CN109616550A - 一种提高Sb2Se3薄膜晶粒柱状生长趋势的方法 - Google Patents

一种提高Sb2Se3薄膜晶粒柱状生长趋势的方法 Download PDF

Info

Publication number
CN109616550A
CN109616550A CN201811363984.4A CN201811363984A CN109616550A CN 109616550 A CN109616550 A CN 109616550A CN 201811363984 A CN201811363984 A CN 201811363984A CN 109616550 A CN109616550 A CN 109616550A
Authority
CN
China
Prior art keywords
film
cds
cds film
plasma treatment
oxygen plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811363984.4A
Other languages
English (en)
Other versions
CN109616550B (zh
Inventor
袁宁
袁宁一
王鑫
丁建宁
郭华飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Changzhou University
Original Assignee
Jiangsu University
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University, Changzhou University filed Critical Jiangsu University
Priority to CN201811363984.4A priority Critical patent/CN109616550B/zh
Publication of CN109616550A publication Critical patent/CN109616550A/zh
Application granted granted Critical
Publication of CN109616550B publication Critical patent/CN109616550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/0256Selenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于薄膜太阳能电池制备技术领域,具体涉及一种提高Sb2Se3薄膜晶粒柱状生长趋势的方法,该方法将水浴法得到的CdS薄膜通过氧等离子处理,从而诱导Sb2Se3薄膜的柱状生长。其具体的制备方法是先利用水浴法在FTO基底上沉积一层CdS薄膜,然后将得到的CdS薄膜利用氧等离子处理,最后采用RTE的方法快速沉积一层Sb2Se3薄膜,氧等离子处理CdS薄膜之后,Sb2Se3薄膜呈柱状生长,从而使硒化锑薄膜电池的效率大幅提升,这对于硒化锑薄膜电池的发展有一定的科学价值及促进作用。

Description

一种提高Sb2Se3薄膜晶粒柱状生长趋势的方法
技术领域
本发明属于薄膜太阳能电池制备技术领域,具体涉及一种提高Sb2Se3薄膜晶粒柱状生长趋势的方法。
背景技术
近年来,随着地球上有限的石油和煤炭等不可再生资源的逐渐耗尽,可再生能源的利用与开发显得越来越紧迫,其中,太阳能光伏发电将取之不尽的辐射到地面上的太阳能通过太阳电池等光伏器件的光电转换而源源不断地转变成为电能,已经成为可再生能源中最安全、最环保和最具潜力的竞争者。
目前在太阳能电池中广泛使用的是晶体硅太阳能电池,占全球太阳能市场的90%,目前单晶硅太阳能电池的实验室效率已经达到25.6%。与此同时,基于不同光伏材料和不同结构的诸多太阳能电池不断涌现。薄膜太阳能电池可以应用在柔性电池领域,并且使用材料较少,受到了广泛关注。目前研究较多的是Cu2ZnSnS4、Cu(In,Ga)Se2、CdTe、GaAs等薄膜电池,但是由于一些有毒物质的使用,元素的稀缺导致的成本提高,这些电池并没有得到广泛的应用。因此需要开发新型的电池,既要降低成本又要避免有毒物质的使用。而Sb2Se3作为一种二元半导体材料,由于其优异的光电性能,例如:适当的带隙(~1.1eV),吸收系数大(>105cm-1),高载流子迁移率(10cm2V-1s-1指少数载流子)和长载流子寿命(基于瞬态吸收光谱的60ns),具有极大的蒸气压(~1200Pa@550℃)等使得国内外的许多研究机构对硒化锑薄膜电池展开了更深入的研究。
硒化锑是具有一维晶体结构的材料,能够实现柱状生长,然而现有技术中所制备的硫化镉薄膜表面比较粗糙,不利于硒化锑薄膜的柱状生长。
发明内容
本发明所涉及的一种提高Sb2Se3薄膜晶粒柱状生长趋势的方法按以下步骤实施:
(1)FTO基底玻璃的清洗,将FTO玻璃分别用泡沫水、去离子水、丙酮、乙醇超声清洗30分钟,并用氮气吹干。
(2)CdS薄膜的制备,将15ml 15mmol/L的3CdSO4·8H2O,19ml 14.8mol/L的(NH3·H2O)(浓度为25%~28%的工业氨水),加入250ml的去离子水中混合均匀,并由磁子不断地搅拌,5分钟后加入15ml 75mmol/L的(CH4N2S),并将夹好FTO衬底的夹子插入该混合溶液中,在此过程中温度控制在70℃±2℃,硫化镉薄膜约沉积18-20分钟,然后,超声清洗并干燥。
(3)氧等离子处理,在氧等离子体处理之前先空跑10-15分钟将运输气体管道内的空气赶出,然后将步骤(2)得到的CdS薄膜放入氧等离子体机器腔室中,设定时间15min,RFpower设定为70%,氧气流量为15-20cc/min,并启动程序,进行氧等离子处理。通过氧等离子体轰击硫化镉薄膜表面,去除其表面杂质并使硫化镉表面平整,使得硒化锑能够在硫化镉表面呈柱状生长。
(4)Sb2Se3薄膜的制备,将步骤(3)所得到的氧等离子处理完的硫化镉薄膜放入放置有Sb2Se3粉末源的快速退火炉中,并使硫化镉薄膜正面对着Sb2Se3粉末源并置于上方1.2cm处,用机械泵将腔室气压维持至6.0mtorr以下,先将硫化镉薄膜衬底和Sb2Se3粉末源一起加热到300℃保温20min,然后对Sb2Se3粉末源升温至580℃并保温110s,在衬底上沉积约460nm的Sb2Se3
与现有技术相比,本发明具有以下有益效果:本发明方法具有操作简单,成本低,产业化程度高等优点。通过采用氧等离子体轰击硫化镉薄膜表面,去除杂质并使硫化镉表面平整,使得硒化锑能够在硫化镉表面很好的成核并实现柱状生长。采用本方法制备得到的Sb2Se3薄膜由原来杂乱无序的生长变成柱状有序的生长,同时也避免了Sb2Se3薄膜的二次结晶,说明氧等离子处理过的CdS薄膜具有诱导Sb2Se3薄膜晶粒柱状生长的趋势,这对于薄膜电池的发展具有十分重要的科学意义。
附图说明
图1为本发明有氧等离子处理和无氧等离子处理制备Sb2Se3薄膜的工艺流程示意图。
图2为本发明制备的Sb2Se3薄膜的SEM图。
图3为本发明制备的Sb2Se3薄膜的截面SEM示意图。
图4为本发明制备的CdS/Sb2Se3电池的效率图。
具体实施方式
下面通过实施例对本发明做进一步详细说明,这些实施例仅用来说明本发明,并不限制本发明的范围。
本发明的目的是提供一种提高Sb2Se3薄膜晶粒柱状生长趋势的方法,具体过程如下:采用化学浴沉积法制备CdS薄膜,将得到的CdS薄膜用氧等离子处理15min,然后采用RTE方法制备Sb2Se3薄膜。
实施例1
1、FTO基底玻璃的清洗
衬底选用FTO玻璃,依次用泡沫水,丙酮,乙醇,去离子水超声清洗,干燥后备用。
2、CdS薄膜的制备
(1)将CdSO4溶液15mL,氨水19mL,依次倒入装有250mL去离子水的烧杯中,加热至70℃,保温7-8min,然后倒入硫脲溶液15mL,搅拌3min,将清洗好的FTO玻璃用夹子夹住放入其中,并且搅拌溶液,反应时间为20min,反应温度为70℃,得到所需的CdS薄膜,超声吹干放入氧等离子机中,设定时间15min,RF power设定为70%,氧气流量调节为15-20cc/min,启动程序,进行氧等离子处理,得到处理好的CdS薄膜。
3、Sb2Se3薄膜的制备
(1)将上述处理好的CdS薄膜放入放置有Sb2Se3源的快速退火炉中,硫化镉薄膜正面对着Sb2Se3粉末源并置于上方1.2cm处,利用机械泵将腔室气压维持至6.0mtorr以下。
(2)炉温以10℃/s的速度升温至300℃,保持20min,使得处理完的硫化镉薄膜和Sb2Se3源得到充分的加热。
(3)然后将温度以10℃/s的速度升温至580℃,保持110s,衬底由于贴靠石墨,温度上升速度较慢,Sb2Se3源瞬间到达并维持580℃,形成上下温差。利用上下温差快速沉积Sb2Se3薄膜,然后自然降温,待40℃左右取出,即制备得到Sb2Se3薄膜,采用场发射扫描电镜观察薄膜的表面形貌,发现所制备得到的Sb2Se3薄膜完全结晶并且没有二次结晶。采用场发射扫描电镜观察薄膜的截面形貌,发现制备得到的Sb2Se3薄膜呈柱状有序排列。
图2为本发明制备的Sb2Se3薄膜的SEM图,以上述Sb2Se3薄膜的制备方法制备出的Sb2Se3薄膜晶粒紧凑,且晶粒较大,晶界减少,漏电问题得到改善,开压和电流都得到了提高。
图3为本发明制备的Sb2Se3薄膜的截面SEM示意图,基于上述氧等离子体处理过的CdS表面沉积的Sb2Se3呈柱状生长。
图4为本发明通过氧等离子体处理硫化镉薄膜表面制备的CdS/Sb2Se3电池的效率图,从图中可以看出:开压达到了372mV,短路电流达到了26mA cm-2,填充因子达到了52%。
对比实施例1
1、FTO基底玻璃的清洗
衬底选用FTO玻璃,依次用泡沫水,丙酮,乙醇,去离子水超声清洗,干燥后备用。
2、CdS薄膜的制备
(1)将CdSO4溶液15mL,氨水19mL,依次倒入装有250mL去离子水的烧杯中,加热至70℃,保温7~8min,然后倒入硫脲溶液15mL,搅拌3min,将清洗好的FTO玻璃用夹子夹住放入其中,并且搅拌溶液,反应时间为20min,反应温度为70℃,得到所需的CdS薄膜。
3、Sb2Se3薄膜的制备
(1)将上述处理好的CdS薄膜放入放置有Sb2Se3源的快速退火炉中,硫化镉薄膜正面对着Sb2Se3粉末源并置于上方1.2cm处,利用机械泵将腔室气压维持至6.0mtorr以下。
(2)炉温以10℃/s的速度升温至300℃,保持20min,使得处理完的硫化镉薄膜Sb2Se3源得到充分的加热。
(3)然后将温度以10℃/s的速度升温至580℃,保持110s,衬底由于贴靠石墨维持300℃,且温度上升速度较慢,Sb2Se3源瞬间到达并维持580℃,形成上下温差。利用上下温差,快速沉积Sb2Se3薄膜,然后自然降温,待40℃左右取出,即制备得到Sb2Se3薄膜。
基于没有氧等离子体处理的硫化镉薄膜表面制备的CdS/Sb2Se3电池制备的器件,填充因子只有30%+,开压只有330mV,短路电流22mA cm-2,比氧等离子体处理过的硫化镉制备的器件性能要低好多。

Claims (5)

1.一种提高Sb2Se3薄膜晶粒柱状生长趋势的方法,其特征在于:所述方法步骤如下:
(1)采用化学浴沉积的方法,在FTO衬底上制备一层CdS薄膜;
(2)采用氧等离子处理的方法,将步骤(1)得到的CdS薄膜利用氧等离子处理;
(3)采用快速热蒸发的方法,在步骤(2)得到的CdS薄膜上沉积一层Sb2Se3薄膜。
2.如权利要求1所述的方法,其特征在于:所述步骤(1)按以下步骤进行:对FTO玻璃依次用泡沫水,丙酮,乙醇和去离子水超声清洗,干燥后用水浴法制备一层CdS薄膜。
3.如权利要求2所述的方法,其特征在于:水浴法制备CdS薄膜的方法为:将3CdSO4·8H2O,NH3·H2O加入去离子水中混合均匀,并不断地搅拌,然后加入CH4N2S,并将夹好FTO衬底的夹子插入该混合溶液中,在此过程中温度控制在70℃±2℃,硫化镉薄膜沉积18-20分钟。
4.如权利要求1所述的方法,其特征在于:所述步骤(2)按以下步骤进行:将步骤(1)所得的CdS薄膜放入等离子机中,用高纯氧轰击,其中,高纯氧轰击时设定时间15min,RFpower设定为70%,氧气流量为15-20cc/min。
5.如权利要求1所述的方法,其特征在于:所述步骤(3)按以下步骤进行:将步骤(2)得到的CdS薄膜放入放置有Sb2Se3粉末源的快速退火炉中,用机械泵将腔室气压维持至6.0mtorr以下,先快速升至300℃保温,然后将温度升至580℃沉积110s得到Sb2Se3薄膜。
CN201811363984.4A 2018-11-16 2018-11-16 一种提高Sb2Se3薄膜晶粒柱状生长趋势的方法 Active CN109616550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811363984.4A CN109616550B (zh) 2018-11-16 2018-11-16 一种提高Sb2Se3薄膜晶粒柱状生长趋势的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811363984.4A CN109616550B (zh) 2018-11-16 2018-11-16 一种提高Sb2Se3薄膜晶粒柱状生长趋势的方法

Publications (2)

Publication Number Publication Date
CN109616550A true CN109616550A (zh) 2019-04-12
CN109616550B CN109616550B (zh) 2020-02-14

Family

ID=66004647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811363984.4A Active CN109616550B (zh) 2018-11-16 2018-11-16 一种提高Sb2Se3薄膜晶粒柱状生长趋势的方法

Country Status (1)

Country Link
CN (1) CN109616550B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165020A (zh) * 2019-05-29 2019-08-23 常州大学 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法
CN110828602A (zh) * 2019-10-28 2020-02-21 暨南大学 一种硒化锑薄膜太阳电池及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062038A (en) * 1976-01-28 1977-12-06 International Business Machines Corporation Radiation responsive device
CN103508482A (zh) * 2012-06-29 2014-01-15 中国科学院大连化学物理研究所 一种硫化镉纳米花阵列的制备方法
US20140014843A1 (en) * 2012-07-11 2014-01-16 Konica Minolta, Inc. Radiation detecting panel and radiographic detector
CN105549062A (zh) * 2014-10-28 2016-05-04 柯尼卡美能达株式会社 闪烁器面板、放射线检测器及它们的制造方法
CN105914244A (zh) * 2016-06-29 2016-08-31 福州大学 一种提高CZTS/CdS异质结整流比的方法
CN107431100A (zh) * 2015-03-31 2017-12-01 松下知识产权经营株式会社 太阳能电池元件、太阳能电池组件、以及制造方法
CN107611019A (zh) * 2017-10-17 2018-01-19 吉林化工学院 一种柱状晶粒铜锌镉锡硫硒薄膜吸收层的制备及其在太阳能电池中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062038A (en) * 1976-01-28 1977-12-06 International Business Machines Corporation Radiation responsive device
CN103508482A (zh) * 2012-06-29 2014-01-15 中国科学院大连化学物理研究所 一种硫化镉纳米花阵列的制备方法
US20140014843A1 (en) * 2012-07-11 2014-01-16 Konica Minolta, Inc. Radiation detecting panel and radiographic detector
CN105549062A (zh) * 2014-10-28 2016-05-04 柯尼卡美能达株式会社 闪烁器面板、放射线检测器及它们的制造方法
CN107431100A (zh) * 2015-03-31 2017-12-01 松下知识产权经营株式会社 太阳能电池元件、太阳能电池组件、以及制造方法
CN105914244A (zh) * 2016-06-29 2016-08-31 福州大学 一种提高CZTS/CdS异质结整流比的方法
CN107611019A (zh) * 2017-10-17 2018-01-19 吉林化工学院 一种柱状晶粒铜锌镉锡硫硒薄膜吸收层的制备及其在太阳能电池中的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A.MAZOR: ""Columnar Growth in Thin Film"", 《PHYSICAL REVIEW LETTERS》 *
I. M. DHARMADASA: ""Review of the CdCl2 Treatment Used in CdS/CdTe Thin Film Solar Cell Development and New Evidence towards Improved Understanding"", 《COATINGS》 *
K STARBOVA: ""Microstructure and related properties of vapour deposited amorphous Sb2Se3 thin films"", 《VACUUM》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165020A (zh) * 2019-05-29 2019-08-23 常州大学 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法
CN110828602A (zh) * 2019-10-28 2020-02-21 暨南大学 一种硒化锑薄膜太阳电池及其制备方法

Also Published As

Publication number Publication date
CN109616550B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
CN102034898B (zh) 一种太阳电池用铜铟硫光电薄膜材料的制备方法
CN106252432A (zh) 一种可降低缺陷密度的碲化镉太阳能电池制备方法
CN104795456B (zh) 电沉积法制备三带隙铁掺杂铜镓硫太阳能电池材料的方法
CN113078239B (zh) 一种硒化锑薄膜太阳电池及其制备方法
CN107093650A (zh) 一种制备铜锑硫太阳能电池吸收层的方法
CN109616550A (zh) 一种提高Sb2Se3薄膜晶粒柱状生长趋势的方法
CN106057930A (zh) 一种由氯化铜和氯化镓制备铜镓硒光电薄膜的方法
CN109309145B (zh) 一种p+/p/n硒化锑薄膜电池的制备方法
CN101235475A (zh) 一种铜铟硫化合物薄膜的制备方法
CN104818452B (zh) 一种制备氮铝共掺杂p型氧化锌薄膜的方法
CN104233433A (zh) 一种制备氧化亚铜薄膜的方法
CN110165020B (zh) 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法
CN103943700A (zh) 一种生长在GaAs衬底上的InGaAsN薄膜及其制备方法
Fan et al. Progress in the fabrication of Cu2ZnSnS4 thin film for solar cells
Wei et al. Regulating Hetero‐Nucleation Enabling Over 14% Efficient Kesterite Solar Cells
CN105932081A (zh) 一种由氯化铜制备铜铟硫光电薄膜的方法
CN106082690A (zh) 一种由硫酸铜制备铜铟硫光电薄膜的方法
CN115101611B (zh) 一种基于AgSbS2的无机薄膜太阳能电池及其制备方法
CN105908132B (zh) 一种半导体Cu2ZnTiS4薄膜材料及其制备方法
CN103311364A (zh) 一种铜铟镓硒太阳能电池用硫化铟缓冲层薄膜的制备方法
CN106024977A (zh) 一种由硫酸铜制备铜镓硫光电薄膜的方法
CN103779439A (zh) 一种铜铟镓硒薄膜预制层及其制备方法
CN106067489A (zh) 一种由氯化铜和硝酸镓制备铜镓硒光电薄膜的方法
CN114975653B (zh) 一种Zn(O,S)薄膜的制备方法及其应用
CN114904744B (zh) 一种制备铜铟硒薄膜的刮涂方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant