CN109644006B - 编码数据和解码数据的装置及方法 - Google Patents
编码数据和解码数据的装置及方法 Download PDFInfo
- Publication number
- CN109644006B CN109644006B CN201680087351.8A CN201680087351A CN109644006B CN 109644006 B CN109644006 B CN 109644006B CN 201680087351 A CN201680087351 A CN 201680087351A CN 109644006 B CN109644006 B CN 109644006B
- Authority
- CN
- China
- Prior art keywords
- matrix
- code
- row
- precoding matrix
- processor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 239000011159 matrix material Substances 0.000 claims abstract description 168
- 238000004891 communication Methods 0.000 claims description 16
- 238000004364 calculation method Methods 0.000 claims description 12
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 abstract 1
- 230000010287 polarization Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 7
- 230000008030 elimination Effects 0.000 description 7
- 238000003379 elimination reaction Methods 0.000 description 7
- 239000013598 vector Substances 0.000 description 6
- 230000009466 transformation Effects 0.000 description 5
- 241000169170 Boreogadus saida Species 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 2
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241000764238 Isis Species 0.000 description 1
- 241001454768 Mentzelia nuda Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/29—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
- H03M13/2906—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using block codes
- H03M13/2927—Decoding strategies
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/033—Theoretical methods to calculate these checking codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/13—Linear codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/13—Linear codes
- H03M13/15—Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
- H03M13/151—Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
- H03M13/152—Bose-Chaudhuri-Hocquenghem [BCH] codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/29—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
- H03M13/2906—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using block codes
- H03M13/2909—Product codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/61—Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
- H03M13/618—Shortening and extension of codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/65—Purpose and implementation aspects
- H03M13/6502—Reduction of hardware complexity or efficient processing
Landscapes
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Algebra (AREA)
- General Physics & Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Error Detection And Correction (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
本发明涉及编码数据和解码数据的装置和方法。例如,本发明涉及一种将维度为k的数据x编码成长度为n的码字c的编码装置(102),其中,所述编码装置(102)包括处理器(102a),被配置为基于等式c=uA,使用C(n,k,d)码编码所述数据x,其中,所述码C(n,k,d)具有长度n和最小距离d,其中,其中,mh是整数,h=1,...,s,其中,如果则0≤ji<k‑1,其中,F是所述码C(n,k,d)的n‑k个冻结位索引的集合,并且如果i∈F,则其中,是由等式的解得出的约束矩阵,其中,φi是在列i中具有最后一个非零元素的所述矩阵的行的索引,并且其中,是预编码矩阵,并且其中A是基于限定的矩阵,并且其中,表示矩阵Q与其自身的m次克罗内克积(Kronecker product)。
Description
技术领域
通常,本发明涉及在通信系统中的数据编码和解码。更具体地,本发明涉及用于使用基于极化码或者子码的码来编码数据和解码数据的装置和方法。
背景技术
在嘈杂的通信信道上可靠地传输数据通常需要使用某种纠错码。示出极化码以实现许多信道的香农容量(Shannon capacity)(参见E.Arikan,“信道极化:构造用于对称二进制输入无记忆信道的容量实现码的方法(Channel polarization:A method forconstructing capacity achieving codes for symmetric binary-input memorylesschannels)”,IEEE信息理论汇刊(IEEE Trans.on Inf.Theory),第55卷,第7期,第3051-3073页,2009年7月)。然而,具有实际参数的极化码的性能通常不令人满意。
出现了极化子码(参见P.Trifonov和V.Miloslavskaya,“极化子码(Polarsubcodes)”,IEEE通信领域期刊(IEEE Journal on Selected Areas inCommunications),34(2):254-266,2016年2月),其具有比传统极化码更高的最小距离,并且在列表、顺序以及分块顺序解码下提供了实质上更好的性能(参见I.Tal和A.Vardy,“极化码的列表解码(List decoding ofpolar codes)”,IEEE信息论国际讨论会会议录(Proc.IEEEInt.Symp.Inf.Theory),2011年7月,第1-5页以及V.Miloslavskaya和P.Trifonov,“极化码的顺序解码(Sequential decoding of polar codes)”,IEEE通信快报(IEEE Commun.Lett.),第18卷,第7期,第1127-1130页,2014年7月)。然而,极化子码的性能还是可以被提高。
通常,在GF(2)上的一个(n=2m,k)的极化子码C可以被限定为矢量c=xWAm的集合,其中,W表示k×n预编码矩阵,表示极化转换,以及表示矩阵Q与其自身的m次克罗内克积(Kronecker product)。可以通过采用使得W的每个列具有至多为1的权重,每一行权重为1的矩阵W来得到传统极性码。可以通过采用使得矢量c也是具有足够高的最小距离的一些母码的码字的W来得到极化子码,例如,HT=0,其中,H是母码的校验矩阵。例如,实践证明,扩展的博斯-查德胡里-霍坤格姆(Bose-Chaudhuri-Hocquenghem,BCH)码可以是良好的母码。
定义极化子码的另一种等效方法是将其视为矢量c=uA的集合,其中,uVT=0,并且其中,V是(n-k)×n约束矩阵,使得WVT=0。通过高斯消去法,可以以在每列中至多一行结束的方式来构造矩阵V。然后,可以通过得到极化转换Am的输入符号ui上的如下约束集合:
其中,ji是在V的第i行中最后一个非零项的位置。也可以将符号ji表示成动态冻结符号。这些动态冻结符号可以被认为是在传统极化码的构造中使用的(静态)冻结符号概念的泛化。用以构造极化子码的标准方式是构造矩阵V=HAT,其中,H是母码的校验矩阵,并且随后引入用于具有最高错误概率的符号的附加约束(静态冻结约束),其中,Pi表示通过极化转换Am引入的合成比特子信道中的比特错误概率,其中,转移概率函数可以描述如下:
描述极化子码的另一种方法是定义冻结位索引ji的集合F,使得固定在前面的符号上或者独立于前面的符号,并且考虑母码的生成矩阵G。然后,可以计算矩阵并且可以将高斯消去法应用于这个矩阵,以便确保不同行(例如,具有第一非零项)在不同列中开始,并且所述行具有最高其中,si是在第i行开始处的位置并且可以从得到的矩阵消除。
所有以上描述的方法提供了长度为2m的码。然而,对于实际的应用,具有任何码长度的构造是合乎需要的。
为了得到具有不同于2m的长度的码,可以采用多种技术,例如,所谓的缩短(shortening)和收缩(puncturing)技术。根据缩短技术,给定一个C(N,K,D)线性分组码,可以从作为矢量(c1,...,cN)∈C的集合的码C来得到一个(n=N-v,k=K-v,d≥D)缩短码,jt∈S,1≤t≤v,1≤s≤n,其中,S表示缩短符号的集合。根据收缩技术,给定一个C(N,K,D)线性分组码C,可以从作为矢量(c1,...,cN)∈C的集合的码C来得到一个(n=N-v,k≤K,d≥D-v)收缩码,1≤t≤n,其中,P表示收缩符号的集合。通常,需要对收缩符号的集合P和缩短符号的集合S进行优化,以便获得令人满意的码性能,并且集合P和S的选择影响集合F的最优选择。由于集合F、P以及S必须联合优化,因此码的构造变得非常复杂。而且,严重缩短的或者收缩的码并不具有令人满意的性能。
得到不同长度的码的另一种方式是使用级联(concatenation)技术。这样的技术的示例是通过N.J.A.Sloane等在“新二进制编码(New binary codes)”(IEEE信息论会刊(IEEETrans.On Inform.Theory),第IT-18卷,第503-510页,1972年7月)的著作中描述的所谓X4构造给出。这种构造基于线性码C0(n0,k0,d0),C1(n0,k1,d1),C2(n2,k2,d2),C3(n2,k3,d3),使得k1-k0=k3-k2,并且可以假设Ci具有生成矩阵Gi,其中, 在这样的方式中,可以得到通过如下等式给定的具有生成矩阵G的一个(n0+n2,k0+k3,min(d0,d2,d1+d3))码:
级联技术的另一个示例是通过W.Alltop在“扩展二进制线性码的方法(A Methodfor Extending Binary Linear Codes)”(IEEE信息论会刊(IEEE Transactions),30(6),1984年11月)的著作中描述的所谓XX构造给出,其基于Ci(ni,ki,di),i=1,...,6码,其中,C1=C2+C3,C4=C2∩C3,例如,k5=k2-k4,k6=k3-k4。通过这些码,可以得到通过如下等式给定的具有生成矩阵G的一个(n1+n5+n6,k1,min(d4,d2+d5,d3+d6,d1+d5+d6))码:
但是,仍然明显可以改进通过级联技术的方式得到的码的性能。
因此,需要使用基于极化码或子码的码对编码数据和解码数据的装置和方法进行改进。
发明内容
本发明的一个目的是提供使用基于极化码或者子码以及指定的这些码的码来编码数据和解码数据的改进的装置和方法。
根据本发明的第一方面,涉及一种将维度为k的数据x编码成长度为n的码字c的编码装置。所述编码装置包括处理器,被配置为基于如下等式使用C(n,k,d)码编码所述数据x,其中,所述码C(n,k,d)具有长度n和最小距离d,其中,其中,mh是整数,h=1,...,s:
c=uA,
根据所述第一方面本身,在所述编码装置的第一种可能的实现形式中,所述处理器还被配置为基于多个嵌套线性分组码来构造所述码C(n,k,d),Ki,j+1>Ki,j,0≤j<τi,其中,τi是正整数,其中,的生成矩阵(generator matrix)通过如下等式来给定:
其中,G(i,j)是矩阵,其中,G(i,j)的预编码矩阵通过来限定,其中,的预编码矩阵通过来限定,其中,通过等式来限定矩阵的第p行的开始处的列的索引li,p,并且用来将所述预编码矩阵构造为分块矩阵,其中,所述预编码矩阵的分块矩阵由所选择的所述矩阵的行组成。
根据所述第一方面的第一种实现形式,在所述编码装置的第二种可能的实现形式中,所述多个嵌套线性分组码是扩展博斯-查德胡里-霍坤格姆(extendedBose-Chaudhuri-Hocquenghem,e-BCH)码。
根据所述第一方面的第一至第三种实现形式中的任何一种,在所述编码装置的第四种可能的实现形式中,所述处理器还被配置为通过具有的最小值的所述矩阵的行来构造所述矩阵其中,Pm,i是在比特子信道中的错误概率,其中,表示在通过通信信道的传输后的所述码字c的2m-1个嘈杂符号(noisy symbol)。
根据所述第一方面本身或者所述第一方面的第一至第四种实现形式中的任何一种,在所述编码装置的第五种可能的实现形式中,所述处理器还被配置为以这样的方式构造所述矩阵的第一多个t行,使得在所述第一多个t行中的所述最后的非零元素位于不同位置j,对于某整数j0,j≥j0,其中,整数j的二进制扩展中的非零位的数目被设置为等于w0,通过伪随机数发生器来构造在具有索引z<j的列中定位的所述第一多个t行的元素,并且将矩阵的第二多个n-k-t行构造为不同的权重为一的行。
根据所述第一方面的第五种实现形式,在所述编码装置的第六种可能的实现形式中,所述伪随机数发生器是线性反馈移位寄存器。
根据本发明的第二方面,涉及一种将维度为k的数据x编码成长度为n的码字c的方法。所述方法包括如下步骤:
c=uA,
可以通过根据本发明的第一方面的所述编码装置执行根据本发明的第二方面的方法。从根据本发明的第一方面及其不同的实现形式的所述编码装置的功能直接导出根据本发明的第二方面的方法的其他特征。
根据本发明的第三方面,涉及一种解码长度为n的码字c的解码装置。所述解码装置包括:处理器,被配置为使用C(n,k,d)码解码所述码字c,其中,所述码C(n,k,d)具有长度n和最小距离d,其中,其中,mh是整数,h=1,...,s,其中:
c=uA,
根据所述第三方面本身,在所述解码装置的第一种可能的实现形式中,所述处理器还被配置为通过泛化的连续消除算法来解码所述码字c。
根据所述第三方面的所述第一种实现形式,在所述解码装置的第二种可能的实现形式中,所述处理器还被配置为通过如下等式来计算u:
以及
根据第四方面,本发明涉及一种解码长度为n的码字c的方法,其中,所述方法包括如下步骤:
c=uA,
可以通过根据本发明的第三方面的所述解码装置执行根据本发明的第四方面的方法。从根据本发明的第三方面及其不同的实现形式的所述解码装置的功能直接导出根据本发明的第四方面的方法的其他特征。
根据第五方面,本发明涉及一种计算机程序,包括程序代码用于当在计算机上运行时执行根据本发明第二方面所述的方法和根据本发明第四方面所述的方法。
本发明可以在硬件和/或软件中实现。
附图说明
将对应如下附图来描述本发明的其他实施例,其中:
图1示出了描述包括根据一实施例的编码装置和根据一实施例的解码装置的通信系统的示意图;
图1a示出了根据一实施例的用于构造码的扩展BHC码的四个示例性生成矩阵;
图1b示出了根据一实施例的用于构造码的扩展BHC码的三个示例性生成矩阵;
图1c示出了根据一实施例的用于构造码的扩展BHC码的四个示例性预编码矩阵;
图1d示出了根据一实施例的用于构造码的扩展BHC码的三个示例性预编码矩阵;
图1e示出了根据一实施例的用于构造码的扩展BHC码的一个示例性预编码矩阵;
图1f示出了根据一实施例的码的一个示例性预编码矩阵;
图1g示出了根据一实施例的码的一个示例性预编码矩阵;
图2示出了根据一实施例的基于链式极化子码的码的编码装置的结构的示意图;
图3示出了根据一实施例的作为以dB为单位的信噪比(signal-to-noise ratio,Eb/V0)的函数的不同码的误帧率(frame error rates,FER);
图4示出了根据一实施例的作为以dB为单位的信噪比(Eb/N0)的函数的不同码的误帧率(FER);
图5示出了根据一实施例的将维度为k的数据x编码成长度为n的码字c的方法的示意图;
图6示出了根据一实施例的解码长度为n的码字c的方法的示意图;
在附图中,相同参数标记将用于相同或功能性等同的特征。
具体实施方式
在下面的描述中,参考形成本公开的一部分的附图,并且其中通过说明的方式示出可以放置本发明的特定方面。能够理解,本发明可以放在其他方面,并且可以在不脱离本发明的范围的情况下进行结构上或逻辑上的改变。因此,由于本发明的范围由所附权利要求限定,因此以下详细描述不应被视为具有限制意义。
举例来说,能够理解,结合所描述的方法的本公开通常也将适用于被配置为执行该方法的相应设备或系统,反之亦然。例如,如果描述了特定的方法步骤,则相应的设备可以包括执行所描述的方法步骤的单元,即使这些单元未在附图中明确描述或示出。
而且,在下面的详细描述以及权利要求书中,描述了具有功能块或处理单元的实施例,其相互连接或与交换信号相连接。能够理解,本发明还涵盖包括设置在下面描述的实施例的功能块或处理单元之间的附加功能块或处理单元的实施例。
最后,能够明白,除非另外特别指出,否则本文描述的各个示例性方面的特征可以彼此组合。
图1示出了描述包括可以经由通信信道110进行通信的编码装置102和解码装置104的通信系统100的示意图。
编码装置102包括处理器102a并且被配置为编码数据。类似地,解码装置104包括处理器104a并且被配置为解码数据,更具体地,解码装置104解码由编码装置102编码的数据。编码装置102和/或解码装置104可以被实现为通信设备(诸如蜂窝通信网络的移动电话或基站)的一部分。
在一个实施例中,处理器102a被配置为基于如下等式使用C(n,k,d)码将维度为k的数据x编码成长度为n的码字c,其中,码c(n,k,d)具有长度n和最小距离d,其中,其中,mh>mh+1,h=1,...,s是整数:
c=uA,
在一个实施例中,类似于处理器102a,解码装置104的处理器104a被配置为使用C(n,k,d)码来对码字c进行解码,其中,码C(n,k,d)具有长度n和最小距离d,其中,其中,mh是整数,h=1,...,s,其中:
c=uA,
通信信道110可以是有线或者无线通信信道。
在一个实施例中,可以假设,对于任何i,所有li,p都是不同的,并且通常,整数τi等于M次的不可约多项式的数目,其中M表示mi的除数。
第四步骤:对于某∈>0,选择矩阵d>di,j≥d-∈的行,将它们放置到预编码矩阵的第i列中。对于每一个这样的行,选择在之前步骤中未被选择的矩阵的行,i′>i,di′,j′≥∈,并且将其放置到矩阵的相同行的第i′列中。总的来说,通过如下来得出所构造的预编码矩阵
为了描述上方用以生成约束矩阵的所描述的步骤,考虑在链式极化子码的基础上构建示例性(24,11,6)码。在这种情况中,码具有维度n=24,其也可以被写为24=24+23,使得m0=4,m1=3。在附图1a和1b中,示出了相应的扩展BCH码的嵌套生成矩阵G(i,j),i=0,1并且j=1,2,3,其中,d0,0=16,d0,1=8,d0,2=6,d0,3=4,d1,0=8,d1,1=4,d1,2=2。通过将附图1a和1b中示出的矩阵G(i,j)乘以矩阵并且通过进行基本行操作,可以得到图1c和图1d中示出的相应的预编码矩阵W(i,j)。将预编码矩阵W(i,j)与∈=2相结合,可以得到如图1e中示出的母码的预编码矩阵在二进制擦除信道具有擦除概率为0.5的情况下,比特子信道中的错误概率例如是:
0.499,0.496,0.492,0.386,0.48,0.32,0.26,0.5e-1,0.44,0.23,0.17,0.18e-1,0.11,0.7e-2,0.38e-2,0.76e-5:0.498,0.44,0.40,0.15,0.34,0.09,0.06,0.0019。
由于矩阵的第6行从列3开始,其对应于具有最高错误率0.386的子信道,其可以被去除。因此,可以得到如图1f中示出的基于链式极化子码的(24,11,6)码的预编码矩阵最终,可以得到如图1g中示出的相应的约束矩阵V。
在一个实施例中,可以通过诸如线性反馈移位寄存器的伪随机数发生器(pseudo-random number generator,PRNG)来得到二进制值。这样做的优点在于可以通过只提供PRNG的参数和种子值来以紧凑的方式指定码。还有,根据上述步骤构造的矩阵具有提供具有高性能的链式极化子码的优点。
还有,一旦对码字c进行了编码,则可以经由通信信道110将其发送到解码装置104。然而,在经由通信信道110进行传输之后,码字c的n个符号受到噪声的影响并且最终生成了嘈杂符号因此,需要一种方法来恢复码字c的正确符号。
在一个实施例中,解码装置104的处理器104a可以被配置为基于如下等式使用泛化的连续消除算法及其列表或顺序扩展来恢复码字c:
也可以扩展解码方法以得到与由Tal和Vardy和Miloslavskaya以及Trifonov在上述著作中提出的内容类似的列表和顺序连续消除方法
图2示出了根据一实施例的基于链式极化子码的码的编码装置的结构的示意图。在这个实施例中,码具有长度n=12=23+22并且其包括两个极化转换(polarizingtransformation):m1=3,大小为8(极化转换1)以及m2=2,大小为4(极化转换2)。用四个符号x0,x1,x2,x3表示将要被编码的维度为4的数据x,它们可以被映射到符号u3,u5,u7,u9。用u0,u1,u2,u4,u6,u8,u10,u11来表示冻结位符号的集合。在一个实施例中,编码装置102的处理器102a可以被配置为计算作为根据如图2所示的相应的极化转换的其他输入符号的一些线性组合的函数的符号u6和u10。还有,处理器102a可以配置为计算作为极化转换1的输入符号的函数的极化转换2的输入符号u11。而且,冻结和交叉码约束的结构可以以这样的方式实现,即所得到的码具有足够高的最小距离,并且可以以通过连续消除算法的可能的泛化或修改有效地对其进行解码。
图3示出了根据实施例的作为以dB为单位的信噪比(Eb/N0)的函数的不同码的误帧率(FER)。如其在图3中示出的,与缩短的极化子码、turbo码以及卷积LTE咬尾码的性能相比,在连续解码算法下基于链式极化子码的码的性能可以显著提高。更具体地,基于链式极化子码的码相比缩短的极化子码可以提供多达0.3-0.7dB的功率增益。
图4示出了根据实施例的作为以dB为单位的信噪比(Eb/N0)的函数的不同码的误帧率(FER)。类似于图3,同样在这种情况下,与缩短的极化子码和turbo码的性能相比,基于链式极化子码的码的性能得到显著提高。
图5示出了根据一实施例的将维度为k的数据x编码成长度为n的码字c的方法500的示意图。方法500包括如下步骤:
c=uA,
图6示出了根据一实施例的解码长度为n的码字c的方法600的示意图。方法600包括如下步骤:
c=uA,
虽然本公开的具体特征或方面可能已经仅相对于若干实施方式或实施例中的其中一个被公开,这样的特征或方面可以与其他实施方式或实施例的一个或多个其他特征或方面相结合,这对于任何给定的或具体的应用可能是期望的和有利的。此外,就具体实施方式或权利要求书中使用的术语“包括”、“具有”、“带有”或其他变体而言,这样的术语旨在以类似于术语“包含”的方式是包含性的。而且,术语“示例性”,“例如”和“即”仅仅是作为一个实例,而不是最好的或最优的。术语“耦合”和“连接”以及派生词可能已被使用。应该理解的是,这些术语可能已经被用于指示两个元素彼此协作或相互作用,而不管它们是直接物理接触还是电接触,还是彼此不直接接触。
尽管这里已经说明和描述了特定的方面,本领域的普通技术人员将理解,在不脱离本公开的范围的情况下,各种替代和/或等同的实施方式可以替代所示和所述的特定方面。本申请旨在涵盖在此讨论的特定方面的任何修改或变化。
尽管以下权利要求中的元素以具有相应标签的特定顺序列举,除非权利要求另外暗示的陈述了以特定序列用于实现一些或全部这些元素的,那些元素不一定意图被限制为以该特定顺序来实现。
鉴于上述教导,许多替代、修改和变化对于本领域技术人员来说将是显而易见的。当然,本领域的技术人员将容易认识到,除了本文所描述的以外,还有许多本发明的应用。虽然已经参考一个或多个特定实施例描述了本发明,但是本领域技术人员将认识到,在不脱离本发明的范围的情况下可以对其做出许多改变。因此应该理解,在所附权利要求及其等同物的范围内,本发明可以以不同于本文具体描述的方式实施。
Claims (14)
1.一种将维度为k的数据x编码成长度为n的码字c的编码装置(102),其特征在于,所述编码装置(102)包括:
c=uA,
6.根据权利要求5所述的编码装置(102),其中,所述伪随机数发生器是线性反馈移位寄存器。
9.一种将维度为k的数据x编码成长度为n的码字c的方法(500),其特征在于,所述方法包括如下步骤:
c=uA,
10.一种解码长度为n的码字c的解码装置(104),其特征在于,所述解码装置(104)包括:
c=uA,
11.根据权利要求10所述的解码装置(104),所述处理器(104a)还被配置为通过泛化的连续消除算法来解码所述码字c。
14.一种解码长度为n的码字c的方法(600),其特征在于,所述方法包括如下步骤:
c=uA,
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/RU2016/000539 WO2018030910A1 (en) | 2016-08-12 | 2016-08-12 | Coding and decoding of polar codes extended to lengths which are not powers of two |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109644006A CN109644006A (zh) | 2019-04-16 |
CN109644006B true CN109644006B (zh) | 2021-09-14 |
Family
ID=58261694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680087351.8A Active CN109644006B (zh) | 2016-08-12 | 2016-08-12 | 编码数据和解码数据的装置及方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10848185B2 (zh) |
EP (1) | EP3476052B1 (zh) |
JP (1) | JP6817414B2 (zh) |
KR (1) | KR102118328B1 (zh) |
CN (1) | CN109644006B (zh) |
WO (1) | WO2018030910A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108352845B (zh) * | 2015-11-10 | 2021-02-23 | 华为技术有限公司 | 用于对存储数据进行编码的方法以及装置 |
CN115720128B (zh) * | 2017-01-09 | 2024-09-24 | 中兴通讯股份有限公司 | 一种数据处理方法和装置 |
CN110267196B (zh) * | 2019-06-18 | 2021-03-23 | 西京学院 | 一种基于三维码映射的室内定位方法 |
KR102551652B1 (ko) * | 2019-07-03 | 2023-07-04 | 오피노 엘엘씨 | 무선 통신 시스템에서 사이드링크에 대한 구역 관리 및 하이브리드 자동 반복 요청 |
WO2023033421A1 (ko) * | 2021-08-31 | 2023-03-09 | 엘지전자 주식회사 | 무선 통신 시스템에서 폴라 코드 기반의 인코더를 설정하기 위한 장치 및 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103916220A (zh) * | 2014-04-15 | 2014-07-09 | 电子科技大学 | 一种基于极化码的网络编码协作通信方法 |
CN105009461A (zh) * | 2013-12-24 | 2015-10-28 | 华为技术有限公司 | 极性码的译码方法和译码装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7142134B2 (en) * | 2005-02-01 | 2006-11-28 | Hitachi Global Storage Technologies Netherlands B.V. | Techniques for generating modulation codes using running substitutions |
US8204151B2 (en) * | 2008-08-06 | 2012-06-19 | Samsung Electronics Co., Ltd. | Methods and apparatus to generate multiple antennas transmit precoding codebook |
KR102015121B1 (ko) | 2012-10-17 | 2019-08-28 | 삼성전자주식회사 | 불휘발성 메모리 장치를 제어하도록 구성되는 컨트롤러 및 컨트롤러의 동작 방법 |
US9362956B2 (en) | 2013-01-23 | 2016-06-07 | Samsung Electronics Co., Ltd. | Method and system for encoding and decoding data using concatenated polar codes |
US10135460B2 (en) * | 2013-10-01 | 2018-11-20 | Texas Instruments Incorporated | Apparatus and method for multilevel coding (MLC) with binary alphabet polar codes |
RU2571587C2 (ru) * | 2014-04-10 | 2015-12-20 | Самсунг Электроникс Ко., Лтд. | Способ и устройство кодирования и декодирования данных в скрученном полярном коде |
KR102157667B1 (ko) | 2014-05-15 | 2020-09-18 | 삼성전자주식회사 | 천공 장치 및 그의 천공 방법 |
US20150333775A1 (en) | 2014-05-15 | 2015-11-19 | Broadcom Corporation | Frozen-Bit Selection for a Polar Code Decoder |
US10193578B2 (en) * | 2014-07-10 | 2019-01-29 | The Royal Institution For The Advancement Of Learning / Mcgill University | Flexible polar encoders and decoders |
CN105141322B (zh) * | 2015-09-16 | 2018-09-07 | 哈尔滨工业大学 | 一种基于极化码sc译码的部分和方法 |
WO2017176302A1 (en) * | 2016-04-08 | 2017-10-12 | Intel Corporation | Apparatuses for supporting polar codes with variable codeword lengths and information lengths |
US10432234B2 (en) * | 2016-07-19 | 2019-10-01 | Mediatek Inc. | Low complexity rate matching for polar codes |
-
2016
- 2016-08-12 EP EP16843274.8A patent/EP3476052B1/en active Active
- 2016-08-12 KR KR1020197004969A patent/KR102118328B1/ko active IP Right Grant
- 2016-08-12 WO PCT/RU2016/000539 patent/WO2018030910A1/en unknown
- 2016-08-12 CN CN201680087351.8A patent/CN109644006B/zh active Active
- 2016-08-12 JP JP2019507136A patent/JP6817414B2/ja active Active
-
2019
- 2019-02-11 US US16/272,173 patent/US10848185B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105009461A (zh) * | 2013-12-24 | 2015-10-28 | 华为技术有限公司 | 极性码的译码方法和译码装置 |
CN103916220A (zh) * | 2014-04-15 | 2014-07-09 | 电子科技大学 | 一种基于极化码的网络编码协作通信方法 |
Non-Patent Citations (4)
Title |
---|
"Concatenated Polar codes";Mayank Bakshi等;《2010 IEEE International Symposium on Information Theory》;20100723;第918-922页 * |
"Polar codes: Primary concepts and practical decoding algorithms";Kai Niu等;《IEEE Communications Magazine》;20140715;第52卷(第7期);第192-203页 * |
"Polar Subcodes";Peter Trifonov等;《IEEE Journal on Selected Areas in Communications》;20151126;第34卷(第2期);第259-263页 * |
"极化码的一种改进的SC译码算法实现";姚树香;《兰州工业学院学报》;20151031;第22卷(第5期);第61-65页 * |
Also Published As
Publication number | Publication date |
---|---|
JP6817414B2 (ja) | 2021-01-20 |
CN109644006A (zh) | 2019-04-16 |
KR102118328B1 (ko) | 2020-06-03 |
EP3476052A1 (en) | 2019-05-01 |
JP2019525638A (ja) | 2019-09-05 |
KR20190032465A (ko) | 2019-03-27 |
EP3476052B1 (en) | 2020-12-30 |
WO2018030910A1 (en) | 2018-02-15 |
US20190173496A1 (en) | 2019-06-06 |
US10848185B2 (en) | 2020-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3510700B1 (en) | Method and apparatus for encoding data using a polar code | |
CN108702290B (zh) | 级联极化编码和滑动窗口极化编码 | |
CN109644006B (zh) | 编码数据和解码数据的装置及方法 | |
US10326478B2 (en) | Apparatus and method for encoding and decoding data in twisted polar code | |
US20190190544A1 (en) | Method and apparatus for generating a code word | |
CN103368583B (zh) | 极性码的译码方法和译码装置 | |
US6948109B2 (en) | Low-density parity check forward error correction | |
US11171741B2 (en) | Polar code transmission method and apparatus | |
WO2017127973A1 (en) | Generation of polar codes with a variable block length utilizing puncturing | |
EP3584972A1 (en) | Polar code encoding method and apparatus | |
US10892848B2 (en) | Devices and methods implementing polar codes | |
JP2008514106A (ja) | Ldpcコードを用いた符号化及び復号化方法 | |
US20180262216A1 (en) | Method and apparatus for transmitting hamming weight and codeword | |
KR101298745B1 (ko) | 데이터를 복호화 및 부호화하는 방법 및 장치 | |
JP4832447B2 (ja) | チャネルコードを用いた復号化装置及び方法 | |
CN109787641B (zh) | staircase码的解码方法、装置及存储介质 | |
US11245424B2 (en) | Device and method for generating a multi-kernel polar code | |
WO2018149354A1 (zh) | 极化码的编码方法、装置及设备、存储介质 | |
CN111527705B (zh) | 用于解码器重用的信道码构造 | |
JP5523064B2 (ja) | 復号装置及び方法 | |
US8091012B2 (en) | System and method for decreasing decoder complexity | |
KR101354731B1 (ko) | 통신 시스템에서 연접 저밀도 생성 행렬 부호 부호화/복호장치 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |