CN109638944B - 一种基于能量弱存储的低压船舶直流电网结构及控制方法 - Google Patents

一种基于能量弱存储的低压船舶直流电网结构及控制方法 Download PDF

Info

Publication number
CN109638944B
CN109638944B CN201910077582.6A CN201910077582A CN109638944B CN 109638944 B CN109638944 B CN 109638944B CN 201910077582 A CN201910077582 A CN 201910077582A CN 109638944 B CN109638944 B CN 109638944B
Authority
CN
China
Prior art keywords
current
direct
voltage
converter
power grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910077582.6A
Other languages
English (en)
Other versions
CN109638944A (zh
Inventor
杨荣峰
吴德烽
王国玲
吴泽谋
马昭胜
俞万能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jimei University
Original Assignee
Jimei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jimei University filed Critical Jimei University
Priority to CN201910077582.6A priority Critical patent/CN109638944B/zh
Publication of CN109638944A publication Critical patent/CN109638944A/zh
Application granted granted Critical
Publication of CN109638944B publication Critical patent/CN109638944B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

本发明涉及一种基于能量弱存储的低压船舶直流电网结构及控制方法。通过采用普通断路器替代具有快速关断能力的直流断路器的直流电网结构;该结构主要特点是直流链路上取消了大容量的起电压支撑作用的电容,直流电网呈能量弱存储状态,在出现故障时能迅速失电保护;电网结构为,通过具备直流短路故障穿越能力的前端变换器进行可控整流,并通过超级电容的高开关频率的接口变换器抑制直流电网电压波动。采用本发明这种电网结构,在直流侧短路故障时能够自动限流,无需采用专门的直流断路器,从而简化电路,利于船舶直流电网的推广。

Description

一种基于能量弱存储的低压船舶直流电网结构及控制方法
技术领域
本发明属于船舶电网技术领域,具体涉及一种基于能量弱存储的低压船舶直流电网结构及控制方法,通过减小直流链路上的电容,利于故障处理,并通过电网中的多种变换器联合控制实现电压稳定。
背景技术
船舶电力系统传统上采用交流电制,优点是变压、保护及故障处理容易,但其局限性也很明显。由于柴油发电机输出电压直接与电网相连,为了使得电网电压频率稳定,要求柴油发电机工作于固定转速,使得柴油发电机常常不能工作于最佳能效点。同时,交流电网存在多种电能质量问题,如谐波、无功、同步等问题,在船舶电网这种高渗透率微网中问题尤其突出。此外,交流系统采用工频变压器进行隔离与变压,笨重且体积庞大,会占用更多的设备空间。
相对于交流电网,直流电网近年来得到人们的重视。采用直流电网,柴油发电机不必工作于额定频率,为提高机组的燃油效率提供了额外的自由度。ABB公司2013年在实船中的运行数据表明,采用船舶直流电网,效率能提高20%以上。同时,直流电网不存在交流电网中由于同步带来的电能质量问题,而且更容易接入新能源,有利于减少设备。基于上述优点,船舶直流电网近年来得到研究人员的重视。
但是,直流电网现有构架中,往往在直流链路上接入大电容以抑制直流电网中的电压波动。大电容造成直流侧短路时,交流阻抗小,短路电流大,因此直流电网对故障保护的要求高。现有直流电网结构中,各支路均通过直流断路器实现故障保护,直流断路器技术指标要求远高于交流断路器,要求在几毫秒内要实现可靠关断。由于直流电路中没有电压过零点,灭弧困难,因此关断难度大,断路器结构和交流断路器相比存在很大差异。目前市场上的直流断路器,均为机械式直流断路器,具备电流关断能力,但关断速度慢,难以满足直流电网保护需求。
考虑到变换器本身具有极强的限流能力,如果能够结合变换器合理设计电网结构,减少甚至不使用直流断路器则能够简化直流电网结构,减少成本并提高系统的可靠性。为此,本申请研究一种低压船舶直流电网结构,通过减少直流链路上的支撑电容,减小直流电网中不可控的能量存储,使得短路故障情况下直流电网迅速放能量以实现自我保护,同时通过特殊设计的变换器及其快速能量控制,可抑制由于支撑电容减小带来的直流电压波动问题。采用本发明所提出的方案,最终可实现无快速直流断路器的船舶直流电网设计。
发明内容
本发明的目的在于提供一种基于能量弱存储的低压船舶直流电网结构及控制方法,该直流电网结构及控制方法在直流侧短路故障时能够自动限流,无需采用专门的直流断路器,从而简化电路,利于船舶直流电网的推广。
为实现上述目的,本发明的技术方案是:一种基于能量弱存储的低压船舶直流电网结构,所述直流电网结构,在直流链路上取消大电容存储能量,柴油发电机生成的交流能量通过可控整流变换为直流能量,并通过高开关频率变换器及超级电容来抑制电网侧直流电压波动。
在本发明一实施例中,所述直流电网结构,其供电能源通过变换器接入直流电网;其中,柴油发电机端采用MMC(模块化多电平)变换器,超级电容侧采用交错并联变换器,MMC变换器、交错并联变换器在直流链路出现短路故障时,不会与开关器件并联的二极管构成导电通路,具有故障穿越能力。
在本发明一实施例中,所述供电能源还包括蓄电池组,蓄电池组通过低开关频率(<10kHz)变换器接入直流电网。
在本发明一实施例中,所述直流电网结构的具体结构为:直流电网结构按负载分类,分为多个区域,每个区域有两个接口同直流电网相连,连接元件为开关器件;每个区域还包括有超级电容、蓄电池组和直流负载,超级电容通过交错并联变换器接入区域直流子网,蓄电池组通过低开关频率变换器接入区域直流子网;每个直流子网均有一个容值极小的支撑变容,柴油发电机通过交流侧开关器件、MMC变换器、直流母线侧开关器件直接接入直流电网,实现交直流能量转换,整个直流电网电压仅通过各分区区域内的容值极小的支撑变容来支撑,即实现一种直流电网能量弱存储状态。
在本发明一实施例中,所述交错并联变换器由多路全桥DC/DC变换器并联而成,采用全桥结构的目的是当直流链路短路时,全桥结构所有开关器件断开时,IGBT并联的二极管不会构成直流通路,具有直流短路故障穿越能力。
在本发明一实施例中,所述高开关频率变换器为交错并联变换器、SiC型变换器,或多电平变换器,以提高开关频率。
在本发明一实施例中,所述可控整流变换器的为整流变换器,所述整流变换器为MMC变换器、基于双向开关的三相H桥结构,或是普通三相变换器中加入crowbar电路。
本发明还提供了一种基于上述所述基于能量弱存储的低压船舶直流电网结构的直流电网控制方法,包括预充电、正常运行和故障情况下变换器的控制:
1)预充电、正常运行情况下的变换器控制:
1.1)对于MMC变换器,正常运行时,其能量控制包括交流侧能量控制和直流侧能量控制,预充电状态下,MMC仅有交流侧能量控制,具体通过如下步骤实现:(一)交流侧采用dq解耦的功率控制技术,通过电压和电流传感器获得交流侧柴油发电机端三相电压uga,ugb,ugc和柴油发电机端三相电流iag,ibg,icg;(二)通过锁相环PLL获取交流电网同步相位信息;(三)通过同步旋转坐标分解,并获得电流的d、q轴分量id、iq;(四)对MMC变换器子模块电容电压平均值进行闭环,得到电流有功分量id *;(五)对电流d、q轴分量进行闭环控制,得到MMC变换器交流侧输出电压udc,uqc,经过反坐标变换后得到MMC变换器交流侧三相电压uao,ubo,uco;(六)正常运行情况下,MMC变换器除了交流侧能量控制还有直流侧控制,直流侧控制量是直流电压Udc、直流侧电流在电感上的电压及有源阻尼分量的和,有源阻尼分量为直流侧电流icir与虚拟电阻Rv通过乘法器相乘;最终MMC每相桥臂输出电压如式(2)所示:
Figure BDA0001958821260000031
式中,uacu和uacd分别为MMC变换器上下桥臂电压,iacu和iacd分别为上下桥臂电流,
Figure BDA0001958821260000032
为电感电压,icir=iacu+iacd为MMC变换器直流侧电流;
1.2)对于交错并联变换器通过电压和电流双闭环实现对电网电压的平稳控制,其控制步骤为:(一)对直流电网电压信号Udc进行低通滤波,用U dc减去低通滤波信号,得到Udc中的高频谐波分量uhr;(二)将电压高频谐波分量uhr送入PI控制器,得到高频补偿电流参考值ihr;(三)将超级电容电压Ucap与设定电压Uset比较,并把差值送入PI控制器,得到低频的超级电容充电电流参考值ihf;(四)超级电容输出电流参考值icr为高频补偿电流参考值ihr与超级电容充电电流参考值ihf之和,即icr=ihr+ihf,并对输出电流ihc通过PI控制器进行控制,得到输出电压控制量ucap,以此电压调制后控制交错并联变换器;
2)故障情况下变换器控制:
直流线路出现故障情况下,其处理过程为:(一)当MMC变换器、交错并联变换器电流超过限制,且直流电压低于设定阈值,判断出现故障;(二)MMC变换器、交错并联变换器停止运行,直流线路电压瞬间降低到零,各接口处电流也为零,此时断开接口处各开关,对各分区区间电路进行隔离;(三)根据故障前各接口处电流的流向,定位故障位置;(四)没有故障的各分区区间利用各分区区间内的超级电容和蓄电池组对各分区区域供电,建立各分区区域电压;(五)闭合建立好电压的各区间的接口处开关,恢复直流电网供电。
相较于现有技术,本发明具有以下有益效果:本发明的直流电网结构及控制方法在直流侧短路故障时能够自动限流,无需采用专门的直流断路器,从而简化电路,利于船舶直流电网的推广。
附图说明
图1为本发明基于能量弱存储的直流电网结构。
图2为本发明交错并联变换器。
图3为本发明正常运行时MMC等效模型。
图4为本发明MMC整流器预充电等效模型
图5为本发明MMC预充电控制框图。
图6为本发明MMC正常运行控制框图。
图7为本发明超级电容控制框图。
具体实施方式
下面结合附图,对本发明的技术方案进行具体说明。
本发明提供了一种基于能量弱存储的低压船舶直流电网结构,所述直流电网结构,在直流链路上取消大电容存储能量,柴油发电机生成的交流能量通过可控整流变换为直流能量,并通过高开关频率变换器及超级电容来抑制电网侧直流电压波动。所述直流电网结构,其供电能源通过变换器接入直流电网;其中,柴油发电机端采用MMC变换器,超级电容侧采用交错并联变换器,MMC变换器、交错并联变换器在直流链路出现短路故障时,不会与开关器件并联的二极管构成导电通路,具有故障穿越能力。所述供电能源还包括蓄电池组,蓄电池组通过低开关频率(<10kHz)变换器接入直流电网。
所述直流电网结构的具体结构为:直流电网结构按负载分类,分为多个区域,每个区域有两个接口同直流电网相连,连接元件为开关器件;每个区域还包括有超级电容、蓄电池组和直流负载,超级电容通过交错并联变换器接入区域直流子网,蓄电池组通过低开关频率变换器接入区域直流子网;每个直流子网均有一个容值极小的支撑变容,柴油发电机通过交流侧开关器件、MMC变换器、直流母线侧开关器件直接接入直流电网,实现交直流能量转换,整个直流电网电压仅通过各分区区域内的容值极小的支撑变容来支撑,即实现一种直流电网能量弱存储状态。
所述交错并联变换器由多路全桥DC/DC变换器并联而成,采用全桥结构的目的是当直流链路短路,全桥结构所有开关器件断开时,IGBT并联的二极管不会构成直流通路,具有直流短路故障穿越能力。除了交错并联变换器,还可以选择SiC型变换器,或多电平变换器以提高变换器开关频率。类似的,与柴油发电机相连接的整流变换器除了MMC变换器,还可以采用基于双向开关的三相H桥结构,或是普通三相变换器中加入crowbar电路,以实现直流短路故障穿越。
本发明还提供了一种基于上述所述基于能量弱存储的低压船舶直流电网结构的直流电网控制方法,包括预充电、正常运行和故障情况下变换器控制:
1)预充电、正常运行情况下的变换器控制:
1.1)对于MMC变换器,正常运行时,其能量控制包括交流侧能量控制和直流侧能量控制,预充电状态下,MMC仅有交流侧能量控制,具体通过如下步骤实现:(一)交流侧采用dq解耦的功率控制技术,通过电压和电流传感器获得交流侧柴油发电机端三相电压uga,ugb,ugc和柴油发电机端三相电流iag,ibg,icg;(二)通过锁相环PLL获取交流电网同步相位信息;(三)通过同步旋转坐标分解,并获得电流的d、q轴分量id、iq;(四)对MMC变换器子模块电容电压平均值进行闭环,得到电流有功分量id *;(五)对电流d、q轴分量进行闭环控制,得到MMC变换器交流侧输出电压udc,uqc,经过反坐标变换后得到MMC变换器交流侧三相电压uao,ubo,uco;(六)正常运行情况下,MMC变换器除了交流侧能量控制还有直流侧控制,直流侧控制量是直流电压Udc、直流侧电流在电感上的电压及有源阻尼分量的和,有源阻尼分量为直流侧电流icir与虚拟电阻Rv通过乘法器相乘;最终MMC每相桥臂输出电压如式(3)所示:
Figure BDA0001958821260000051
式中,uacu和uacd分别为MMC变换器上下桥臂电压,iacu和iacd分别为上下桥臂电流,
Figure BDA0001958821260000052
为电感电压,icir=iacu+iacd为MMC变换器直流侧电流;
1.2)对于交错并联变换器通过电压和电流双闭环实现对电网电压的平稳控制,其控制步骤为:(一)对直流电网电压信号Udc进行低通滤波,用U dc减去低通滤波信号,得到Udc中的高频谐波分量uhr;(二)将电压高频谐波分量uhr送入PI控制器,得到高频补偿电流参考值ihr;(三)将超级电容电压Ucap与设定电压Uset比较,并把差值送入PI控制器,得到低频的超级电容充电电流参考值ihf;(四)超级电容输出电流参考值icr为高频补偿电流参考值ihr与超级电容充电电流参考值ihf之和,即icr=ihr+ihf,并对输出电流ihc通过PI控制器进行控制,得到输出电压控制量ucap,以此电压调制后控制交错并联变换器;
2)故障情况下变换器控制:
直流线路出现故障情况下,其处理过程为:(一)当MMC变换器、交错并联变换器电流超过限制,且直流电压低于设定阈值,判断出现故障;(二)MMC变换器、交错并联变换器停止运行,直流线路电压瞬间降低到零,各接口处电流也为零,此时断开接口处各开关,对各分区区间电路进行隔离;(三)根据故障前各接口处电流的流向,定位故障位置;(四)没有故障的各分区区间利用各分区区间内的超级电容和蓄电池组对各分区区域供电,建立各分区区域电压;(五)闭合建立好电压的各区间的接口处开关,恢复直流电网供电。
以下为本发明的具体实现过程。
本发明内容在于提出一种低压船舶直流电网结构及其基本控制方法,
首先,本发明提出了一种新型的低压船舶直流电网结构。该直流电网结构如图1所示。电网基本拓扑为分区拓扑,船舶直流电网按负载分类,分为多个区域,每个区域有两个接口同直流电网相连。连接元件为电感和普通断路器或接触器。每个区域包括超级电容器,蓄电池组和直流负载。超级电容器通过高开关频率变换器(以后通称为高频变换器)接入区域直流子网,如交错并联变换器,SiC型变换器或其他多电平变换器。蓄电池组则通过低开关频率变换器(以后通称为低频变换器,开关频率通常小于10kHz)接入区域子网。每个子网均有一个支撑变容,和常规直流电网不同的是,该支撑电容容值极小。柴油机发电通过整流变换器接入直流电网,实现交直流能量转换,其直流输出端没有其他电容,事实上整个直流线路中(不包括设备内部),均没有电容存在,整个直流电网电压仅仅通过各分区内的小电容支撑,即一种直流电网能量弱存储状态。
其次,本发明提出的与超级电容相连接的双向DC/DC变换器为一高开关频率变换器,其作用是实现子网内电压稳定为额定值。采用高开关频率设计的原因是使输出变换器具有良好的动态特性,变换器电压控制带宽足够大,以及时稳定直流电压。本发明采用的高频变换器类型为交错并联变换器,其具体电路结构如图2所示。交错并联变换器由多路全桥DC/DC变换器并联而成,采用全桥结构的目的是当直流链路短路时,全桥结构所有开关器件断开时,IGBT并联的二极管不会构成直流通路,具有直流短路故障穿越能力。
本发明同样采用具有直流短路故障穿越功能的整流变换器,变换器可以采用基于MMC的结构或者是基于双向开关的三相H桥结构,还可以是普通的三相变换器中加入crowbar。图1中的变换器是一种每个桥臂仅一个子模块的MMC(模块化多电平级联)变换器。每个子模块仍为H桥结构,有效避免直流链路短路时与开关器件并联的二极管构成直流通路。每个子模块上有独立的电容,工作时通过变换器的控制电容电压将保持在一定阈值,并在直流侧支撑直流电压。
根据图3的MMC等效模型,以a相为例,直流侧电压Udc,变换器上下桥臂电压uacu和uacd,上下桥臂电流iacu和iacd,及柴油发电机端电压uga关系为
Figure BDA0001958821260000071
根据式(4)可得,
Figure BDA0001958821260000072
可见,直流侧等效电压为上桥臂、下桥臂电压及电感电压之和。
Figure BDA0001958821260000073
由此设计上下桥臂电压分别为:
Figure BDA0001958821260000074
可见,通过调整控制电压中的
Figure BDA0001958821260000075
项,可以实现对交流侧电流的可控制,从而可以进行可控整流。在闭环控制中,该项也为闭环控制器的输出,假设a相控制器输出为uao,则上下桥臂控制电压为:
Figure BDA0001958821260000076
变换器三相直流侧始终输出相同电压Udc,此电压将支撑直流电网,为了保持该电压不变,
Figure BDA0001958821260000077
项不能调整,事实上按式(7)进行控制,变换器直流侧相当于电压源,icir=iacu+iacd为该相输出直流侧电流,其值取决于负载,因此该电流不可控。为了限制直流侧输出电流,以及三相之间由于输出电压差异造成的不平衡,本发明中加入虚拟阻尼控制,假设虚拟电阻为Rv,则桥臂电压按式(9)输出:
Figure BDA0001958821260000081
各变换器的控制过程为,整流变换器把柴油发电机能量变换到直流电网,提供电网主要部分的功率。为了减小器件损耗,整流变换器处于低开关频率工作模式,因此其对直流电网电压的控制有限。为了抑制电容减小后带来的直流电网电压波动,超级电容处变换器工作于高开关频率模式,其控制带宽极高,实现电网电压的闭环控制。为了平衡整流变换器和超级电容变换器之间的控制关系,整流变换器处于电压支撑模式,直流侧相当于电压源,电流不可控,通过对变换器内部电容电压的闭环控制,实现传输功率的控制。超级电容处变换器相当于电流源,通过注入高频电流,抑制直流电网中的电压波动。蓄电池接口变换器处于低频率开关模式,用于平衡电网能量,当电网电压高时可吸收功率。
本发明所提出的如图1所示的基于能量弱存储的低压船舶直流电网结构,直流电网运行时,各变换器工作状态为:
(1)预充电。
当电网没有电荷时,各子区间的开关断开,此时电路分为直流母线和分区间多个部分。在各子区间,超级电容和蓄电池给本地直流子网供电,即给小电容充电,同时超级电容充电到1/2状态,这样对能量的控制能力最大,既可以释放能量也可以吸收能量。
直流母线侧,整流变换器进行预充电,各子模块从交流电网吸收功率。当子模块电容电压极低时,先进行不控整流充电,此时开关Kg1断开,交流侧通过限流电阻Rc对模块充电,但只能充到
Figure BDA0001958821260000082
其中Ug为发电机端电压,之后再进行可控整流充电。由于直流侧开路,此时上下桥臂相对独立,上桥臂和下桥臂三相模块均可以看成星形接法的三相H桥变换器,此时电路等效为图4模型,可各自进行可控整流充电。以上桥臂为例,基于三相同步参考坐标d-q解耦控制的电容电压控制过程如图5所示。其中Ucma是三相上桥臂模块电容电压平均值,与设定值(直流电网电压额定电压)URTO进行比较后,通过PI控制器PI1产生有功参考电流id *。id *与变换器交流侧实际有功电流id比较后进行通过PI2控制器,得到d轴参考电压的调整量。类似的,令无功电流参考值iq *=0,并进行同样闭环控制,可得到uqc。把udc和uqc进行反变换,可得到三相变换器输出电压参考值uac,ubc和ucc,再加上电网电压uga,ugb,ugc,作为上桥臂的控制电压。
(2)正常运行。
与直流链路连接的各开关闭合,此时MMC变换器直流侧接入电网,并通过电感与各子区间的电容相接。MMC变换器按式(8)进行控制,其控制框图如图6所示。整个控制可分为交流侧的功率控制和直流侧的电压控制。交流侧功率控制是为了保持电容电压稳定,需要对电容电压进行闭环控制,此时电容电压反馈值U cm为所有模块的电容电压平均值,其闭环控制过程与预充电环节类似,这里不再赘述。直流侧电压控制则按式(9)加入直流侧电压和电感电压,以及虚拟阻尼项。
考虑到整流变换器开关频率有限,变换器输出电压包含谐波,由于直流侧电容极小,易引起电压波动,需要通过超级电容端的高频变换器对其消除。超级电容端变换器采用两级控制,其控制结构如图6所示。根据该控制框图,电压外环对直流电压的高频分量进行抑制。为了提取高频分量,并且减少延时,采用直流电压减去直流电压的低频分量来实现,其中低频分量通过低通滤波器FLT实现。通过控制器PI1对高频电压闭环,得到电流参考值ihr,再通过电流内环控制器PI2对输出电流ihc进行控制。为了保证超级电容存储电荷总处于1/2附近,通过对电容存储电压进行闭环控制实现,即控制器PI3。最终电容输出参考电流值为,icr=ihr+ihf。PIC3的参数在设计时频带较窄,因此ihf为低频分量,不影响高频分量ihr的控制。
通过MMC与超级电容接口变换器的协调控制,最终直流电网电压将稳定在额定值。
(3)故障处理
采用本专利提出的电网结构及其控制算法,当直流链路出现短路故障时能够自动限流。直流短路故障是直流电网中最难处理的一种故障,需要保护电路迅速动作,否则将引起大电流损坏用电设备。采用本文所提出的直流电网结构,当电流超过设定值时,根据式(6)中的虚拟阻尼控制,MMC变换器将自动限制电流,同样此时如果超级电容输出电流也达到最大值,而直流电压仍然低于额定值,不能恢复正常,则判定为过载或者短路故障。判定短路故障后,各变换器开关器件关断,由于直流链路上电容值极小,存储能量迅速释放,直流链路电压降到零,此时整个系统失电,连接各分区的开关电流迅速降到零,此时断开开关为零电流断开,不存在直流灭弧问题,可以快速实现解列。根据保护前检测到的电流流向,如果多个支路电流均流向一点,则表明该处存在短路故障。进行故障恢复时,对于正常的交流子网,通过蓄电池和超级电容联合控制,建立本地直流子网,同时整流变换器直流侧输出电压。若各网络电压建立正常,则各子网的断路器闭合,与直流链路相接,变换器切换为正常运行模式。
图7为本发明的超级电容控制框图。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (6)

1.一种基于能量弱存储的低压船舶直流电网结构,其特征在于,所述直流电网结构,在直流链路上取消大电容存储能量,柴油发电机生成的交流能量通过可控整流变换器变换为直流能量,并通过高开关频率变换器及超级电容来抑制电网侧直流电压波动;所述直流电网结构的具体结构为:直流电网结构按负载分类,分为多个区域,每个区域有两个接口同直流电网相连,连接元件为开关器件;每个区域还包括有超级电容、蓄电池组和直流负载,超级电容通过交错并联变换器接入区域直流子网,蓄电池组通过低开关频率变换器接入区域直流子网;每个直流子网均有一个容值极小的支撑变容,柴油发电机通过交流侧开关器件、MMC变换器、直流母线侧开关器件直接接入直流电网,实现交直流能量转换,整个直流电网电压仅通过各分区区域内的容值极小的支撑变容来支撑,即实现一种直流电网能量弱存储状态;
所述基于能量弱存储的低压船舶直流电网结构的直流电网控制方法,包括预充电、正常运行和故障情况下变换器控制:
1)预充电、正常运行情况下的变换器的控制:
1.1)对于MMC变换器,正常运行时,其能量控制包括交流侧能量控制和直流侧能量控制,预充电状态下,MMC仅有交流侧能量控制,具体通过如下步骤实现:(一)交流侧采用dq解耦的功率控制技术,通过电压和电流传感器获得交流侧柴油发电机端三相电压uga,ugb,ugc和柴油发电机端三相电流iag,ibg,icg;(二)通过锁相环PLL获取交流电网同步相位信息;(三)通过同步旋转坐标分解,并获得电流的d、q轴分量id、iq;(四)对MMC变换器子模块电容电压平均值进行闭环,得到电流有功分量id *;(五)对电流d、q轴分量进行闭环控制,得到MMC变换器交流侧输出电压udc,uqc,经过反坐标变换后得到MMC变换器交流侧三相电压uao,ubo,uco;(六)正常运行情况下,MMC变换器除了交流侧能量控制还有直流侧控制,直流侧控制量是直流电压Udc、直流侧电流在电感上的电压及有源阻尼分量的和,有源阻尼分量为直流侧电流icir与虚拟电阻Rv通过乘法器相乘;最终MMC每相桥臂输出电压如式(1)所示:
Figure FDA0002591000150000011
式中,uacu和uacd分别为MMC变换器上下桥臂电压,iacu和iacd分别为上下桥臂电流,
Figure FDA0002591000150000012
为电感电压,icir=iacu+iacd为MMC变换器直流侧电流;
1.2)对于交错并联变换器通过电压和电流双闭环实现对电网电压的平稳控制,其控制步骤为:(一)对直流电网电压信号Udc进行低通滤波,用U dc减去低通滤波信号,得到Udc中的高频谐波分量uhr;(二)将电压高频谐波分量uhr送入PI控制器,得到高频补偿电流参考值ihr;(三)将超级电容电压Ucap与设定电压Uset比较,并把差值送入PI控制器,得到低频的超级电容充电电流参考值ihf;(四)超级电容输出电流参考值icr为高频补偿电流参考值ihr与超级电容充电电流参考值ihf之和,即icr=ihr+ihf,并对输出电流ihc通过PI控制器进行控制,得到输出电压控制量ucap,以此电压调制后控制交错并联变换器;
2)故障情况下变换器控制:
直流线路出现故障情况下,其处理过程为:(一)当MMC变换器、交错并联变换器电流超过限制,且直流电压低于设定阈值,判断出现故障;(二)MMC变换器、交错并联变换器停止运行,直流线路电压瞬间降低到零,各接口处电流也为零,此时断开接口处各开关,对各分区区间电路进行隔离;(三)根据故障前各接口处电流的流向,定位故障位置;(四)没有故障的各分区区间利用各分区区间内的超级电容和蓄电池组对各分区区域供电,建立各分区区域电压;(五)闭合建立好电压的各区间的接口处开关,恢复直流电网供电。
2.根据权利要求1所述的一种基于能量弱存储的低压船舶直流电网结构,其特征在于,所述直流电网结构,其供电能源通过变换器接入直流电网;其中,柴油发电机端采用可控整流变换器,超级电容侧采用高开关频率变换器,所采用的变换器特点是,在直流链路出现短路故障时,与开关器件并联的二极管不会构成导电通路,具有故障穿越能力。
3.根据权利要求2所述的一种基于能量弱存储的低压船舶直流电网结构,其特征在于,所述供电能源还包括蓄电池组,蓄电池组通过低开关频率变换器接入直流电网。
4.根据权利要求1所述的一种基于能量弱存储的低压船舶直流电网结构,其特征在于,所述交错并联变换器由多路全桥DC/DC变换器并联而成,采用全桥结构的目的是当直流链路短路时,全桥结构所有开关器件断开,IGBT并联的二极管不会构成直流通路,具有直流短路故障穿越能力。
5.根据权利要求1所述的一种基于能量弱存储的低压船舶直流电网结构,其特征在于,所述高开关频率变换器为交错并联变换器、SiC型变换器,或多电平变换器。
6.根据权利要求1所述的一种基于能量弱存储的低压船舶直流电网结构,其特征在于,所述可控整流变换器的为整流变换器,所述整流变换器为MMC变换器、基于双向开关的三相H桥结构,或是普通三相变换器中加入crowbar电路。
CN201910077582.6A 2019-01-26 2019-01-26 一种基于能量弱存储的低压船舶直流电网结构及控制方法 Expired - Fee Related CN109638944B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910077582.6A CN109638944B (zh) 2019-01-26 2019-01-26 一种基于能量弱存储的低压船舶直流电网结构及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910077582.6A CN109638944B (zh) 2019-01-26 2019-01-26 一种基于能量弱存储的低压船舶直流电网结构及控制方法

Publications (2)

Publication Number Publication Date
CN109638944A CN109638944A (zh) 2019-04-16
CN109638944B true CN109638944B (zh) 2020-09-15

Family

ID=66063955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910077582.6A Expired - Fee Related CN109638944B (zh) 2019-01-26 2019-01-26 一种基于能量弱存储的低压船舶直流电网结构及控制方法

Country Status (1)

Country Link
CN (1) CN109638944B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535164B (zh) * 2019-09-06 2021-06-29 集美大学 一种直流侧无电容的船舶直流电网系统
CN112398341B (zh) * 2020-12-03 2021-10-15 深圳市蓝德汽车电源技术有限公司 一种多相交错并联dcdc转换器的控制方法
CN113644646B (zh) * 2021-07-27 2024-06-04 合肥同智机电控制技术有限公司 一种多个任务负载与母线之间的电压均衡控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928777A (zh) * 2012-10-19 2013-02-13 株洲变流技术国家工程研究中心有限公司 一种柴油发电机组负载试验系统及方法
CN103248255A (zh) * 2013-05-24 2013-08-14 哈尔滨工业大学 三相模块化多电平换流器及其子模块中igbt开路故障检测容错方法
CN103441677A (zh) * 2013-08-21 2013-12-11 中国人民解放军海军工程大学 模块化兆瓦级中压中频三电平全桥直流换流器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928777A (zh) * 2012-10-19 2013-02-13 株洲变流技术国家工程研究中心有限公司 一种柴油发电机组负载试验系统及方法
CN103248255A (zh) * 2013-05-24 2013-08-14 哈尔滨工业大学 三相模块化多电平换流器及其子模块中igbt开路故障检测容错方法
CN103441677A (zh) * 2013-08-21 2013-12-11 中国人民解放军海军工程大学 模块化兆瓦级中压中频三电平全桥直流换流器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Control and Operation of a DC Microgrid with Variable Generation and Energy Storage;Xu L;《Power Delivery》;20111231;2513-2522 *
模块化多电平高压变频技术研究综述;徐殿国等;《电工技术学报》;20171031;第32卷(第20期);第104~115页 *
雷志方等.面向直流微网的双向DC-DC变换器研究现状和应用分析.《电工技术学报》.2016,第31卷(第22期), *
面向直流微网的双向DC-DC变换器研究现状和应用分析;雷志方等;《电工技术学报》;20161130;第31卷(第22期);第137-147页 *

Also Published As

Publication number Publication date
CN109638944A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
Khazaei et al. Review of HVDC control in weak AC grids
Farhadi-Kangarlu et al. A comprehensive review of dynamic voltage restorers
Castellan et al. A review of power electronics equipment for all-electric ship MVDC power systems
CN107069679B (zh) 一种对称双极mmc直流侧单极接地故障穿越和恢复方法
Xu et al. Grid connection of large offshore wind farms using HVDC
CN109830978B (zh) 一种具备故障自动穿越能力的风电柔直系统的控制方法
WO2023179029A1 (zh) 一种海上风电不控整流直流输电系统的控制方法
WO2017031991A1 (zh) 一种具有直流故障穿越能力的串联混合型双极直流输电系统
CN113991662B (zh) 基于lcc-mmc的能量路由系统及直流故障保护方法
Rao et al. Design aspects of hybrid HVDC system
CN109638944B (zh) 一种基于能量弱存储的低压船舶直流电网结构及控制方法
CN109347136B (zh) 一种混合直流输电系统换流器在线退出装置及方法
CN114447974B (zh) 一种海上风电不控整流直流输电系统
Chen Compensation schemes for a SCR converter in variable speed wind power systems
CN108923450B (zh) 电流源型高压直流输电系统的控制及运行方法
CN104967377A (zh) 双馈风力发电机转子磁链定频模型预测控制方法
CN111786396A (zh) 基于储能型链式statcom的高压直流输电系统换相失败抑制方法
US11942873B2 (en) Secondary magnetic excitation generator-motor device
CN111313451A (zh) 一种基于半桥型mmc的中压直流配电网启动方法
CN113422369B (zh) 故障柔性消弧与电能质量调控复合系统的优化运行与控制方法
JP4987441B2 (ja) 電力変換装置
Li et al. Study on main circuit configuration and control modes for a new LCC-MMC hybrid HVDC system
Awad et al. Static series compensator for voltage dips mitigation
CN114268121A (zh) 一种基于lcc和mmc的混合型高压直流换流器及其应用
Khan et al. AC Fault Analysis on NPC based Multi-terminal Hybrid AC-DC system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200915