CN109630027A - 薄壁钻地工具及其制造方法 - Google Patents

薄壁钻地工具及其制造方法 Download PDF

Info

Publication number
CN109630027A
CN109630027A CN201811119848.0A CN201811119848A CN109630027A CN 109630027 A CN109630027 A CN 109630027A CN 201811119848 A CN201811119848 A CN 201811119848A CN 109630027 A CN109630027 A CN 109630027A
Authority
CN
China
Prior art keywords
sintered hard
hard carbide
earth
boring tools
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811119848.0A
Other languages
English (en)
Other versions
CN109630027B (zh
Inventor
J.布罗斯纳安
P.普里查德
R.斯塔克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kennametal Inc
Original Assignee
Kennametal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kennametal Inc filed Critical Kennametal Inc
Publication of CN109630027A publication Critical patent/CN109630027A/zh
Application granted granted Critical
Publication of CN109630027B publication Critical patent/CN109630027B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/08Roller bits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/50Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of roller type
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/54Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/62Drill bits characterised by parts, e.g. cutting elements, which are detachable or adjustable
    • E21B10/627Drill bits characterised by parts, e.g. cutting elements, which are detachable or adjustable with plural detachable cutting elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/62Drill bits characterised by parts, e.g. cutting elements, which are detachable or adjustable
    • E21B10/627Drill bits characterised by parts, e.g. cutting elements, which are detachable or adjustable with plural detachable cutting elements
    • E21B10/633Drill bits characterised by parts, e.g. cutting elements, which are detachable or adjustable with plural detachable cutting elements independently detachable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Drilling Tools (AREA)

Abstract

本发明题为“薄壁钻地工具及其制造方法”。本文描述了钻地工具,所述钻地工具采用烧结硬质碳化物组合物结合薄壁架构。在一些实施方案中,钻地工具包括钻头,所述钻头包括切削部分和主体部分,所述主体部分包括烧结硬质碳化物壳,所述烧结硬质碳化物壳的壁厚度为钻头直径的5%至25%。

Description

薄壁钻地工具及其制造方法
技术领域
本发明涉及钻地工具,并且具体地讲,涉及包括薄壁架构的钻头。
背景技术
用于石油和天然气勘探的钻地工具通常通过加工石墨模具并且用碳化钨(WC)粉末填充该模具来生产。将较低熔点的合金(通常是铜基的)放置在WC粉末的顶部上作为熔渗金属粘结剂。将模具放置到真空炉中,该真空炉熔化熔渗剂以通过毛细管力填充WC颗粒之间的空隙空间,从而将WC颗粒粘结在一起并且形成钻地工具形状的硬金属增强复合结构。该工艺限于具有有限体积分数(最多60体积%)和低熔点熔渗剂的粗粒碳化钨。Cu基熔渗WC材料相对于WC-Co等级具有较差的机械特性和耐磨性,该WC-Co等级具有更细的晶粒粒度、更高体积的WC含量和更强的钴、镍或铁金属粘结剂。石墨模具加工、芯插入件和熔渗工艺的当前技术是具有几何限制的耗时且昂贵的工艺。此外,固体碳化物结构使用过量的WC,这导致镗孔工具的重量增加。
发明内容
在一个方面,本文描述了采用烧结硬质碳化物组合物结合薄壁架构的钻地工具。简而言之,钻地工具包括钻头,该钻头包括切削部分和主体部分,该主体部分包括烧结硬质碳化物壳,该烧结硬质碳化物壳的壁厚度为钻头直径的5%至25%。在一些实施方案中,烧结硬质碳化物壳的厚度为钻头直径的10%至20%。
在另一方面,提供了制造钻地工具的方法。在一些实施方案中,制造钻地工具的钻头的方法包括通过增材制造技术将等级粉末固结到钻头中,该钻头包括切削部分和主体部分,该主体部分包括烧结硬质碳化物壳,该烧结硬质碳化物壳的壁厚度为钻头直径的5%至25%。等级粉末可包括金属碳化物和金属粘结剂。在一些实施方案中,等级粉末包括烧结硬质碳化物颗粒。
这些和其他实施方案在以下具体实施方式中进一步描述。
附图说明
图1是根据本文所述的一些实施方案的钻地工具的钻头。
图2是图1的钻头的烧结碳化物壳的内部的透视图。
图3A是根据本文所述的一些实施方案的烧结硬质碳化物颗粒的SEM图像。
图3B是比较烧结硬质碳化物颗粒的SEM图像。
图4示出根据一些实施方案的联接到钻头的烧结硬质碳化物壳的晶格结构。
具体实施方式
参考以下具体实施方式和实施例以及前述和下述内容可更容易地理解本文所述的实施方案。然而,本文所述的元素、设备和方法并不限于具体实施方式和实施例中所述的具体实施方案。应当认识到,这些实施方案仅示例性地说明本发明的原理。在不脱离本发明实质和范围的情况下,多种修改和变更对于本领域技术人员而言将是显而易见的。
I.钻地工具
本文描述了采用烧结硬质碳化物组合物结合薄壁架构的钻地工具。在一些实施方案中,钻地工具包括钻头,该钻头包括切削部分和主体部分,该主体部分包括烧结硬质碳化物壳,该烧结硬质碳化物壳的壁厚度为钻头直径的5%至25%。钻头直径由切削元件上的最大直径限定,该最大直径在土地中产生孔直径。图1示出根据本文所述的方法生产的具有薄壁烧结硬质碳化物壳的固定切削器钻头。钻头10包括形成钻头10的切削部分的多个固定切削片11。切削片11包括多个凹座15以用于接收切削刀片。主体部分12支撑切削片11并且包括烧结硬质碳化物壳13。图2是烧结硬质碳化物壳13的内部的透视图。如图1和图2所示,烧结硬质碳化物壳13包括孔14以用于将流体(诸如泥浆或浆料)传送到切削片。孔14可邻近切削片11定位以用于将流体递送到定位在切削片11的凹座15中的切削刀片(未示出)。在一些实施方案中,孔14是一个或多个喷嘴结构的一部分。此外,壳13的中空内部可充当泥浆和/或其他流体的贮存器,以通过孔14递送。钻头还包括与烧结硬质碳化物壳13相邻并且具有与固定切削片11相应的径向布置的保径衬垫16。虽然固定切削片在图1和图2中示出,但本文所述的钻头还设想到包括牙轮的切削部分。
烧结硬质碳化物壳的壁厚度可为钻头直径的5%至25%。在一些实施方案中,烧结硬质碳化物壳的壁厚度可选自表I。
表I-烧结硬质碳化物壳的壁厚度
钻头直径的百分比
5-25
5-20
5-15
5-10
10-25
10-20
15-25
15-20
在一些实施方案中,烧结硬质碳化物壳具有均匀的壁厚度或基本上均匀的壁厚度,该壁厚度具有选自表I的值。在基本上均匀的情况下,壁厚度相对于烧结硬质碳化物壳变化小于10%。在其他实施方案中,烧结硬质碳化物壳表现出可变的壁厚度。例如,烧结硬质碳化物壳可在一个或多个竖直和/或径向尺寸上表现出可变厚度。在表现出可变厚度时,烧结硬质碳化物壳的一个或多个区域可具有选自表I的壁厚度,而其他区域可具有在表I的参数之外的壁厚度值。在一些实施方案中,壁厚度在钻头操作期间在烧结硬质碳化物壳的经受高应力和/或磨损的区域中增加。此类区域包括钻头的冲击区域和到钻地设备的合金或钢主体的附接点。
钻头可以具有任何期望的直径以用于钻地应用。在一些实施方案中,钻头的直径为100mm至300mm。具体地讲,钻头可具有选自表II的直径。
表II-钻头直径(mm)
100
150
200
250
300
<100
>300
如本文所述,钻头的壳包括烧结硬质碳化物。烧结硬质碳化物包括金属碳化物晶粒和金属粘结剂。金属粘结剂(诸如钴、镍、铁或其合金)能够以0.5至30重量%的量存在于壳的烧结硬质碳化物中。
此外,合适的金属碳化物晶粒包括选自元素周期表IVB-VIB族的一种或多种过渡金属。在一些实施方案中,例如,金属碳化物晶粒包括碳化钨。碳化钨能够以至少80重量%或至少90重量%的量存在于烧结硬质碳化物中。在一些实施方案中,碳化钨是烧结硬质碳化物制品的唯一金属碳化物。作为另外一种选择,除了碳化钨之外,金属碳化物还可包括铌、钒、钽、铬、锆和/或铪中的一种或多种的碳化物。烧结硬质碳化物制品的金属碳化物晶粒可具有不违背本发明目的的任何粒度。例如,金属碳化物晶粒可具有0.5μm至50μm的平均粒度。
在一些实施方案中,在壳制造中采用的金属碳化物颗粒是烧结硬质碳化物颗粒。如本文进一步所详述,单独的烧结硬质碳化物颗粒包括与金属粘结剂结合烧结在一起的多个金属碳化物晶粒。在松散条件下,在一些实施方案中,烧结硬质碳化物颗粒可具有至少6g/cm3的表观密度。如本领域技术人员所知,表观密度是松散条件下单位体积的粉末或颗粒的质量,通常以g/cm3表示。在一些实施方案中,烧结硬质碳化物颗粒具有至少7g/cm3的表观密度。本文所述的等级粉末的烧结硬质碳化物颗粒的表观密度也可具有选自表III的值。
表III-烧结硬质碳化物颗粒的表观密度
等级粉末的烧结硬质碳化物颗粒的表观密度也可小于6g/cm3。例如,在一些实施方案中,烧结硬质碳化物颗粒的表观密度可在2-6g/cm3的范围内。烧结硬质碳化物颗粒的表观密度可使用霍尔流量计漏斗根据ASTM B212自由流动金属粉末的表观密度的标准测试方法来确定。
除了表观密度之外,在壳制造中采用的烧结硬质碳化物颗粒可具有至少7g/cm3的振实密度。在一些实施方案中,烧结硬质碳化物颗粒表现出具有选自表IV的值的振实密度。
表IV-烧结硬质碳化物颗粒的振实密度
≥7.5g/cm<sup>3</sup>
≥8g/cm<sup>3</sup>
≥8.5g/cm<sup>3</sup>
≥9.5g/cm<sup>3</sup>
7-12g/cm<sup>3</sup>
8-12g/cm<sup>3</sup>
9-12g/cm<sup>3</sup>
烧结硬质碳化物颗粒的振实密度可根据ASTM B527金属粉末和化合物的振实密度的标准测试方法来确定。在一些实施方案中,烧结硬质碳化物颗粒的振实密度与表观密度的比率(Hausner比率)为1.05至1.50。在一些实施方案中,烧结硬质碳化物颗粒的Hausner比率为1.1至小于1.50。
除了表观密度和振实密度之外,烧结硬质碳化物颗粒的平均单个颗粒密度可为理论密度的至少80%。在一些实施方案中,烧结硬质碳化物颗粒的平均单独颗粒密度为理论密度的至少90%或至少95%。在一些实施方案中,烧结硬质碳化物颗粒可表现出理论密度的80%至95%的平均单独颗粒密度。在另外的实施方案中,烧结硬质碳化物颗粒可表现出理论密度的90%至98%的平均单独颗粒密度。
如本文进一步所述,上述表观密度、振实密度和单独颗粒密度可通过在颗粒形成期间施用的一个或若干个烧结过程来实现。在一些实施方案中,烧结过程不采用一种或多种烧结抑制剂来减轻颗粒粘附或粘合。本文所述的烧结硬质碳化物颗粒特性可在不存在一种或多种烧结抑制剂的情况下实现。在一些实施方案中,通过在1100℃至1400℃的温度下烧结等级粉末0.5至2小时来制备烧结硬质碳化物颗粒,以提供烧结压坯。随后研磨烧结压坯以提供单独的烧结硬质碳化物颗粒。根据颗粒形态和密度,可进一步对烧结硬质碳化物颗粒进行热处理以进一步致密化。进一步的热处理可包括等离子体致密化,诸如使用RF等离子炬或DC等离子炬的等离子体球化。作为另外一种选择,烧结硬质碳化物颗粒可被再烧结,从而形成第二压坯。研磨第二压坯以提供烧结硬质碳化物颗粒。可施用进一步的致密化处理任何期望的次数,以向烧结硬质碳化物颗粒提供期望的表观密度、振实密度和/或单独颗粒密度。烧结时间和温度可根据若干考虑因素选择,包括但不限于硬质碳化物颗粒的粘结剂含量、期望的烧结颗粒密度和烧结阶段。在一些实施方案中,在较低温度和/或较短时间下进行早期烧结阶段以促进研磨烧结压坯。例如,初始或早期烧结过程可在低于粘结剂液化的温度下施用。后期或最终烧结过程可实现较高的温度,诸如发生液相烧结的温度。
作为另外一种选择,烧结硬质碳化物颗粒已被开发以用于不相关的应用,诸如热喷涂和其他包覆应用。在一些实施方案中,可商购获得的用于这些不相关应用的烧结硬质碳化物颗粒可用于本文所述的钻头的烧结硬质碳化物壳中。例如,为热喷涂/包覆应用开发的烧结硬质碳化物颗粒可从全球钨和粉末公司(Global Tungsten and PowdersCorporation)以Powder Perfect商品名商购获得。
图3A是在固结到钻头的壳中之前烧结硬质碳化物颗粒的SEM图像。对硬质碳化物颗粒施用了两次烧结过程,得到7g/cm3的表观密度和8.5g/cm3的振实密度。出于比较的目的,图3B是表观密度为4.5g/cm3并且振实密度为5.5g/cm3的烧结硬质碳化物颗粒的SEM图像。如图3B所示,烧结硬质碳化物颗粒表现出明显更高的孔隙率,从而引起低的单独颗粒密度。
烧结硬质碳化物颗粒可通常具有1μm至100μm的平均粒度。在一些实施方案中,烧结硬质碳化物颗粒具有选自表V的平均粒度。
表V-平均烧结硬质碳化物颗粒粒度(μm)
5-90
5-50
10-75
10-50
5-40
20-40
0.5-2
1-5
1-10
在一些实施方案中,烧结硬质碳化物颗粒可表现出高斯粒度分布。在其他实施方案中,烧结硬质碳化物颗粒可具有多分散、双峰或多峰粒度分布。在另外的实施方案中,烧结硬质碳化物颗粒可以是单分散的或基本上单分散的。在基本上单分散的情况下,硬质碳化物颗粒在平均粒度的±10%或±5%内。在一些实施方案中,烧结硬质碳化物颗粒是球形形状或基本上球形形状的。作为另外一种选择,烧结硬质碳化物颗粒可以是不规则形状的颗粒与球形或基本上球形的颗粒的混合物。
烧结硬质碳化物颗粒包括选自由IVB族金属碳化物、VB族金属碳化物和VIB族金属碳化物构成的组的一种或多种金属碳化物。在一些实施方案中,碳化钨是烧结颗粒的唯一金属碳化物。在其他实施方案中,将一种或多种IVB族、VB族和/或VIB族金属碳化物与碳化钨结合以提供单独的烧结颗粒。例如,碳化铬、碳化钛、碳化钒、碳化钽、碳化铌、碳化锆和/或碳化铪和/或它们的固溶体可在烧结颗粒生产中与碳化钨结合。碳化钨通常能够以至少约80或85重量%的量存在于烧结颗粒中。在一些实施方案中,除碳化钨之外的IVB、VB和/或VIB族金属碳化物以0.1至5重量%的量存在于烧结颗粒中。
烧结硬质碳化物颗粒包括金属粘结剂。烧结硬质碳化物颗粒的金属粘结剂可选自由钴、镍和铁及其合金构成的组。在一些实施方案中,金属粘结剂以0.1至35重量%的量存在于烧结硬质碳化物颗粒中。金属粘结剂也能够以选自表VI的量存在于烧结硬质碳化物颗粒中。
表VI-金属粘结剂含量(重量%)
0.1-20
0.1-10
0.5-15
1-10
3-20
5-15
12-15
10-35
15-35
15-25
烧结硬质碳化物颗粒的金属粘结剂还可包括一种或多种添加剂,诸如贵金属添加剂。在一些实施方案中,金属粘结剂可包括选自由铂、钯、铼、铑和钌及其合金构成的组的添加剂。在其他实施方案中,金属粘结剂的添加剂可包括钼、硅或它们的组合。添加剂能够以不违背本发明目的的任何量存在于金属粘结剂中。例如,一种或多种添加剂能够以烧结硬质碳化物颗粒的0.1至10重量%的量存在于金属粘结剂中。
在一些实施方案中,钻头壳可表现出小于5体积%的孔隙率或小于3体积%的孔隙率。形成钻头壳的烧结硬质碳化物组合物的颗粒组成、粒度和金属粘结剂含量可根据包括期望韧性和耐磨性在内的若干考虑因素而变化。在一些实施方案中,烧结硬质碳化物在整个壳中是均匀的。作为另外一种选择,烧结硬质碳化物可在壳的一个或多个尺寸上表现出一个或多个梯度。在一些实施方案中,烧结硬质碳化物在壳的一个或多个尺寸上表现出粒度和/或金属粘结剂梯度。例如,烧结硬质碳化物的粒度和/或金属粘结剂含量可在壳的经历高磨损的区域中减小。在其他实施方案中,烧结硬质碳化物的粒度和/或粘结剂含量可在壳的接收冲击或需要增强韧性的区域中增加。烧结硬质碳化物的组成梯度可与本文所述的壁厚度变化结合,以向壳提供期望的特性。
在一些实施方案中,一个或多个晶格结构联接到钻头的烧结硬质碳化物壳。晶格结构可具有任何设计、特征和/或布置,以便为烧结硬质碳化物壳提供结构增强。在一些实施方案中,一个或多个晶格结构可跨越烧结硬质碳化物壳的内径。在其他实施方案中,支撑环可与壳一起定位,其中晶格结构在支撑环和壳的内壁之间延伸。支撑环可具有任何期望的横截面形状,包括圆形、椭圆形或多边形。另外,晶格结构可具有任何构型,包括在支撑环和壳的内壁之间延伸的直的、弯曲的和/或曲线的节段。图4示出根据一些实施方案的支撑环和相关联的晶格结构。如图4所示,曲线晶格41在壳40的内壁和支撑环42之间延伸。
在一些实施方案中,烧结硬质碳化物壳还包括在壳的内壁上的一个或多个肋结构。肋结构可沿着壳的内壁形成连续的环。在其他实施方案中,肋结构沿着壳的内壁可以是不连续的。例如,肋结构可沿着壳的内壁放置在各种间隔或位置处。在一些实施方案中,肋结构沿着内壁放置在保径衬垫之间的位置处。晶格和/或肋结构可由不违背本发明目的的任何材料形成。在一些实施方案中,晶格和/或肋结构由烧结硬质碳化物形成。晶格和/或肋结构的烧结硬质碳化物可具有本文所述的任何组成参数、特性和/或特征。
烧结硬质碳化物壳的内表面还可包括螺纹以用于接合金属或合金主体,诸如钻柱或镗头。在一些实施方案中,螺纹由烧结硬质碳化物形成。钻头的烧结碳化物壳可通过反向螺纹、钎焊、冷缩配合和/或包括螺栓、螺钉和/或普通紧固件的其他机械装置附接到金属或合金主体。
再次参见图1,切削片11包括多个凹座15以用于接收切削刀片。在一些实施方案中,凹座15包括一个或多个结构特征以用于机械地接合切削刀片。结构元件可选自由螺纹、狭槽、凸缘、锥形凹座直径以及它们的组合构成的组。切削刀片的机械接合可便于用新刀片替换磨损的刀片。切削刀片可包括多晶金刚石(PCD)刀片、碳化钨刀片、具有超耐磨表面的碳化钨刀片,诸如天然或人造金刚石、多晶金刚石、多晶立方氮化硼(PCBN),或由碳化钨和其他材料的基质构成的刀片,或它们的任何组合。
II.制造钻地工具的方法
在另一方面,提供了制造钻地工具的方法。在一些实施方案中,制造钻地工具的钻头的方法包括通过增材制造技术将等级粉末固结到钻头中,该钻头包括切削部分和主体部分,该主体部分包括烧结硬质碳化物壳,该烧结硬质碳化物壳的壁厚度为钻头直径的5%至25%。等级粉末可包括金属碳化物和金属粘结剂。在一些实施方案中,等级粉末包括烧结硬质碳化物颗粒,该烧结硬质碳化物颗粒具有上文在第I部分中描述的组成和特性。
如本文所述,等级粉末通过一种或多种增材制造技术固结到钻头中。能够采用可操作以将等级粉末形成到钻头中的任何增材制造技术。例如,根据详细描述钻头的设计参数的电子文件,可通过激光烧结将等级粉末固结到钻头中。在一些实施方案中,将等级粉末固结到生坯钻头中并且随后烧结。例如,粘结剂喷射可提供由等级粉末形成的生坯钻头。在粘结剂喷射过程中,提供了详细描述钻头的设计参数的电子文件。粘结剂喷射设备在构建箱中铺展一层等级的粉末。打印头根据该层的设计参数在粉末层上移动沉积液体粘结剂。将该层干燥,并降低构建箱。铺展新的等级粉末层,并重复该过程直到完成生坯制品。在一些实施方案中,其他3D打印设备可用于从等级粉末结合有机粘结剂构造生坯制品。
不违背本发明目的的任何有机粘结剂都可用于通过一种或多种增材制造技术形成生坯钻头。在一些实施方案中,有机粘结剂包括一种或多种聚合物材料,诸如聚乙烯吡咯烷酮(PVP)、聚乙二醇(PEG)或它们的混合物。在一些实施方案中,有机粘结剂是可固化的,其可增强生坯制品的强度。例如,生坯钻头可表现出至少10MPa的抗压强度。在一些实施方案中,生坯钻头的抗压强度在10-20MPa的范围内。根据ASTM E9室温下金属材料压缩测试的标准测试方法来确定生坯制品的压缩强度。
在一些实施方案中,生坯或半生钻头可通过选择性激光烧结来形成。选择性激光烧结条件被选择为提供具有低密度的生坯或半生钻头。然后将生坯或半生钻头烧结至全密度或接近全密度,如下所述。
由本文所述的等级粉末组合物形成的生坯钻头可在一定条件下烧结一定的时间段,以提供具有期望密度的烧结制品。生坯制品可在氢气或氩气氛下在1300℃至1560℃的温度下真空烧结或烧结。此外,烧结时间通常可为10分钟至5小时。在一些实施方案中,将热等静压(HIP)添加到烧结过程中。热等静压可作为烧结后操作或在真空烧结期间施用。热等静压可在1MPa至300MPa的压力和1300℃至1560℃的温度下施用最多2小时。本文所述的烧结钻头可表现出大于理论全密度的98%的密度。烧结钻头的密度可以是理论全密度的至少99%。此外,在一些实施方案中,烧结钻头的微观结构可以是均匀的。在烧结制品中也可以不存在非化学计量金属碳化物,诸如η相、W2C和/或W3C。作为另外一种选择,烧结硬质碳化物钻头可包含少量的一种或多种非化学计量金属碳化物(通常<5重量%或<1重量%)。此外,本文所述的烧结钻头可具有小于100μm的平均晶粒粒度。在一些实施方案中,例如,烧结钻头具有1-50μm或10-40μm的平均晶粒粒度。
在一些实施方案中,根据本文所述方法生产的烧结钻头在一个或多个尺寸上相对于生坯形式表现出小于25%的收缩率或小于20%的收缩率。烧结钻头在一个或多个尺寸上相对于生坯制品的线性收缩率也可具有选自表VII的值。
表VII-烧结制品的线性收缩率
≤15%
≤10%
≤5%
5-25%
5-10%
1-10%
1-5%
根据本文描述的方法生产的烧结钻头可具有上文在第I部分中描述的任何组成、结构和/或特性,包括薄壁架构。在一些实施方案中,钻头的烧结硬质碳化物壳具有选自上表I的壁厚度。通过以下非限制性实施例对这些和其他实施方案进行进一步说明。
实施例1-钻头
如下制造具有烧结硬质碳化物的薄壁架构的钻头。3D打印系统在构建箱中使用WC-17%Co粉末的迭代铺展的分层过程中生成生坯钻头,然后根据产品的设计施加PVP-PEG粘结剂与聚乙二醇醚溶剂。将烧结硬质碳化物颗粒(WC-17%Co)装载到粘结剂喷射系统(诸如来自宾夕法尼亚州亨廷顿北部的ExOne公司(ExOne,N.Huntingdon,PA)的Innovent或M-Flex 3D打印系统)中。选择STL文件格式的钻头的3D数字模型以用于打印,并且施加适当的收缩因子以考虑烧结期间的尺寸变化。将3D CAD模型解构为100微米切片,并且为每一层创建打印图案,这些图案在后续层中重新组装。烧结硬质碳化物颗粒通过用于形成WC-Co混合物的球形团聚体的常规喷雾干燥工艺生产。粒度分布在D10(10μm)至D90(45μm)的范围内。如上文在第I部分中所述,通过烧结至高密度(85%至95%)来形成关键粉末属性,这实现粉末流动性、可印性并且降低烧结收缩率。关键工艺参数是粘结剂饱和度、打印温度和粉末铺展速度。粘结剂饱和度为80%至120%,打印温度在45℃至55℃的范围内,重涂速度在10mm/sec和20mm/sec之间的范围内。打印层的典型时间在45秒至90秒的范围内,该层以4mm/hr至8mm/hr的打印速率转换为竖直的。在打印后,将生坯钻头在200℃下在空气炉中固化,以提高生坯强度。从粉末工作箱中移除生坯钻头,并且通过压缩空气、真空移除松散粉末,并将其轻轻擦去。将薄壁WC-17Co钻头放置在石墨托盘上,并且在1460-1500℃下真空烧结/HIP0.5-1小时,并致密化至13.7g/cm3,相当于理论密度的99.3%。烧结钻头表现出大于或等于85HRA的硬度,并且显微结构分析显示没有η相并且不存在夸张的大晶粒。烧结钻头几何形状基本上重现了打印制品,尽管尺寸较小,但与施加的收缩因子相当。烧结钻头示于图1-图2中。
针对实现本发明多个目的,现已描述了本发明的多个实施方案。应当认识到,这些实施方案仅示例性地说明本发明的原理。在不脱离本发明实质和范围的情况下,其多种修改和变更对于本领域技术人员而言将是显而易见的。

Claims (36)

1.一种钻地工具,包括:
钻头,所述钻头包括切削部分和主体部分,所述主体部分包括烧结硬质碳化物壳,所述烧结硬质碳化物壳的壁厚度为钻头直径的5%至25%。
2.根据权利要求1所述的钻地工具,其中所述烧结硬质碳化物壳的壁厚度为所述钻头直径的10%至20%。
3.根据权利要求1所述的钻地工具,其中所述钻头直径为100mm至300mm。
4.根据权利要求1所述的钻地工具,其中所述壳的所述烧结硬质碳化物包含3重量%至30重量%的金属粘结剂。
5.根据权利要求1所述的钻地工具,其中所述壳的所述烧结硬质碳化物包含平均粒度为0.5μm至50μm的碳化钨颗粒。
6.根据权利要求5所述的钻地工具,其中所述碳化钨颗粒的平均粒度为10μm至30μm。
7.根据权利要求1所述的钻地工具,其中所述工作部分包括固定切削片。
8.根据权利要求1所述的钻地工具,其中所述工作部分包括牙轮。
9.根据权利要求1所述的钻地工具,其中所述烧结硬质碳化物壳的所述壁厚度在所述钻头的竖直尺寸上改变。
10.根据权利要求1所述的钻地工具,其中烧结硬质碳化物壳包括内表面上的螺纹以用于接合合金主体。
11.根据权利要求1所述的钻地工具,其中所述工作部分包括凹座以用于接收切削刀片。
12.根据权利要求11所述的钻地工具,其中所述凹座包括一个或多个结构元件以用于机械地接合所述切削刀片。
13.根据权利要求12所述的钻地工具,其中所述结构元件选自由螺纹、狭槽、凸缘、锥形凹座直径以及它们的组合组成的组。
14.根据权利要求1所述的钻地工具,还包括联接到所述烧结硬质碳化物壳的一个或多个晶格结构。
15.根据权利要求14所述的钻地工具,其中所述晶格结构包括烧结硬质碳化物。
16.根据权利要求15所述的钻地工具,其中晶格结构的所述烧结硬质碳化物在一个或多个组成或物理特性方面不同于所述壳的所述烧结硬质碳化物。
17.根据权利要求14所述的钻地工具,其中所述烧结硬质碳化物壳的所述壁厚度为所述钻头直径的5%至10%。
18.根据权利要求1所述的钻地工具,其中所述烧结硬质碳化物壳限定流体贮存器。
19.根据权利要求18所述的钻地工具,还包括孔以用于将流体从所述流体贮存器传送到所述切削部分。
20.根据权利要求1所述的钻地工具,其中所述烧结硬质碳化物壳具有小于3%的孔隙率。
21.一种制造钻地工具的钻头的方法,包括:
通过增材制造技术将等级粉末固结到所述钻头中,所述钻头包括切削部分和主体部分,所述主体部分包括烧结硬质碳化物壳,所述烧结硬质碳化物壳的壁厚度为钻头直径的5%至25%。
22.根据权利要求21所述的方法,其中所述等级粉末包含金属碳化物和金属粘结剂。
23.根据权利要求22所述的方法,其中所述金属碳化物包括碳化钨。
24.根据权利要求22所述的方法,其中所述等级粉末包含烧结硬质碳化物颗粒。
25.根据权利要求24所述的方法,其中所述烧结硬质碳化物颗粒的平均粒度为1μm至40μm。
26.根据权利要求24所述的方法,其中所述烧结硬质碳化物颗粒的平均粒度为10μm至30μm。
27.根据权利要求24所述的方法,其中所述烧结硬质碳化物颗粒为理论密度的至少85%。
28.根据权利要求21所述的方法,其中所述钻头直径为100mm至300mm。
29.根据权利要求21所述的方法,其中所述工作部分包括固定切削片。
30.根据权利要求21所述的方法,其中所述工作部分包括牙轮。
31.根据权利要求21所述的方法,其中所述钻头还包括联接到所述烧结硬质碳化物壳的一个或多个晶格结构。
32.根据权利要求21所述的方法,其中所述烧结硬质碳化物壳具有小于3%的孔隙率。
33.根据权利要求21所述的方法,其中通过有机粘结剂将所述等级粉末组合物固结并且烧结以提供所述钻头。
34.根据权利要求21所述的方法,其中通过激光烧结所述等级粉末来将所述等级粉末固结到所述钻头中。
35.根据权利要求21所述的方法,其中所述烧结硬质碳化物壳的所述壁厚度为所述钻头直径的5%至10%。
36.根据权利要求21所述的方法,其中通过选择性激光烧结将所述等级粉末组合物固结到生坯钻头中,并且将所述生坯钻头烧结或烧结-热等静压,以提供密度大于理论密度的98%的所述钻头。
CN201811119848.0A 2017-10-06 2018-09-25 薄壁钻地工具及其制造方法 Active CN109630027B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/727,307 2017-10-06
US15/727,307 US10662716B2 (en) 2017-10-06 2017-10-06 Thin-walled earth boring tools and methods of making the same

Publications (2)

Publication Number Publication Date
CN109630027A true CN109630027A (zh) 2019-04-16
CN109630027B CN109630027B (zh) 2022-07-22

Family

ID=65816970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811119848.0A Active CN109630027B (zh) 2017-10-06 2018-09-25 薄壁钻地工具及其制造方法

Country Status (3)

Country Link
US (1) US10662716B2 (zh)
CN (1) CN109630027B (zh)
DE (1) DE102018122536B4 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114302780A (zh) * 2019-08-27 2022-04-08 日立金属株式会社 Wc系超硬合金粉末、wc系超硬合金构件、wc系超硬合金构件的制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769361C2 (ru) 2017-05-31 2022-03-30 Смит Интернэшнл, Инк. Режущий инструмент с предварительно сформированными сегментами с твердосплавной наплавкой
US11801551B2 (en) * 2018-06-27 2023-10-31 Baker Hughes Holding LLC Methods of forming earth-boring tools using inserts and molds
CN116507788A (zh) 2020-08-27 2023-07-28 斯伦贝谢技术有限公司 刀片盖
CN115338420B (zh) * 2022-08-24 2024-02-23 河南四方达超硬材料股份有限公司 聚晶金刚石前体材料及制备方法、聚晶金刚石及制备方法、聚晶金刚石复合材料及制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3640356A (en) * 1969-04-30 1972-02-08 Shell Oil Co Diamond bit
CN2078789U (zh) * 1990-12-03 1991-06-12 地质矿产部探矿工程研究所 一种石油钻探用金刚石钻头
CN1165907A (zh) * 1996-05-16 1997-11-26 王用顺 防掉牙轮的钻头
US20020023635A1 (en) * 2000-08-25 2002-02-28 Gunther Veik Method of forming a base body for a diamond bit
US20070102199A1 (en) * 2005-11-10 2007-05-10 Smith Redd H Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
CN101153363A (zh) * 2006-09-28 2008-04-02 深圳市兴沃实业有限公司 聚晶金刚石复合片钻头胎体的制备方法
CN101356340A (zh) * 2005-11-10 2009-01-28 贝克休斯公司 钻地旋转钻头和形成该钻地旋转钻头的方法
CN101588884A (zh) * 2006-12-07 2009-11-25 贝克休斯公司 置换构件和使用这种置换构件制造钻地旋转钻头的钻头体的方法
US20090301789A1 (en) * 2008-06-10 2009-12-10 Smith Redd H Methods of forming earth-boring tools including sinterbonded components and tools formed by such methods
US20090301788A1 (en) * 2008-06-10 2009-12-10 Stevens John H Composite metal, cemented carbide bit construction
CN201416393Y (zh) * 2009-06-09 2010-03-03 武汉亿斯达工具有限公司 石油钻井用高强度胎体金刚石钻头
US20110142707A1 (en) * 2005-11-10 2011-06-16 Baker Hughes Incorporated Methods of forming earth boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum based alloy matrix materials
US20130068539A1 (en) * 2011-09-16 2013-03-21 Baker Hughes Incorporated Methods of attaching a polycrystalline diamond compact to a substrate and cutting elements formed using such methods
CN104321501A (zh) * 2012-05-30 2015-01-28 哈利伯顿能源服务公司 以基质材料制作井下工具的方法
CN105840106A (zh) * 2016-04-14 2016-08-10 西南石油大学 用于pdc钻头实现金刚石复合齿可拆装的固定方法
WO2016148724A1 (en) * 2015-03-19 2016-09-22 Halliburton Energy Services, Inc. Mesh reinforcement for metal-matrix composite tools
WO2016171711A1 (en) * 2015-04-24 2016-10-27 Halliburton Energy Services, Inc. Mesoscale reinforcement of metal matrix composites
CN205805420U (zh) * 2016-07-29 2016-12-14 成都保瑞特钻头有限公司 一种具有稳定功能的新型pdc钻头

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2884227A (en) * 1956-06-27 1959-04-28 Sandvikens Jernverks Ab Percussion drill bit for large holes
JPH0788909B2 (ja) 1987-12-28 1995-09-27 日本タングステン株式会社 ポア分散材を用いたメカニカルシール並びにポア分散超硬合金及びその製造方法
US6857486B2 (en) 2001-08-19 2005-02-22 Smart Drilling And Completion, Inc. High power umbilicals for subterranean electric drilling machines and remotely operated vehicles
US6353771B1 (en) 1996-07-22 2002-03-05 Smith International, Inc. Rapid manufacturing of molds for forming drill bits
US6220117B1 (en) 1998-08-18 2001-04-24 Baker Hughes Incorporated Methods of high temperature infiltration of drill bits and infiltrating binder
US6911063B2 (en) 2003-01-13 2005-06-28 Genius Metal, Inc. Compositions and fabrication methods for hardmetals
US20050211475A1 (en) 2004-04-28 2005-09-29 Mirchandani Prakash K Earth-boring bits
EP2019905A2 (en) 2006-04-28 2009-02-04 Halliburton Energy Services, Inc. Molds and methods of forming molds associated with manufacture of rotary drill bits and other downhole tools
US8322465B2 (en) 2008-08-22 2012-12-04 TDY Industries, LLC Earth-boring bit parts including hybrid cemented carbides and methods of making the same
US8025112B2 (en) 2008-08-22 2011-09-27 Tdy Industries, Inc. Earth-boring bits and other parts including cemented carbide
US20100193254A1 (en) 2009-01-30 2010-08-05 Halliburton Energy Services, Inc. Matrix Drill Bit with Dual Surface Compositions and Methods of Manufacture
US8308096B2 (en) 2009-07-14 2012-11-13 TDY Industries, LLC Reinforced roll and method of making same
MX351393B (es) 2009-08-04 2017-10-13 Allomet Corp Partículas duras recubiertas resistentes consolidadas en una matriz de material resistente.
EP2576102A4 (en) 2010-05-26 2017-05-10 Seco Tools Ab Method for producing cemented carbide products
US20120040183A1 (en) * 2010-08-11 2012-02-16 Kennametal, Inc. Cemented Carbide Compositions Having Cobalt-Silicon Alloy Binder
PT2433727E (pt) 2010-09-24 2015-07-02 Sandvik Intellectual Property Método para a produção de um corpo compósito sinterizado
GB2490087B (en) 2010-11-29 2016-04-27 Halliburton Energy Services Inc Forming objects by infiltrating a printed matrix
GB2490299B (en) 2010-11-29 2018-05-23 Halliburton Energy Services Inc Mold assemblies including a mold insertable in a container
GB2485848B (en) 2010-11-29 2018-07-11 Halliburton Energy Services Inc Improvements in heat flow control for molding downhole equipment
GB2527213B (en) 2010-11-29 2016-03-02 Halliburton Energy Services Inc 3D-Printer for molding downhole equipment
US9068408B2 (en) * 2011-03-30 2015-06-30 Baker Hughes Incorporated Methods of forming earth-boring tools and related structures
US8695714B2 (en) 2011-05-19 2014-04-15 Baker Hughes Incorporated Easy drill slip with degradable materials
WO2013028803A2 (en) 2011-08-22 2013-02-28 Boss Hog Oil Tools Llc Downhole tool and method of use
CN105142825A (zh) 2012-09-27 2015-12-09 阿洛梅特公司 形成具有功能梯度材料的新颖组合物的金属或陶瓷制品的方法和包含所述组合物的制品
US9393674B2 (en) 2013-04-04 2016-07-19 Smith International, Inc. Cemented carbide composite for a downhole tool
US9404342B2 (en) 2013-11-13 2016-08-02 Varel International Ind., L.P. Top mounted choke for percussion tool
EP3052747A1 (en) 2014-02-05 2016-08-10 Halliburton Energy Services, Inc. 3-d printed downhole components
US20160082667A1 (en) 2014-04-07 2016-03-24 Halliburton Energy Services Inc. Wellbore Logging Tool Design Customization and Fabrication Using 3D Printing and Physics Modeling
RU2019113090A (ru) 2014-04-24 2019-09-06 Сандвик Интеллекчуал Проперти Аб Способ создания порошка кермета или цементированного карбида
US9435211B2 (en) 2014-05-09 2016-09-06 United Technologies Corporation Method for forming components using additive manufacturing and re-melt
US20150354284A1 (en) 2014-06-05 2015-12-10 Smith International, Inc. Polycrystalline diamond cutting element and bit body assemblies
US9486878B2 (en) 2014-06-20 2016-11-08 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US20160039006A1 (en) 2014-08-05 2016-02-11 Caterpillar Inc. Shell and Core Additive Manufacture
US10526868B2 (en) 2014-08-14 2020-01-07 Halliburton Energy Services, Inc. Degradable wellbore isolation devices with varying fabrication methods
AU2015215842B2 (en) 2014-08-20 2020-01-02 TallyWalker Pty Ltd Drill head
US9868258B2 (en) 2014-09-16 2018-01-16 Baker Hughes, A Ge Company, Llc Manufactured ported mandrel and method for making same
US20160084083A1 (en) 2014-09-23 2016-03-24 Gilbert Alan Hice Borehole Mining System and Methods Using Sonic-Pulsed Jetting Excavation and Eductor Slurry Recovery Apparatus
RU2679196C2 (ru) 2014-10-06 2019-02-06 Шлюмбергер Текнолоджи Б.В. Способы разобщения пластов и отклонения обработки с помощью фигурных частиц
CA2958828C (en) 2014-10-29 2018-11-27 Halliburton Energy Services, Inc. Internally trussed high-expansion support for refracturing operations
CA2962058C (en) 2014-11-12 2018-07-17 Halliburton Energy Services, Inc. Internally trussed high-expansion support for inflow control device sealing applications
US10472896B2 (en) 2014-11-19 2019-11-12 Esco Group Llc Downhole tool and method of manufacturing a tool
CN111219151B (zh) 2014-11-24 2022-12-09 哈里伯顿能源服务公司 用于组装钻柱的区段的方法和系统
WO2016089368A1 (en) 2014-12-02 2016-06-09 Halliburton Energy Services, Inc. Heat-exchanging mold assemblies for infiltrated downhole tools
US10287829B2 (en) 2014-12-22 2019-05-14 Colorado School Of Mines Method and apparatus to rotate subsurface wellbore casing
US20160185009A1 (en) 2014-12-29 2016-06-30 Smith International, Inc. Additive manufacturing of composite molds
US10144065B2 (en) 2015-01-07 2018-12-04 Kennametal Inc. Methods of making sintered articles
WO2016112169A1 (en) 2015-01-08 2016-07-14 Schlumberger Canada Limited Shaft for downhole equipment
US11434766B2 (en) 2015-03-05 2022-09-06 General Electric Company Process for producing a near net shape component with consolidation of a metallic powder
CA2971695A1 (en) * 2015-03-05 2016-09-09 Halliburton Energy Services, Inc. Macroscopic drill bit reinforcement
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US10125553B2 (en) 2015-03-06 2018-11-13 Baker Hughes Incorporated Coring tools for managing hydraulic properties of drilling fluid and related methods
CA2974798A1 (en) 2015-03-19 2016-09-22 Halliburton Energy Services, Inc. Segregated multi-material metal-matrix composite tools
US9999920B2 (en) 2015-04-02 2018-06-19 Baker Hughes, A Ge Company, Llc Ultrahigh temperature elastic metal composites
US10471507B2 (en) 2015-04-24 2019-11-12 Halliburton Energy Services, Inc. Methods of fabricating ceramic or intermetallic parts
US10738538B2 (en) 2015-04-30 2020-08-11 Smith International, Inc. Blade geometry for fixed cutter bits
US9975182B2 (en) 2015-05-13 2018-05-22 Kennametal Inc. Cutting tool made by additive manufacturing
WO2017011825A1 (en) 2015-07-16 2017-01-19 Smith International, Inc. Composite downhole tool
US10386801B2 (en) 2015-08-03 2019-08-20 Baker Hughes, A Ge Company, Llc Methods of forming and methods of repairing earth-boring tools
WO2017039619A1 (en) 2015-08-31 2017-03-09 Halliburton Energy Services, Inc. Wellbore seals with complex features through additive manufacturing
US10335855B2 (en) 2015-09-14 2019-07-02 Baker Hughes, A Ge Company, Llc Additive manufacturing of functionally gradient degradable tools
US10024125B2 (en) 2015-10-09 2018-07-17 General Plastics & Composites, L. P. Slip assembly for downhole tools
US10024134B2 (en) 2015-10-09 2018-07-17 General Plastics & Composites, L.P. Slip assembly for downhole tools
EP3337954A4 (en) 2015-10-20 2018-10-17 Halliburton Energy Services, Inc. Buildup and encapsulation of antenna section of downhole tool
CN106780724A (zh) 2016-12-21 2017-05-31 中国石油天然气股份有限公司 获取漏失通道模型的方法与装置
US11065863B2 (en) * 2017-02-20 2021-07-20 Kennametal Inc. Cemented carbide powders for additive manufacturing
EP3409801B1 (de) 2017-06-01 2023-08-23 Deutsche Edelstahlwerke Specialty Steel GmbH & Co.KG Pulvermetallurgisch hergestellter, hartstoffpartikel enthaltender verbundwerkstoff, verwendung eines verbundwerkstoffs und verfahren zur herstellung eines bauteils aus einem verbundwerkstoff

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3640356A (en) * 1969-04-30 1972-02-08 Shell Oil Co Diamond bit
CN2078789U (zh) * 1990-12-03 1991-06-12 地质矿产部探矿工程研究所 一种石油钻探用金刚石钻头
CN1165907A (zh) * 1996-05-16 1997-11-26 王用顺 防掉牙轮的钻头
US20020023635A1 (en) * 2000-08-25 2002-02-28 Gunther Veik Method of forming a base body for a diamond bit
US20110142707A1 (en) * 2005-11-10 2011-06-16 Baker Hughes Incorporated Methods of forming earth boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum based alloy matrix materials
US20070102199A1 (en) * 2005-11-10 2007-05-10 Smith Redd H Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
CN101356340A (zh) * 2005-11-10 2009-01-28 贝克休斯公司 钻地旋转钻头和形成该钻地旋转钻头的方法
CN101153363A (zh) * 2006-09-28 2008-04-02 深圳市兴沃实业有限公司 聚晶金刚石复合片钻头胎体的制备方法
CN101588884A (zh) * 2006-12-07 2009-11-25 贝克休斯公司 置换构件和使用这种置换构件制造钻地旋转钻头的钻头体的方法
US20090301789A1 (en) * 2008-06-10 2009-12-10 Smith Redd H Methods of forming earth-boring tools including sinterbonded components and tools formed by such methods
US20090301788A1 (en) * 2008-06-10 2009-12-10 Stevens John H Composite metal, cemented carbide bit construction
CN201416393Y (zh) * 2009-06-09 2010-03-03 武汉亿斯达工具有限公司 石油钻井用高强度胎体金刚石钻头
US20130068539A1 (en) * 2011-09-16 2013-03-21 Baker Hughes Incorporated Methods of attaching a polycrystalline diamond compact to a substrate and cutting elements formed using such methods
CN104321501A (zh) * 2012-05-30 2015-01-28 哈利伯顿能源服务公司 以基质材料制作井下工具的方法
WO2016148724A1 (en) * 2015-03-19 2016-09-22 Halliburton Energy Services, Inc. Mesh reinforcement for metal-matrix composite tools
WO2016171711A1 (en) * 2015-04-24 2016-10-27 Halliburton Energy Services, Inc. Mesoscale reinforcement of metal matrix composites
CN105840106A (zh) * 2016-04-14 2016-08-10 西南石油大学 用于pdc钻头实现金刚石复合齿可拆装的固定方法
CN205805420U (zh) * 2016-07-29 2016-12-14 成都保瑞特钻头有限公司 一种具有稳定功能的新型pdc钻头

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114302780A (zh) * 2019-08-27 2022-04-08 日立金属株式会社 Wc系超硬合金粉末、wc系超硬合金构件、wc系超硬合金构件的制造方法

Also Published As

Publication number Publication date
DE102018122536B4 (de) 2024-03-14
DE102018122536A1 (de) 2019-04-11
US20190106941A1 (en) 2019-04-11
US10662716B2 (en) 2020-05-26
CN109630027B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN109630027A (zh) 薄壁钻地工具及其制造方法
US20220226965A1 (en) Polycrystalline diamond composite compact element, tools incorporating same and method for making same
US20180126516A1 (en) Superhard constructions &amp; methods of making same
US10329848B2 (en) Superhard constructions and methods of making same
US20220411900A1 (en) Superhard constructions &amp; methods of making
US9567807B2 (en) Diamond impregnated cutting structures, earth-boring drill bits and other tools including diamond impregnated cutting structures, and related methods
CA2709672C (en) Silicon carbide composite materials, earth-boring tools comprising such materials, and methods for forming the same
CN102959177B (zh) 钻地工具的切削元件、包括这种切削元件的钻地工具以及形成钻地工具的切削元件的方法
US7776256B2 (en) Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US10047882B2 (en) Coupling members for coupling a body of an earth-boring drill tool to a drill string, earth-boring drilling tools including a coupling member, and related methods
US20180036696A1 (en) Superhard constructions and methods of making same
US20100104874A1 (en) High pressure sintering with carbon additives
US20070029114A1 (en) Polycrystalline diamond composite constructions comprising thermally stable diamond volume
US8069936B2 (en) Encapsulated diamond particles, materials and impregnated diamond earth-boring bits including such particles, and methods of forming such particles, materials, and bits
US20070151769A1 (en) Microwave sintering
US8435626B2 (en) Thermal degradation and crack resistant functionally graded cemented tungsten carbide and polycrystalline diamond
US20230135812A1 (en) Superhard constructions and methods of making same
GB2531657A (en) Superhard constructions &amp; methods of making same
US20180021924A1 (en) Super hard components and powder metallurgy methods of making the same
BITS Illll Illlllll Ill Illll Illll Ill Illll Illll Ill Illll Illll Illlll Illl Illl Illl

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant