时间为20h~100h。
3.如权利要求1所述的利用三维多孔石墨烯复合材料去除水中抗生素的方法,其特征在于,所述三维多孔石墨烯复合材料的添加量为0.1g/L~1.0g/L。
4.如权利要求1~3任一项所述的利用三维多孔石墨烯复合材料去除水中抗生素的方法,其特征在于,所述振荡的温度为10℃~60℃。
CN201811529505.1A 2018-12-14 2018-12-14 一种三维多孔石墨烯复合材料及其制备方法和应用 Active CN109647401B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811529505.1A CN109647401B (zh) 2018-12-14 2018-12-14 一种三维多孔石墨烯复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811529505.1A CN109647401B (zh) 2018-12-14 2018-12-14 一种三维多孔石墨烯复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109647401A CN109647401A (zh) 2019-04-19
CN109647401B true CN109647401B (zh) 2020-10-02

Family

ID=66114264

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811529505.1A Active CN109647401B (zh) 2018-12-14 2018-12-14 一种三维多孔石墨烯复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109647401B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111744469B (zh) * 2020-07-30 2023-03-10 太原工业学院 一种用于去除废水中甲醛的催化剂及其制备方法和去除废水中甲醛的方法
CN111718248B (zh) * 2020-07-30 2023-05-23 太原工业学院 一种用于催化氧化苯乙烯制备苯甲醛的催化剂及其制备方法及制备苯甲醛的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130099153A1 (en) * 2011-10-23 2013-04-25 Postech Academy-Industry Foundation Hybrid material comprising graphene and iron oxide, method for manufacturing the same, and apparatus for treating waste water using the same
CN105753095A (zh) * 2016-04-13 2016-07-13 东莞市联洲知识产权运营管理有限公司 一种高效去除水中有机污染物的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102671617B (zh) * 2012-05-02 2014-03-05 上海绿帝环保科技有限公司 一种用于吸附难降解有机污染物的材料的制备方法
CN103074619A (zh) * 2013-02-06 2013-05-01 上海应用技术学院 一种氧化石墨烯-银复合粒子及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130099153A1 (en) * 2011-10-23 2013-04-25 Postech Academy-Industry Foundation Hybrid material comprising graphene and iron oxide, method for manufacturing the same, and apparatus for treating waste water using the same
CN105753095A (zh) * 2016-04-13 2016-07-13 东莞市联洲知识产权运营管理有限公司 一种高效去除水中有机污染物的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Enhancement of catalytic degradation of amoxicillin in aqueous solution using clay supported bimetallic Fe/Ni nanoparticles";Xiulan Weng et al.;《Chemosphere》;20131217;第103卷;第80-85页 *
"Studies on the optimum conditions using acid-washed zero-valentiron/aluminum mixtures in permeable reactive barriers for theremoval of different heavy metal ions from wastewater";Weijiang Han et al.;《Journal of Hazardous Materials》;20150925;第302卷;第437-446页 *
"零价纳米铁的制备及对头孢类抗生素去除研究进展";吴鸿伟等;《化工研究与应用》;20180531;第30卷;第657-665页 *

Also Published As

Publication number Publication date
CN109647401A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
Huang et al. Catalytic degradation of ciprofloxacin by magnetic CuS/Fe2O3/Mn2O3 nanocomposite activated peroxymonosulfate: Influence factors, degradation pathways and reaction mechanism
US11352271B2 (en) Method and device for sewage treatment
Faheem et al. Synthesis of Cu 2 O–CuFe 2 O 4 microparticles from Fenton sludge and its application in the Fenton process: the key role of Cu 2 O in the catalytic degradation of phenol
JP6843414B1 (ja) 黒鉛化基窒素錯体化のFe(III)−Fe▲0▼触媒の調製方法
Sun et al. Peroxymonosulfate activation induced by spinel ferrite nanoparticles and their nanocomposites for organic pollutants removal: A review
CN106807376B (zh) 一种磁性纳米复合催化剂及其制备方法与应用
Tawalbeh et al. MXenes and MXene-based materials for removal of pharmaceutical compounds from wastewater: Critical review
GB2582681A (en) Method and device for sewage treatment
WO2018184391A1 (zh) 一种磁分离同步去除络合态重金属和有机物的方法
Wang et al. Effect of bismuth tungstate with different hierarchical architectures on photocatalytic degradation of norfloxacin under visible light
Masudi et al. Magnetite-based catalysts for wastewater treatment
Liu et al. A novel CNTs-Fe3O4 synthetized via a ball-milling strategy as efficient fenton-like catalyst for degradation of sulfonamides
CN107824157B (zh) 利用铁锰泥制备磁性γ-Fe2O3吸附材料去除水中砷的方法
CN109647401B (zh) 一种三维多孔石墨烯复合材料及其制备方法和应用
KR101386599B1 (ko) 수처리제와 그의 제조방법, 그를 이용한 수처리 장치 및 지하수 현장처리 장치
CN113426454B (zh) 一种三维多孔石墨烯负载纳米零价铁/锰氧化物复合材料及其制备方法和应用
CN112892475A (zh) 铁改性生物炭及其制备方法与应用
CN102849849B (zh) 一种基于磁性纳米材料强化活性污泥对城市生活污水处理的方法
CN109928510B (zh) 一种基于zvi还原耦合微生物的施氏矿物制备方法
Chegeni et al. Photocatalytic bauxite and red mud/graphitic carbon nitride composites for Rhodamine B removal
CN115215492A (zh) 一种面向制药废水残留药物去除的电絮凝-臭氧催化氧化-陶瓷膜耦合水处理技术
CN113908835A (zh) 一种基于非自由基高效矿化磺胺类抗生素的活性复合材料的制备及其应用
CN109621974A (zh) 一种CuMn2O4/rGO复合材料臭氧催化氧化除污染水处理方法
Chai et al. A comparative study of abiological granular sludge (ABGS) formation in different processes for zinc removal from wastewater
CN109304143B (zh) 负载铁的介孔碳材料的制备方法及其产品和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant