CN109641272B - 生产核燃料坯体的生坯的方法 - Google Patents

生产核燃料坯体的生坯的方法 Download PDF

Info

Publication number
CN109641272B
CN109641272B CN201780051893.4A CN201780051893A CN109641272B CN 109641272 B CN109641272 B CN 109641272B CN 201780051893 A CN201780051893 A CN 201780051893A CN 109641272 B CN109641272 B CN 109641272B
Authority
CN
China
Prior art keywords
green body
feed solution
mixture
solution mixture
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780051893.4A
Other languages
English (en)
Other versions
CN109641272A (zh
Inventor
曼努埃尔·亚历山大·普雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scherrer Paul Institut
Original Assignee
Scherrer Paul Institut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scherrer Paul Institut filed Critical Scherrer Paul Institut
Publication of CN109641272A publication Critical patent/CN109641272A/zh
Application granted granted Critical
Publication of CN109641272B publication Critical patent/CN109641272B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/60Metallic fuel; Intermetallic dispersions
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • B22F12/37Rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/55Two or more means for feeding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1054Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by microwave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00181Mixtures specially adapted for three-dimensional printing (3DP), stereo-lithography or prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明改善了用于陶瓷或金属的与3D喷墨打印的实现相结合的内部凝胶化处理以能够制备各种复杂的3D陶瓷或金属坯体,比如核燃料芯块等。

Description

生产核燃料坯体的生坯的方法
技术领域
本发明涉及生产用于3D陶瓷和/或金属坯体的生坯(9a至9c)的方法。
背景技术
利用陶瓷或金属坯体制备3D物件由于设计的复杂性、掌控成分——比如放射性组分——的困难性以及可能对制备有影响的许多其他参数而可能是多方面的工作。
保罗·谢勒学院(Paul Scherrer Institut,PSI)、即瑞士菲利根CH-5232的PSI在研发先进核燃料中具有悠久的传统。一些主要的努力用于研发锕系元素以及包含用于嬗变的燃料的次锕系元素(minor actinide)。一条路线是研发作为氧化钇稳定氧化锆芯块[1]或者作为金属陶瓷芯块[2]的用于在轻水反应堆中进行的钚嬗变的惰性基质燃料。几乎不必提及的是,这些材料由于核燃料中使用的锕系金属的高放射性而带来制备环境中的最高复杂性之一,尤其当这些材料出于嬗变的目的而包含次锕系元素时更是如此。
另一路线是研发替代性的水性生产方法,为了简化制备,准备用于远程调控。主要的努力用于内部凝胶化,从而形成球体pac燃料。该特定概念的凝胶化和燃料性能两者在[3]和[4]中被概述。由于芯块燃料在商业化的轻水反应堆且还在许多先进的系统、比如钠冷却快速反应堆(sodium cooled fast reactor)中是经验丰富的概念,一些努力还用于研发水性制备路线的方向,从而形成芯块。早期的方法集中在将球体粉碎成芯块形状并且对它们进行热处理(见[5]和[6]),从而形成所谓的混合芯块。但是水性直接陶瓷成形方法的使用也在使用直接凝结浇铸技术的PSI[7]处被提出。另一努力用于冷冻干燥的方向[8]。
核燃料周期的终止提供非常有希望的方面,如改进的铀资源使用和最终废物中的长寿命的次锕系元素的大量减少。对于涉及快速反应堆的传统的一次通过PWR情况、钚(Pu)的一次再使用选项与完全封闭的燃料循环之间的不同方面,参见[9]中的图3。
使循环封闭自然会涉及乏燃料(spent fuel)的再加工、以及包含燃料的高活性次锕系元素的制备。与新制核燃料的生产相比,高活性带来了新的生产挑战。最重要的是:
a)生产必须在屏蔽环境中远程执行(热室(hot-cell)),并且
b)应该避免燃料离析物的任何积聚(由于高设备污染和临界风险)。
第一方面要求几乎不需要维修的生产设备。后一方面由于灰尘不稳定并且可能沉积在生产环境、热室中的任何地方而不支持粉末基生产。
这些挑战的解决方案可以是简化的芯块处理[10]或者利用非常简化的生产道次得到的颗粒燃料。在PSI,几十年来使用水性内部凝胶化处理研究了颗粒燃料选项,从而产生了球体pac概念中使用的燃料卵石(pebble)。球体pac以及vipac燃料的详细描述可以在[3]中找到。
芯块燃料已经在很大程度上被优化用于二氧化铀(UO2)在锆合金包壳(cladding)和LWR反应堆中。如果考虑快速反应堆,则其他燃料基质——比如碳化物和氮化物——由于较高的金属含量和较好的热导性可能变得更引人注目[11]。然而,尤其碳化物的肿胀行为与氧化物相比更高。因此,孔隙率应该被设计为适应随燃耗的尺寸变化。
ATF(事故容错燃料)开发技术(initiative)是用以在事故的情况下降低燃料/包壳失效的风险[12]的大量的后福岛工作。概念中的一些基于氧化物和耐高温陶瓷。即使通过使用复合材料引入假塑性,这些氧化物和耐高温陶瓷本质上也是脆性的。然而,燃料-包壳机械相互作用应当通过设计较大的空隙来避免。为了避免重要的温度梯度,提出的一个概念是引入多孔石墨缓冲剂。
PSI已经实现用于生产燃料芯块的基础处理。内部凝胶化技术[13]在PSI是经验丰富的。如上所述,几十年来已经使用内部凝胶化技术来生产用于球体pac概念的卵石。内部凝胶化的主要特征是热引发固化处理。这意味着凝胶可以通过对供给溶液进行加热——这典型地由围绕供给溶液液滴的热硅油执行——而形成。在瑞士CCEM.CH项目PINE和MeAWaT[13]、[14]以及欧洲项目ASGARD和PELGRIMM[16]、[17]中,通过将微波用于加热以避免任何辐射分解和衰变发热对处理的影响并且能够与非冷却溶液一起起作用来对内部凝胶化进行研究。
发明内容
因此,本发明的目标是提供一种方法,该方法特别地在核燃料生产中在能够局部引入变化的特征如金属组分组成、富集度(这是同位素组成)和孔隙率的情况下提供几乎无尘的制备方法。
根据本发明的这个目标通过生产用于3D陶瓷和/或金属坯体的生坯(9a至9c)的方法被实现,所述方法包括以下步骤:
a)创建用于生坯(9a至9c)的3D生产控制模型;
b)提供呈至少一种水性溶液(1a、1b、……、1n)、比如金属硝酸盐溶液形式的金属、或金属的混合物、和/或类金属、和/或非金属或其混合物;在至少两种水性溶液(1a、1b、……、1n)的情况下,所述至少两种水性溶液在组成和/或同位素浓度方面彼此不同;
c)提供呈凝胶流体(2)形式的凝胶剂;
d)将至少一种水性金属溶液(1a、1b、……、1n)中的一者与凝胶流体(2)在第一温度下混合以形成供给溶液混合物,其中,第一温度选择成抑制供给溶液混合物在供给溶液混合物的喷射之前的内部凝胶化;
e)通过喷墨打印处理(inkjet printing process)将供给溶液混合物喷射至正在构建的生坯;
f)将喷射于正在构建的生坯上的供给溶液混合物加热至第二温度,其中,第二温度选择成将喷射的供给溶液混合物固定至正在构建的生坯;以及
g)根据3D生产控制模型重复执行步骤e)和f)并且可选地重复执行步骤d),直到已经实现期望形式的生坯(9a至9c)为止;以及
h)可选地,将生坯在给定的气氛、比如氧化或还原气氛下加热至第三温度,以实现3D陶瓷或类金属坯体的形成和/或以部分地或完全地烧结生坯。在该步骤中,来自凝胶化反应的化学残留物可以从产品中被除去。
因此,本发明改善了与3D喷墨打印技术的实现相结合的用于陶瓷或金属的内部凝胶化处理以能够制备各种复杂的3D陶瓷或金属坯体、比如核燃料芯块等。在3D打印和可以将不同的水性金属溶液供应至混合步骤的情况下,这可以局部地完成;允许3D设计中的最大的灵活性。在Pu和次锕系元素被引入快速反应堆燃料中以用于嬗变时,相同的也应用于局部的金属组成,这可以通过该技术被优化。
在多种情况下,如果生坯的组成可以根据生坯位置而变化将是非常有用的。根据本发明的优选实施方式,该目标可以当在重复步骤e)和f)期间混合物的组成在组成和/或同位素浓度方面变化时被实现。因此,可以为喷射的混合物的每个新层(或为层的一部分)提供不同的组成,这是因为组成可以通过实际上供给至混合步骤的水性金属溶液的选择被容易地控制。
类似的方法可以关于生坯的所期望的孔隙率分布被实现。因此,呈孔形成添加剂形式的造孔剂可以被供给到混合步骤d)中。
为了便于供给溶液混合物的简单控制并且为了避免老化/衰变问题和/或喷墨打印处理由于开始凝胶化而发生的堵塞,当混合步骤d)在墨水混合物的喷射之前即刻、优选地在墨水喷嘴附近被执行时是有利的。因此,在混合与喷射供给溶液混合物之间的时间间隔非常短并且该时间间隔的范围可以为几毫秒至几秒,比如200毫秒或5秒等。
为了提供混合物在混合目标(正在构建的生坯)上凝胶化的较好条件,本发明的另外的优选实施方式可以设置成:在使喷射的供给溶液混合物沉积于正在构建的生坯上期间和/或之后,通过用激光、微波和其他加热技术的任何组合对正在构建的生坯进行加热以及/或者通过用所提及的加热技术或其任何组合对喷射的墨水混合物进行加热而实现对喷射于正在构建的生坯上的混合物进行加热。
为了构造具有包括例如腔的复杂形式的3D陶瓷或金属坯体,期望在供给溶液混合物的沉积期间具有高灵活性。该目标可以在样品保持件可以水平地以及竖向地移动、可以绕竖向轴线旋转并且可以相对于竖向轴线倾斜时被实现。
上述发明方法的优选的使用示例在本申请中被列示。
附图说明
本发明及其优选实施方式在下文中参照附图被更详细地描述,在附图中:
图1示意性地示出了用于生产核燃料芯块的结构;以及
图2示意性地示出了对于样品保持件的运动具有一些自由度的样品保持件。
具体实施方式
实施示例1-具有可变组成和多孔表面层的核燃料芯块的实现
下文中,用于生产具有可变组成和多孔表面层的核燃料芯块的实施示例被更详细地说明。示例描述了先进核燃料芯块的生产,该核燃料芯块在其组成方面可以变化并且具有柔软的表面。目的是:具有由纯的铀氧化物(uranium-oxide)制成的良好传导的外部芯块区域,并且使内部部分富集次锕系元素以用于其嬗变。多孔的、柔软的表面旨在用于在芯块-包壳机械相互作用中减少。
两种金属供给溶液1a和1b被制备,一种硝酸铀溶液(不足的铀酰硝酸盐溶液(ADUN))以及包含镅、锔和镎的另一种硝酸盐溶液。作为变形,另外的溶液可以包含钚,并且/或者上述次锕系元素中的一种或若干种可以被制备在分开的溶液中。在图中,这些金属溶液被呈现在容器部分1中。
作为也被称为HMTA(乌洛托品(Hexamine))的有机复合物六亚甲基四胺的凝胶剂2被制备,凝胶剂2用作均匀沉淀剂。HMTA引起U(VI)的快速沉淀。因此,为了防止过早凝胶化,有机复合物尿素(CO(NH2))2)被加入以与铀离子络合(complex)[13]。
在第一步骤中,金属溶液在第一混合单元5中被混合,第一混合单元5还可以在仅2种金属溶液被混合的情况下被实现为简单的T形接合部,或者金属溶液在金属溶液的数量n更高的情况下在专门研发的混配器(blender)中被混合,该混配器具有n个入口。在下一步骤中,混配的金属硝酸盐溶液在第二混合单元6中被混合至凝胶剂2。从该时间起凝胶化反应开始,尤其是在温度被保持于环境条件下或者甚至由于次锕系元素的衰变发热(直至50℃)而升高的情况下更是如此。金属溶液1a、1b原位混合至凝胶剂2的该后一步骤近来已经在PSI的MeAWaT项目中被研究[15]。在相同的混配步骤中(在第二混合单元6中),添加造孔剂3、比如石墨,造孔剂3在热处理过程中用作孔形成剂。作为替代性方案,在此可以喷射其他添加剂,以实现对材料的修改。较小的混合/均化装置7通过在管中具有短范围的卷绕部(short range winding)被嵌入。根据设计和管长度,该步骤可以可选地被省去。金属溶液1a、1b、凝胶剂2和造孔剂3通过对应的泵4被输送。
金属离子(此处为铀和次锕系元素)的比率可以在任何时刻通过调整对应泵4的供给速率来改变。这些泵4在此处被实现为高精确度HPLC泵。所有管的内径被选择为0.18mm。最终产品中的组成变化的分度(resolution)由具有供给速率的泵4的时间分度与第一混合单元5中的有效混配容量之间的比率给出。在简单的T形接合部的情况下,这是典型的具有内管直径的球体的容量。管中的在混配步骤之后至沉积在被样品保持件9——该样品保持件9根据3D打印过程的进程被控制为竖向移动——支撑的样品9a上的所有容量将导致延迟,这在为金属溶液设定供给速率时必须考虑。在本应用中,在混合至凝胶剂2(在第二混合单元6中)之后至沉积在样品9a上的典型时间处于亚秒(sub-second)范围。这意味着实际上所有凝胶化反应将在沉积之后发生。在这些短时间内,供给溶液的冷却不是必需的,这是因为:仅在接近60℃至100℃的温度处,反应(凝胶化)时间落入亚秒范围内。
由于在其他3D打印应用中,喷墨喷嘴8用于将供给溶液沉积至样品9a(供给溶液目标)的表面。由于辐射可以使压电晶体降解,因而这种喷嘴的特殊方案已经被研发。这种新的喷嘴8以电磁力为基础。
喷嘴8安装在侧向移动的台架(stage)上。样品9a、9b和9c被安放在竖向移动的样品保持件9上,从而与喷嘴8一起提供三维可达性。在此处的应用中,其中,最终的产品将通常为10mm直径和10mm高度的芯块,10×10阵列的这种样品9a至9x被同时生产。对每个样品而言,新的供给溶液层从外部至中央被施加在环中。由于芯块中的组成和孔隙率变化以辐射状的方式被实现,因而这要求泵供给速率的最少变化。在将层施加至一个样品9a之后,台架移动至下一个样品。最新施加的层随后通过同轴微波施加器10固定,在本文中实际上对样品9c的表面进行加热。替代性地,可以使用其他形式的能量施加器。以这种方式,凝胶化完成,并且化学残留物从样品9a中被除去。在以这种方式施加若干层之后,高温处理被实现,以进行煅烧和部分烧结。替代性地,第二热源通过激光器(平行于同轴微波施加器10或替换同轴微波施加器10)实现,激光器可以局部地提供非常高的温度并因此进行烧结。
在氧化气氛中,目标氧化物陶瓷将以这种方式被实现。施加的石墨还将氧化为二氧化碳(CO2)并在样品9a、9b、9c中留下所期望的空隙。通过适当提供造孔剂3,孔隙率的梯度可以在样品上在至少一个维度中被实现。
实施示例2-包含密封燃料室的核燃料芯块的实现
在该示例中,打印下述燃料芯块:该燃料芯块包含填充有核燃料——比如面向边界的UC和多孔层——的蜂窝结构的碳化硅(SiC)边界。UC是引人注目的燃料基质,这是因为UC与UO2相比具有非常好的导热性和较高的金属含量。不利的是,UC也具有两个缺点,这两个缺点是在氧化环境中的化学反应活性(chemical reactivity)和与标准燃料相比更高的热肿胀率。
用本文提出的方法,通过将燃料在许多室中分开来缓和化学反应活性。即使室边界失效,反应体积也非常有限,不会影响芯块的整体完整性。在细分到多个小室——在每个室中还包含多孔的外层——中的情况下,肿胀将在室级别上而非在芯块尺度上适应。因此,芯块保持体积恒定(除了SiC的限于约1%的略微肿胀外),并且因此不妨碍包壳。
SiC非常抗氧化,并且显示出良好的耐高温性。因此,这种燃料类型可以作为事故容错燃料(ATF),事故容错燃料(ATF)是缓和事故情景、比如福岛中的事故情景的影响的尝试。该方法与在SiC芯块中包括TRISO颗粒的提议具有一些相似性。这可能甚至由于具有涉及到更多的结构层而显示更好的事故容错性。然而,由于在芯块中得到的燃料比率较低,因此将要求更高的富集度。
选择成生产这些芯块的结构与图1中所示的结构非常相似。第一示例中的第二溶液1b将包括硅。在第一混合单元5处将没有可变混合,而是数字混合。核燃料成分1a或硅溶液1b、比如甲基三氯硅烷将被施加。当核燃料成分1a或硅溶液1b沉积至样品时,首先是最终形成SiC的边界将被打印,并且随后是靠近边界的多孔层,并且最终燃料将被打印在室中。在还原气氛下将执行热处理,从而产生碳热反应。为了该反应,石墨烯将在第二混合单元6中加入至燃料打印溶液中。在此将产生第一凝胶化反应。在SiC层的情况下,甲基三氯硅烷将直接被热处理,这在还原气氛中将形成SiC陶瓷。在多孔层的情况下,将不加入石墨,而将施加聚苯乙烯,通过聚苯乙烯链的交联以及碳化,将形成多孔碳层。由于混合体积非常小,所有这些溶液的施加可以利用相同的系统/喷嘴被执行。替代性地,可以使用若干喷嘴,以增大生产速度并且简化单个施加器。
实施示例3-用于非常先进的概念的复杂的核燃料结构
非常先进的核概念的示例是裂变碎片反应堆。此处,带电的裂变碎片的动能直接转变成电能。此处,主要工作之一是核燃料部件的设计和生产,以及通过电场和磁场或者通过具有不同电子密度的导体减慢裂变产物的一些环境系统。
为了生产这种先进的核部件,一些腔可能必须被保持。此处,图2中所示的先进的样品保持件12将被应用,从而允许任何随意形状、包括空体积的生产。施加的供给溶液随后总是被施加至在重力方向上具有法向矢量的表面。随后,由于现有样品表面温度升高和/或通过关于第一实施示例(微波施加器10、激光器或其他)已经描述的方法进行加热,因此在非常短的时间内完成固定。
通过图1中描述的方法,仅在构建宏观内腔的有限的可能性的情况下可以生产相当平坦的样品。原因是:供给溶液在仅表面上开始凝胶化时施加至处于相当无粘性的状态的样品表面。液滴的表面张力和快速凝胶化动力是仅有的可以有助于生产伸长结构的作用。在大多数情况下,具有一些设计的孔隙率且没有悬置结构的宏观致密结构将是足够的。
对于一些特殊情况,在图2中提出5轴线样品保持件12,该5轴线样品保持件12将提供总是平行于重力的法向上的溶液施加表面。详细地,样品保持件12可以在水平面内移动并且还可以竖向地移位。此外,样品保持件12可以绕竖向轴线旋转并且可以相对于竖向轴线倾斜角度α。这些运动总共提供了在5个轴线上的自由运动。由于凝胶化将非常快速地进行,因此样品9a可以连续地移动至其他表面,从而再一次调整角度。通过该方法,还可以直接构造水平结构。图2示例性地示出了具有较大内腔14的样品9a,内腔14可以通过样品保持件12的协调运动、由喷嘴8利用喷嘴8的针16进行的供给溶液喷射以及允许最近施加的产品层立刻凝胶化的微波施加器10来容易地构造。
如对于第一示例和第二示例也存在的,第三示例需要用于生坯/样品9a的形成的更复杂的3D生产控制模型。该模型具体地包括关于墨水混合物的成分的详细数据、用于喷嘴8的打印控制数据以及用以控制微波施加器10的加热数据。
参考文献
[1]G.Ledergerber,C.Degueldre,P.Heimgartner,M.A.Pouchon,和U.Kasemeyer,“Inert matrix fuel for the utilisation of plutonium”,Prog.Nucl.Energy,第38卷,第3-4期,第301-308页,2001年。
[2]K.Idemitsu,“Incineration of Excess Plutonium in a CerMet Fuel”,PSI,Paul Scherrer Institut,瑞士菲利根,TM-43-97-29,1997年9月。
[3]M.A.Pouchon,G.Ledergerber,F.Ingold和K.Bakker,“3.11-Sphere-Pac andVIPAC Fuel A2-Konings,Rudy J.M.”,Comprehensive Nuclear Materials,Oxford:Elsevier,2012年,第275-312页。
[4]M.A.Pouchon,L.-A.Nordstrom和C.Hellwig,“3.25-Modeling of Sphere-PacFuel A2-Konings,Rudy J.M.”,Comprehensive Nuclear Materials,Oxford:Elsevier,2012年,第789-817页。
[5]G.Ledergerber,“Kugeln als Ausgangsmaterial für Pellets”,PSI,PaulScherrer Institut,瑞士菲利根,TM-43-89-21,1989年8月。
[6]G.Ledergerber,F.Ingold,R.W.Stratton,H.-P.Alder,C.Prunier,D.Warin和M.Bauer,“Preparation of Transuranium Fuel and Target Materials for theTransmutation of Actinides by Gel Coconversion”,Nucl.Technol.,第114卷,第2期,第194-204页,1996年5月。
[7]M.Streit,F.Ingold,L.J.Gauckler和J.-P.Ottaviani,“(Pu,Zr)N AnnularFuel Peiets Shaped By.Direct Coagulation Casting”,J.Nucl.Sci.Technol.,第39卷,sup3,第741-744页,2002年11月。
[8]E.Hart,“Ceramic pellet fabrication by freeze-drying”,PSI,PaulScherrer Institut,瑞士菲利根,TM-43-02-02,2002年9月。
[9]V.Kuznetsov,G.Fesenko,A.Schwenk-Ferrero,A.Andrianov和I.Kuptsov,“Innovative Nuclear Energy Systems:State-of-the Art Survey on Evaluation andAggregation Judgment Measures Applied to Performance Comparison”,Energies,第8卷,第5期,第3679-3719页,2015年4月。
[10]K.Asakura,K.Takeuchi,T.Makino和Y.Kato,“Feasibility Study on aSimplified MOX Pellet Fabrication Process,the Short Process,for Fast BreederReactor Fuel”,Nucl.Technol.,第167卷,第3期,第348-361页,2009年9月。
[11]H.-J.Matzke,Science of advanced LMFBR fuels:solid state physics,chemistry,and technology of carbides,nitrides,and carbonitrides of uraniumand plutonium.,北荷兰,1986。
[12]“OECD/NEA Expert Group on Accident Tolerant Fuels for Light WaterReactors(EGATFL)”在线获取:https://www.oecd-nea.org/science/egatfl/.[访问于:2016年8月19日]。
[13]M.A.Pouchon,“14-Gelation and other innovative conversionprocesses for aqueous-based reprocessing and recycling of spent nuclear fuelsA2-Taylor,Robin”,Reprocessing and Recycling of Spent Nuclear Fuel,Oxford:Woodhead Publishing,2015年,第353-369页。
[14]M.A.Pouchon,“PINE-Platform for Innovative Nuclear Fuels”,CCEM::Annual Activity Report 2012,Paul Scherrer Institut,瑞士菲利根:CCEM.CH,第39-40页。
[15]M.A.Pouchon,“MeAWat-Methods of Advanced Waste Treatment”,CCEM::Annual Activity Report 2014,Paul Scherrer Institut,瑞士菲利根:CCEM.CH,第52-54页。
[16]“FP7 EU project:Advanced fuels for Generation IV reActors:Reprocessing and Dissolution(ASGARD)(项目编号:295825)”,在线获取:http://cordis.europa.eu/project/rcn/100635_en.html.[访问于:2016年8月18日]。
[17]“FP7 EU project:PELlets versus GRanulates:Irradiation,Manufacturing&Modelling(PELGRIMM)(项目编号:295664)”,在线获取:http://cordis.europa.eu/project/rcn/101413_en.html.[访问于:2016年8月18日]。

Claims (11)

1.一种生产核燃料坯体的生坯(9a~9c)的方法,包括以下步骤:
a)创建用于所述生坯(9a~9c)的3D生产控制模型;
b)提供呈至少一种水性溶液(1a、1b、……、1n)形式的金属或金属的混合物、和/或类金属、和/或非金属或其混合物;在使用至少两种水性溶液(1a、1b、……、1n)的情况下,所述至少两种水性溶液在组成和/或同位素浓度方面彼此不同;
c)提供呈凝胶流体(2)形式的凝胶剂;
d)将所述至少一种水性溶液(1a、1b、……、1n)与所述凝胶流体(2)在第一温度下混合以形成供给溶液混合物,其中,所述第一温度选择成抑制所述供给溶液混合物在其喷射之前的内部凝胶化;
e)通过喷墨打印处理将所述供给溶液混合物喷射至正在构建的所述生坯;
f)将喷射于正在构建的所述生坯上的所述供给溶液混合物加热至第二温度,其中,所述第二温度选择成将喷射的所述供给溶液混合物固定至正在构建的所述生坯以完成所述供给溶液混合物的凝胶化;以及
g)根据所述3D生产控制模型重复执行步骤d)、e)和f),直到已经实现期望形式的所述生坯(9a~9c)为止;以及
h)将所述生坯在给定的气氛下加热至第三温度,以实现所述核燃料坯体的形成和/或以部分地或完全地烧结所述生坯。
2.根据权利要求1中所述的方法,其中,在重复期间,所述供给溶液混合物的组成在成分的浓度和/或含量方面变化。
3.根据权利要求1或2所述的方法,其中,造孔剂呈供给到混合步骤d)中的造孔剂流体(3)的形式。
4.根据权利要求1或2所述的方法,其中,混合步骤d)在墨水混合物的喷射之前即刻被执行。
5.根据权利要求1或2所述的方法,其中,在使喷射的所述供给溶液混合物沉积于正在构建的所述生坯上期间或之后,通过对正在构建的所述生坯进行加热以及/或者通过激光和/或微波对喷射的所述供给溶液混合物进行加热而实现对喷射于正在构建的所述生坯上的所述供给溶液混合物进行加热。
6.根据权利要求1或2所述的方法,其中,用于支撑所述生坯的样品保持件(12)能够水平地以及竖向地移动、能够绕竖向轴线旋转并且能够相对于所述竖向轴线倾斜。
7.根据权利要求1或2所述的方法,所述供给溶液混合物的成分被选择成形成具有不同功能的燃料特征区域。
8.根据权利要求1所述的方法,其中,至少一种水性溶液为金属硝酸盐溶液。
9.根据权利要求1所述的方法,其中,所述给定的气氛为氧化或还原气氛。
10.根据权利要求4所述的方法,其中,混合步骤d)在墨水喷嘴(8)附近被执行。
11.根据权利要求7所述的方法,其中,所述功能为调整的机械性能、屏障功能、裂变行为、嬗变行为。
CN201780051893.4A 2016-08-23 2017-08-08 生产核燃料坯体的生坯的方法 Active CN109641272B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16185359.3A EP3287213A1 (en) 2016-08-23 2016-08-23 Aqueous additive production method for the fabrication of ceramic and/or metallic bodies
EP16185359.3 2016-08-23
PCT/EP2017/070098 WO2018036813A1 (en) 2016-08-23 2017-08-08 Aqueous additive production method for the fabrication of ceramic and/or metallic bodies

Publications (2)

Publication Number Publication Date
CN109641272A CN109641272A (zh) 2019-04-16
CN109641272B true CN109641272B (zh) 2021-04-13

Family

ID=56958727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780051893.4A Active CN109641272B (zh) 2016-08-23 2017-08-08 生产核燃料坯体的生坯的方法

Country Status (4)

Country Link
US (1) US11742096B2 (zh)
EP (2) EP3287213A1 (zh)
CN (1) CN109641272B (zh)
WO (1) WO2018036813A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3948897A4 (en) * 2019-04-01 2023-01-04 BWXT Advance Technologies, LLC COMPOSITIONS FOR THE ADDITIVE MANUFACTURING AND METHODS FOR THE ADDITIVE MANUFACTURING, IN PARTICULAR, OF NUCLEAR REACTOR COMPONENTS
CN113611435B (zh) * 2021-08-17 2023-06-02 西北工业大学 一种陶瓷复合燃料芯块及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454972B1 (en) * 1999-11-24 2002-09-24 Sandia Corporation Solid freeform fabrication using chemically reactive suspensions
CN102971070A (zh) * 2010-06-29 2013-03-13 纳克公司 硅/锗纳米粒子墨水、用于合成纳米粒子的激光热解反应器和相关方法
CN103804993A (zh) * 2013-11-27 2014-05-21 佛山市明朝科技开发有限公司 一种特白水性陶瓷喷墨油墨及其制备方法
WO2015200257A1 (en) * 2014-06-23 2015-12-30 Free Form Fibers, Llc An additive manufacturing technology for the fabrication and characterization of nuclear reactor fuel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121442A (en) * 1978-03-13 1979-09-20 Power Reactor & Nuclear Fuel Dev Corp Microwave heating device for radioactive material
DE3035845C2 (de) * 1980-09-23 1986-05-22 Gesellschaft zur Förderung der industrieorientierten Forschung an den Schweizerischen Hochschulen und weiteren Institutionen, Bern Verfahren und Vorrichtung zur Herstellung von Mikrokugeln durch interne Gelierung von Mischfeed-Tropfen
US4436677A (en) * 1982-08-02 1984-03-13 Westinghouse Electric Corp. Nuclear fuel fabrication process
US9646729B2 (en) * 2013-01-18 2017-05-09 Westinghouse Electric Company Llc Laser sintering systems and methods for remote manufacture of high density pellets containing highly radioactive elements
CA2993343A1 (en) * 2014-08-05 2016-02-11 Laing O'rourke Australia Pty Limited Apparatus for fabricating an object
US9987799B2 (en) * 2016-02-29 2018-06-05 Palo Alto Research Center Incorporated Curing device for additive manufacturing systems deposited in 3D space

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454972B1 (en) * 1999-11-24 2002-09-24 Sandia Corporation Solid freeform fabrication using chemically reactive suspensions
CN102971070A (zh) * 2010-06-29 2013-03-13 纳克公司 硅/锗纳米粒子墨水、用于合成纳米粒子的激光热解反应器和相关方法
CN103804993A (zh) * 2013-11-27 2014-05-21 佛山市明朝科技开发有限公司 一种特白水性陶瓷喷墨油墨及其制备方法
WO2015200257A1 (en) * 2014-06-23 2015-12-30 Free Form Fibers, Llc An additive manufacturing technology for the fabrication and characterization of nuclear reactor fuel

Also Published As

Publication number Publication date
CN109641272A (zh) 2019-04-16
US20190193152A1 (en) 2019-06-27
EP3504019B1 (en) 2021-06-23
US11742096B2 (en) 2023-08-29
EP3287213A1 (en) 2018-02-28
WO2018036813A1 (en) 2018-03-01
EP3504019A1 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
Streit et al. Nitrides as a nuclear fuel option
Lee et al. Opportunities for advanced ceramics and composites in the nuclear sector
Roux et al. Summary of experimental results for ceramic breeder materials
CN109641272B (zh) 生产核燃料坯体的生坯的方法
Charollais et al. CEA and AREVA R&D on HTR fuel fabrication and presentation of the CAPRI experimental manufacturing line
Couland et al. Novel production route of yttria‐stabilized zirconia fuel kernels and pellets for nuclear fuel applications
Ledergerber et al. Preparation of transuranium fuel and target materials for the transmutation of actinides by gel coconversion
Balakrishna ThO2 and (U, Th) O2 Processing-A Review
Ganguly Sol-gel microsphere pelletization: A powder-free advanced process for fabrication of ceramic nuclear fuel pellets
Bart et al. AC-3-irradiation test of sphere-pac and pellet (U, Pu) C fuel in the US Fast Flux Test Facility
RU2522744C2 (ru) Композиционный топливный модельный материал с инертной пористой металлической матрицей и способ его изготовления
Mistarihi et al. Fabrication of oxide pellets containing lumped Gd2O3 using Y2O3‐stabilized ZrO2 for burnable absorber fuel applications
Burkes et al. A US perspective on fast reactor fuel fabrication technology and experience. Part II: Ceramic fuels
Nagarajan et al. Sol-gel processes for nuclear fuel fabrication
Ramond et al. Fabrication of (U, Am) O2 pellet with controlled porosity from oxide microspheres
Lahr Fabrication, properties, and irradiation behavior of U/Pu particle fuel for light water reactors
Ledergerber Internal gelation for oxide and nitride particles
Jeon et al. Scaling Up Fabrication of UO 2 Porous Pellet With a Simulated Spent Fuel Composition
Pouchon Gelation and other innovative conversion processes for aqueous-based reprocessing and recycling of spent nuclear fuels
Krishnan et al. Sol–gel development activities at IGCAR, Kalpakkam
Borland et al. Evaluation of aqueous and powder processing techniques for production of Pu-238 fueled general purpose heat sources
Kumar et al. Study on thermal decomposition and sintering behaviour of internally gelated simulated inert matrix fuel
Raftery Production and Characterization Package of Reference and Advanced Feedstock
Seong et al. Interaction of Rare Earth Elements and Graphite Coated with Yttrium Oxide
Moo Additive Manufacturing of Nuclear Materials by Digital Light Processing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant