CN112398341B - 一种多相交错并联dcdc转换器的控制方法 - Google Patents

一种多相交错并联dcdc转换器的控制方法 Download PDF

Info

Publication number
CN112398341B
CN112398341B CN202011409354.3A CN202011409354A CN112398341B CN 112398341 B CN112398341 B CN 112398341B CN 202011409354 A CN202011409354 A CN 202011409354A CN 112398341 B CN112398341 B CN 112398341B
Authority
CN
China
Prior art keywords
branch
relay
phase
phase branch
electrically connected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011409354.3A
Other languages
English (en)
Other versions
CN112398341A (zh
Inventor
石画
杨树锦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Lande Automotive Power Technology Co ltd
Original Assignee
Shenzhen Lande Automotive Power Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Lande Automotive Power Technology Co ltd filed Critical Shenzhen Lande Automotive Power Technology Co ltd
Priority to CN202011409354.3A priority Critical patent/CN112398341B/zh
Publication of CN112398341A publication Critical patent/CN112398341A/zh
Application granted granted Critical
Publication of CN112398341B publication Critical patent/CN112398341B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及DCDC转换器的控制技术领域,具体涉及一种多相交错并联DCDC转换器的控制方法。第一相支路、第二相支路、第三相支路和负极母线支路均采用同一个DSP来进行控制。电流检测单元test1、电流检测单元test2和电流检测单元test3均与同一个DSP信号连接,DSP还控制开关管Q1、开关管Q2和开关管Q3,通过关闭异常支路并且提高其余两支路的工作频率,从而实现降低相应纹波电流的目的以满足输入端燃料电池输出的纹波需求,让前后级在DCDC变换器出现单相损坏时,DCDC变换器的前后级设备仍然能正常运行。解决了DCDC变换器的前后级设备不会因为DCDC出现单相损坏时而导致其前级供电设备和后级用电设备突然掉电的问题。

Description

一种多相交错并联DCDC转换器的控制方法
技术领域
本发明涉及DCDC转换器的控制技术领域,具体涉及一种多相交错并联DCDC转换器的控制方法。
背景技术
随着新能源电动车行业的发展,单纯的锂电池、铅酸电池、锌镍蓄电池等已经不足以支配电动车行业的发展。氢氧燃料电池已然成为了现代电动汽车的发展趋势,而氢氧燃料电池的质子交换膜对输出的电流波动冲击又极其的敏感。氢氧燃料电池产生的电能要转换成一个稳定的电平供给电动汽车的其它用电设备,就需要一个DCDC来进行稳压转换。交错并联DCDC转换器自身的性能高低严重影响着前端燃料电池和其后端用电设备的性能。燃料电池的基本特性是输出功率越小,则自身的平台电压越高,燃料电池的输出平台电压随着输出功率的增大而降低。现在已有的交错并联DCDC转换器在出现单相损坏时,就会瞬间保护,输入输出就会同时形成开路,导致其前级和后级没有供电缓冲过程,而会影响前后级供电和用电设备的性能。因此如何解决DCDC在出现单相损坏时,无功率输出,导致前后级瞬间断电问题是目前研究的问题。
发明内容
本发明的目的是克服现有技术的不足和缺陷,提供一种多相交错并联DCDC转换器的控制方法。
本发明的目的是通过以下技术方案来实现的:
一种多相交错并联DCDC转换器的控制方法,其中一种多相交错并联DCDC转换器包括第一相支路、第二相支路、第三相支路和负极母线支路,所述第一相支路、第二相支路和第三相支路相互并联设置,所述第一相支路上依次串联有继电器K1、电感L1、续流二极管D1和继电器K4,续流二极管D1正极与电阻L1的一端电性连接,所述第二相支路上依次串联有继电器K2、电感L2、续流二极管D2和继电器K5,续流二极管D2正极与电阻L2的一端电性连接,所述第三相支路上依次串联有继电器K3、电感L3、续流二极管D3和继电器K6,续流二极管D3正极与电阻L3的一端电性连接,继电器K1和电感L1之间的第一相支路上还电性连接有电流检测单元test1,继电器K1和电感L1之间的第一相支路还通过电容C1与负极母线支路电性连接,继电器K2和电感L2之间的第二相支路上还电性连接有电流检测单元test2,继电器K2和电感L2之间的第二相支路还通过电容C2与负极母线支路电性连接,继电器K3和电感L3之间的第三相支路上还电性连接有电流检测单元test3,继电器K3和电感L3之间的第三相支路还通过电容C3与负极母线支路电性连接,电感L1和续流二极管D1之间的第一相支路还通过开关管Q1与负极母线支路电性连接,电感L2和续流二极管D2之间的第二相支路还通过开关管Q2与负极母线支路电性连接,电感L3和续流二极管D3之间的第三相支路还通过开关管Q3与负极母线支路电性连接,续流二极管D1和继电器K4之间的第一相支路还通过电容C4与负极母线支路电性连接,续流二极管D2和继电器K5之间的第一相支路还通过电容C5与负极母线支路电性连接,续流二极管D3和继电器K6之间的第一相支路还通过电容C6与负极母线支路电性连接,继电器K1一端、继电器K2一端、继电器K3一端均与IN+接口电性连接,继电器K4一端、继电器K5一端、继电器K6一端均与OUT+接口电性连接,负极母线支路两端分别与IN-接口、OUT-接口。
具体的,所述电感L1、电感L2和电感L3均为boost电感。
具体的,第一相支路、第二相支路、第三相支路和负极母线支路均采用同一个DSP来进行控制。
一种多相交错并联DCDC转换器的控制方法,包括以下步骤:
(1)检测单元Test监控第一相支路、第二相支路、第三相支路的电流信号;
(2)当其中一条支路无电流或由于短路故障而引起的过流时,DSP对该条支路进行锁PWM保护,并对该支路输入端、输出端的继电器进行断开控制,与此同时DSP通过调节其余两条正常支路的开关管进行提高工作频率;
(3)完成调节后检测单元Test继续对工作的两个支路进行监控。
本发明相比现有技术包括以下优点及有益效果:
本发明通过关闭异常支路并且提高其余两支路的工作频率,从而实现降低相应纹波电流的目的以满足输入端燃料电池输出的纹波需求,让前后级在DCDC变换器出现单相损坏时,DCDC变换器的前后级设备仍然能正常运行。解决了DCDC变换器的前后级设备不会因为DCDC出现单相损坏时而导致其前级供电设备和后级用电设备突然掉电的问题,进一步保证燃料电池不会由于DC单相损坏而出现跃迁电压。提高了整车供电的可靠性。
附图说明
图1为本发明的结构原理图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
如图1所示,一种多相交错并联DCDC转换器的控制方法,一种多相交错并联DCDC转换器包括第一相支路、第二相支路、第三相支路和负极母线支路,所述第一相支路、第二相支路和第三相支路相互并联设置,所述第一相支路上依次串联有继电器K1、电感L1、续流二极管D1和继电器K4,续流二极管D1正极与电阻L1的一端电性连接,所述第二相支路上依次串联有继电器K2、电感L2、续流二极管D2和继电器K5,续流二极管D2正极与电阻L2的一端电性连接,所述第三相支路上依次串联有继电器K3、电感L3、续流二极管D3和继电器K6,续流二极管D3正极与电阻L3的一端电性连接,上述结构的电源输入侧和电源输出侧每一相都有独立的继电器,每一相的输入端的继电器前端都连接在同一正母线;每一相的输出端继电器后端都连接在同一输出正线上;继电器K1和电感L1之间的第一相支路上还电性连接有电流检测单元test1,继电器K1和电感L1之间的第一相支路还通过电容C1与负极母线支路电性连接,继电器K2和电感L2之间的第二相支路上还电性连接有电流检测单元test2,继电器K2和电感L2之间的第二相支路还通过电容C2与负极母线支路电性连接,继电器K3和电感L3之间的第三相支路上还电性连接有电流检测单元test3,继电器K3和电感L3之间的第三相支路还通过电容C3与负极母线支路电性连接,电感L1和续流二极管D1之间的第一相支路还通过开关管Q1与负极母线支路电性连接,电感L2和续流二极管D2之间的第二相支路还通过开关管Q2与负极母线支路电性连接,电感L3和续流二极管D3之间的第三相支路还通过开关管Q3与负极母线支路电性连接,续流二极管D1和继电器K4之间的第一相支路还通过电容C4与负极母线支路电性连接,续流二极管D2和继电器K5之间的第一相支路还通过电容C5与负极母线支路电性连接,续流二极管D3和继电器K6之间的第一相支路还通过电容C6与负极母线支路电性连接,继电器K1一端、继电器K2一端、继电器K3一端均与IN+接口电性连接,继电器K4一端、继电器K5一端、继电器K6一端均与OUT+接口电性连接,负极母线支路两端分别与IN-接口、OUT-接口。所述电感L1、电感L2和电感L3均为boost电感。第一相支路、第二相支路、第三相支路和负极母线支路均采用同一个DSP来进行控制。电流检测单元test1、电流检测单元test2和电流检测单元test3均与同一个DSP信号连接,DSP还控制开关管Q1、开关管Q2和开关管Q3,实现较小工作频率下减小纹波,相与相之间的工作要有相位角进行互补,相位角的大小为W=360°/相数;所以三相交错Boost变换器在正常工作时,相与相之间交错工作的相位角为120°。当DCDC在运行过程中出现其中的任何一相支路损坏不工作时,通过该相支路输入检测单元Test检测该相的电流信号,检测到该相支路无电流或由于短路故障而引起的过流时,DSP对该相支路进行锁PWM保护,同时对该相支路的输入端和输出端的继电器进行断开控制;此时剩余两相进行相位角调整为180°进行交错控制输出,同时通过控制其他两项的开关管提高工作频率控制,从而实现降低相应纹波电流的目的以满足输入端燃料电池输出的纹波需求,让前后级在DCDC变换器出现单相损坏时,DCDC变换器的前后级设备仍然能正常运行。
本发明的具体实施过程如下:
(1)检测单元Test监控第一相支路、第二相支路、第三相支路的电流信号;
(2)当其中一条支路无电流或由于短路故障而引起的过流时,DSP对该条支路进行锁PWM保护,并对该支路输入端、输出端的继电器进行断开控制,与此同时DSP通过调节其余两条正常支路的开关管进行提高工作频率;
(3)完成调节后检测单元Test继续对工作的两个支路进行监控。
本发明实现电路简单,通过单相独立控制实现当出现单相损坏时,DCDC变换器仍然能持续保持正常输出功能。这样就解决了DCDC变换器的前后级设备不会因为DCDC出现单相损坏时而导致其前级供电设备和后级用电设备突然掉电的问题,进一步保证燃料电池不会由于DC单相损坏而出现跃迁电压。这样的电路设计提高进一步提高了整车供电的可靠性。
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (1)

1.一种多相交错并联DCDC转换器的控制方法,一种多相交错并联DCDC转换器包括第一相支路、第二相支路、第三相支路和负极母线支路,所述第一相支路、第二相支路和第三相支路相互并联设置,所述第一相支路上依次串联有继电器K1、电感L1、续流二极管D1和继电器K4,所述第二相支路上依次串联有继电器K2、电感L2、续流二极管D2和继电器K5,所述第三相支路上依次串联有继电器K3、电感L3、续流二极管D3和继电器K6,继电器K1和电感L1之间的第一相支路上还电性连接有电流检测单元test1,继电器K1和电感L1之间的第一相支路还通过电容C1与负极母线支路电性连接,继电器K2和电感L2之间的第二相支路上还电性连接有电流检测单元test2,继电器K2和电感L2之间的第二相支路还通过电容C2与负极母线支路电性连接,继电器K3和电感L3之间的第三相支路上还电性连接有电流检测单元test3,继电器K3和电感L3之间的第三相支路还通过电容C3与负极母线支路电性连接,电感L1和续流二极管D1之间的第一相支路还通过开关管Q1与负极母线支路电性连接,电感L2和续流二极管D2之间的第二相支路还通过开关管Q2与负极母线支路电性连接,电感L3和续流二极管D3之间的第三相支路还通过开关管Q3与负极母线支路电性连接,续流二极管D1和继电器K4之间的第一相支路还通过电容C4与负极母线支路电性连接,续流二极管D2和继电器K5之间的第一相支路还通过电容C5与负极母线支路电性连接,续流二极管D3和继电器K6之间的第一相支路还通过电容C6与负极母线支路电性连接,继电器K1一端、继电器K2一端、继电器K3一端均与IN+接口电性连接,继电器K4一端、继电器K5一端、继电器K6一端均与OUT+接口电性连接,负极母线支路两端分别与IN-接口、OUT-接口,第一相支路、第二相支路、第三相支路和负极母线支路均采用同一个DSP来进行控制,其特征在于,所述控制方法包括以下步骤:
(1)检测单元Test监控第一相支路、第二相支路、第三相支路的电流信号;
(2)当其中一条支路无电流或由于短路故障而引起的过流时,DSP对该条支路进行锁PWM保护,并对该支路输入端、输出端的继电器进行断开控制,与此同时DSP通过调节其余两条正常支路的开关管进行提高工作频率;
(3)完成调节后检测单元Test继续对工作的两个支路进行监控。
CN202011409354.3A 2020-12-03 2020-12-03 一种多相交错并联dcdc转换器的控制方法 Active CN112398341B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011409354.3A CN112398341B (zh) 2020-12-03 2020-12-03 一种多相交错并联dcdc转换器的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011409354.3A CN112398341B (zh) 2020-12-03 2020-12-03 一种多相交错并联dcdc转换器的控制方法

Publications (2)

Publication Number Publication Date
CN112398341A CN112398341A (zh) 2021-02-23
CN112398341B true CN112398341B (zh) 2021-10-15

Family

ID=74604345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011409354.3A Active CN112398341B (zh) 2020-12-03 2020-12-03 一种多相交错并联dcdc转换器的控制方法

Country Status (1)

Country Link
CN (1) CN112398341B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115065243B (zh) * 2022-06-27 2022-12-30 燕山大学 一种交错并联Buck电路的故障诊断及恢复控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203645531U (zh) * 2013-11-05 2014-06-11 北京航天航空大学 一种光伏接口电路
CN104953833A (zh) * 2015-07-21 2015-09-30 大唐三门峡发电有限责任公司 蓄电池回馈放大仪交错并联升压系统
CN106452280A (zh) * 2016-10-28 2017-02-22 北京航空航天大学 一种高速电动机控制用交错并联Buck变换器
EP3174190A1 (en) * 2015-11-24 2017-05-31 ABB Schweiz AG Three level converter
CN107742982A (zh) * 2017-11-15 2018-02-27 上海空间电源研究所 一种空间用激光载荷高精度恒流源变换系统
CN108173417A (zh) * 2018-01-11 2018-06-15 台达电子企业管理(上海)有限公司 梯度电源驱动级电路、梯度电源系统及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108718152B (zh) * 2018-06-13 2020-12-11 广东美的制冷设备有限公司 交错式pfc控制电路及电机驱动电路
CN109638944B (zh) * 2019-01-26 2020-09-15 集美大学 一种基于能量弱存储的低压船舶直流电网结构及控制方法
CN210431240U (zh) * 2019-10-16 2020-04-28 台达电子工业股份有限公司 具备硬件过流保护的三相谐振变换器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203645531U (zh) * 2013-11-05 2014-06-11 北京航天航空大学 一种光伏接口电路
CN104953833A (zh) * 2015-07-21 2015-09-30 大唐三门峡发电有限责任公司 蓄电池回馈放大仪交错并联升压系统
EP3174190A1 (en) * 2015-11-24 2017-05-31 ABB Schweiz AG Three level converter
CN106452280A (zh) * 2016-10-28 2017-02-22 北京航空航天大学 一种高速电动机控制用交错并联Buck变换器
CN107742982A (zh) * 2017-11-15 2018-02-27 上海空间电源研究所 一种空间用激光载荷高精度恒流源变换系统
CN108173417A (zh) * 2018-01-11 2018-06-15 台达电子企业管理(上海)有限公司 梯度电源驱动级电路、梯度电源系统及其控制方法

Also Published As

Publication number Publication date
CN112398341A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
US10790769B2 (en) Control method and control system for enhancing endurance to anomalous voltage for doubly-fed induction generator
CN116488290A (zh) 储能系统
WO2022121431A1 (zh) 中压光伏并网逆变系统及光伏发电系统
CN108155657B (zh) 储能变流器及其主电路拓扑结构以及均衡控制方法
WO2022166931A1 (zh) 一种可短路保护的功率优化器和光伏发电系统
CN115276549B (zh) 一种pid效应抑制系统
CN110943640B (zh) 一种t型逆变器fc桥臂冗余结构电力转换器拓扑结构
CN112398341B (zh) 一种多相交错并联dcdc转换器的控制方法
CN111934559A (zh) 一种提升电力电子变压器容错能力的控制方法
CN105762834A (zh) 一种光伏逆变器智能启机控制系统
CN214750546U (zh) 用于桥臂拓扑变流器的直流对地绝缘阻抗检测电路
CN112421784B (zh) 一种智能配电系统及方法
US11217993B2 (en) Conversion system with high voltage side and low voltage side
CN202696172U (zh) 电动汽车电池放电的改进逆变器
CN112379173A (zh) 用于母线电压可变的直流对地绝缘阻抗检测电路及方法
CN112379171A (zh) 用于桥臂拓扑变流器的直流对地绝缘阻抗检测电路及方法
CN210350806U (zh) 储能逆变器中双向ac/dc变换器交流侧的路由继电器电路
CN218071344U (zh) 变频控制电路、变频器和电机
CN116505632B (zh) 电池充放电电路及控制系统与方法
CN117913961B (zh) 储能电路系统及其工作模式切换方法
CN109617109B (zh) 一种多端柔性直流配电系统直流断线故障的分析方法
WO2021036493A1 (zh) 换流装置及其组件、无功补偿装置、换流器及其控制方法
CN213402467U (zh) 光伏系统以及空调系统
CN110571860B (zh) 一种维持并网光伏发电系统直流母线电压稳定的方法
CN214750547U (zh) 用于母线电压可变的直流对地绝缘阻抗检测电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant