CN109609209B - 一种高热值清洁环保型生物柴油 - Google Patents

一种高热值清洁环保型生物柴油 Download PDF

Info

Publication number
CN109609209B
CN109609209B CN201910010838.1A CN201910010838A CN109609209B CN 109609209 B CN109609209 B CN 109609209B CN 201910010838 A CN201910010838 A CN 201910010838A CN 109609209 B CN109609209 B CN 109609209B
Authority
CN
China
Prior art keywords
biodiesel
basic
camelina sativa
oil
calorific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910010838.1A
Other languages
English (en)
Other versions
CN109609209A (zh
Inventor
谢凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongjiang Yuchang Biotechnology Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910010838.1A priority Critical patent/CN109609209B/zh
Publication of CN109609209A publication Critical patent/CN109609209A/zh
Application granted granted Critical
Publication of CN109609209B publication Critical patent/CN109609209B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/146Macromolecular compounds according to different macromolecular groups, mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/10Production of fats or fatty oils from raw materials by extracting
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/12Refining fats or fatty oils by distillation
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/1955Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by an alcohol, ether, aldehyde, ketonic, ketal, acetal radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Fats And Perfumes (AREA)

Abstract

本发明涉及一种高热值清洁环保型生物柴油。所述生物柴油含有基础生物柴油和添加剂,所述基础生物柴油是由亚麻荠提取得到。所述基础生物柴油通过下述方法制备得到的:将亚麻荠干燥粉碎,提取;将步骤1)得到的提取液与醇发生反应;有机溶剂洗涤、水洗,减压蒸馏得到基础生物柴油。所述生物柴油在热值等方面具有更优异的性能。

Description

一种高热值清洁环保型生物柴油
技术领域
本发明涉及生物柴油及其制备方法,具体而言,本发明涉及一种高热值清洁环保型生物柴油。
背景技术
随着经济增长和人均消费水平的提高,从2005到2035年,全球对运输能源的需求以1.8%年平均速率增长。世界正面临着化石燃料紧缺和环境恶化等问题。生物柴油作为一种可再生、可持续、可生物降解的替代化石燃料的绿色能源备受关注。生物柴油是指以油料作物(大豆、油菜、棉、棕榈等)、野生油料植物、工程微藻等水生植物油脂、动物油脂和餐饮废弃油等为原料油与短链醇(甲醇、乙醇)经酯化或酯交换等一系列加工处理而制成的一种液体燃料,它是优质的石化柴油替代品,是典型的“绿色能源”。生物柴油具有优势如下:具有优良的环保性能;具有可再生性能,可作为石油产品的替代品;具有较好的安全性能;具有优良的燃料性能,可以一定比例与石化柴油调和使用;具有较好的润滑性能,延长发动机的使用寿命;应用简便也。可作为一种战略石油资源储备,促进农业发展,带动产业结构的调整;生产过程中的各类副产品均可利用。目前生物柴油无法普及主要是因为成本偏高以及技术还不够成熟,而原料成本占制备生物柴油总成本70%以上。所以解决当今这个问题的关键之一就是要寻找到合适的原料。我国是一个人口大国,人均耕地不到0.1hm2,为保证粮食安全,要以农产品为主要的生物柴油燃料显然不太现实“少占、不占粮食耕地,充分利用林地、荒地”己成为我国生物质能发展的土地利用战略,这样的国情决定了木本生物质能资
源的开发利用将成为我国未来生物质能源研发的重点和核心。
亚麻荠(Camelina s ativa L.Crantz)也是一种十字花科的油料作物,并且其生育期短(80-100d),高抗逆境和病虫草害。亚麻荠栽培历史可追溯到青铜时代(大约公元前1500年-公元前400年),一直到第二次世界大战,以及20世纪50年代,亚麻荠在欧洲仍是一些国家和俄罗斯等地的重要油料作物。现今,作为一种重新发掘出来的“低投入、环保型”的替代性工业油料作物,亚麻荠已在美洲、欧洲和大洋洲开始大面积种植,种子油也已应用于炼制航空燃油、生物柴油和其他油脂工业我国北方一些地区也不同规模地试种亚麻荠。
发明内容
本发明的目的之一提供了一种由亚麻荠制备得到的生物柴油。
本发明的另一目的在提供了制备上述由亚麻荠制备得到的生物柴油的方法。
本发明还有一目的是提供了一种用于上述生物柴油的添加剂。
本发明另一目的是提供了利用上述添加剂用于生物柴油的用途。
目前生物柴油亟需提高的特性有低温流动性、氧化安定性以及热值。
在生物柴油中加入少量降凝剂以提高低温流动性能,这是从柴油流动性能的改善所想到的方法。Chuang-WeiChiu等将BioFlow-870、BioFlow-875加入到生物柴油中,考察其对生物柴油凝点的影响。实验表明,两种添加剂在加入量为0.1%时,可分别使凝点从-6℃降至-9℃和-18℃。Dunn等将市售十二种降凝剂对生物柴油低温性能为影响进行研究,结果表明其对生物柴油凝点的降低有着一定的作用。Nestor等采用臭氧化处理植物油作为生物柴油降凝剂,结果表明,1%~1.5%的添加量对降低生物柴油凝点具有很好的效果,可使由葵花籽油、大豆油、菜籽油制备生物柴油凝点分别降低-24℃、-12℃、-30℃。降凝剂的加入主要是能改变饱和脂肪酸甲酯的结晶习性,阻止三维网状结构生长,使生物柴油保持流动性。
氧化安定性是生物柴油的重要性质之一,因为在使用和贮存过程中不可避免地会与空气中的氧气接触,在一定的条件下,油品与氧彼此会起反应,在初期产生过氧化物和氢过氧化物,后期产生醛、酮,并最终形成聚合物,从而影响油品的性能和寿命,并且在使用过程中对发动机也会产生不良影响。欧盟标准规定生物柴油在110℃下的氧化诱导期不低于6h。20世纪30年代以来,国内外对油脂的氧化以及抗氧化剂进行了深入的研究,并取得了一定的成果,与油脂类似,生物柴油的氧化速率与脂肪酸甲酯的种类、温度、与空气的接触、催化剂、油脂中所含天然抗氧化剂、光照强度有关。徐鸽等考察了不同氧气流量、金属等对生物柴油氧化速率的影响,结果表明,生物柴油随氧气流量改变氧化安定性较好,但在有金属如铜存在时,生物柴油的氧化安定性下降。目前常用的抑制生物柴油氧化的有效途径是添加抗氧化剂。YungCheeLiang等研究发现天然(维生素E)和合成的氧化剂(BHT,TBHQ)对于提高生物柴油的氧化稳定性有着很大的作用,并且合成抗氧化剂在相同的抗氧化效果下需要的剂量更少。Dunn等研究了5种抗氧化剂BHT、TBHQ、BHA、PrG、Ve对于提高生物柴油氧化的起始温度中的作用,结果表明,TBHQ、BHT和BHA能够保护生物柴油在储存中免于氧化,PrG由于不互溶性应用起来较为困难,Ve在抗氧化过程中效果最差。另外有报告研究表明合成抗氧化剂的抗氧化效果优于天然抗氧化,添加低剂量的抗氧化剂对生物柴油的燃烧性能和对柴油引擎性能没有明显的负面影响。目前中国农科院油料所已经开发出一系列高效生物柴油改良剂,能同时提高生物柴油氧化安定性和改善低温流动性能。
热值是评价一种燃料燃烧性能的重要指标,由于生物柴油即脂肪酸甲酯中含有氧元素,尽管其燃烧更加充分,但是导致其质量热值比柴油低10%;其密度高于矿物柴油,因此其体积热值仅低于矿物柴油3%~4%。Monyem等对纯生物柴油、B20与2号柴油的燃烧热效率进行了比较,发现在达到相同的效率时,纯生物柴油的消耗量要高,但是混合使生物柴油的消耗量增加并不十分明显。因此可以考虑采用生物柴油与柴油混合法来提高热值,更重要的是去研究提升热值的助剂,使其优化碳链结构,调整燃烧催化特性,改善燃烧效率,从而降低燃油消耗。
为实现上述目的,本发明采用了下述技术方案:
一种高热值清洁环保型生物柴油,所述生物柴油含有基础生物柴油和添加剂,所述基础生物柴油是由亚麻荠提取得到。
所述基础生物柴油是由下述方法制备得到的:
1)将亚麻荠干燥粉碎,提取;
2)将步骤1)得到的提取液与醇发生反应;
3)有机溶剂洗涤、水洗,减压蒸馏得到基础生物柴油。
优选地,所述基础生物柴油是由下述方法制备得到的:
1)将亚麻荠种子干燥,粉碎180-220目,石油醚浸泡提取3-5次,提取过程中加热至30-40℃,合并提取液,减压蒸馏得到亚麻荠种子油;
2)将步骤1)得到的亚麻荠种子在催化剂存在下,与甲醇或乙醇在60-70℃下发生反应,反应时间为1-2h,催化剂用量为油料质量的1%-2%,甲醇用量为油料质量的30-40%,甲醇用量为油料质量的40-55%;
3)按步骤2)所得油品的2-3倍体积加入石油醚,静置,分层,减压蒸馏即得基础生物柴油。
其中,所述催化剂选自甲酸锂、甲酸纳、甲酸钾、甲酸铷、甲酸钝、醋酸锂、醋酸钠、氢氧化钠、氢氧化钾、二甲基丙酸钠、二甲基丙酸钾、草酸钾、草酸钠中的一种或多种。
本发明还提供了所述基础生物柴油的制备方法,其包括下述步骤:
1)将亚麻荠干燥粉碎,提取;
2)将步骤1)得到的提取液与醇发生反应;
3)有机溶剂洗涤、水洗,减压蒸馏得到基础生物柴油。
更优选地,包括下述步骤:
1)将亚麻荠种子干燥,粉碎180-220目,石油醚浸泡提取3-5次,提取过程中加热至30-40℃,合并提取液,减压蒸馏得到亚麻荠种子油;
2)将步骤1)得到的亚麻荠种子在催化剂存在下,与甲醇或乙醇在60-70℃下发生反应,反应时间为1-2h,催化剂用量为油料质量的1%-2%,甲醇用量为油料质量的30-40%,甲醇用量为油料质量的40-55%;
3)按步骤2)所得油品的2-3倍体积加入石油醚,静置,分层,减压蒸馏即得基础生物柴油;
所述催化剂选自甲酸锂、甲酸纳、甲酸钾、甲酸铷、甲酸钝、醋酸锂、醋酸钠、氢氧化钠、氢氧化钾、二甲基丙酸钠、二甲基丙酸钾、草酸钾、草酸钠中的一种或多种。
本发明还提供了一种高热值清洁环保型生物柴油的添加剂,为下述式I聚合物:
Figure BDA0001937237820000051
其中,n=10-20,R选自
Figure BDA0001937237820000052
Figure BDA0001937237820000061
优选地,为下述聚合物:
Figure BDA0001937237820000062
本发明还提供了一种用于生物柴油的聚合物,以下述式I所示:
Figure BDA0001937237820000063
其中,n=10-20,R选自
Figure BDA0001937237820000064
Figure BDA0001937237820000065
最优选地,下述聚合物:
Figure BDA0001937237820000071
上述聚合物可用于生物柴油。
实施例
下面通过实施例对本发明作进一步说明。应该理解的是,本发明实施例所述方法仅仅是用于说明本发明,而不是对本发明的限制,在本发明的构思前提下对本发明制备方法的简单改进都属于本发明要求保护的范围。实施例中用到的所有原料和溶剂均为市售产品。
式I聚合物的制备实施例1:
氮气气氛下,用滴液漏斗加入聚异丁烯马来酸酐(n=15)加入到500毫升的圆底烧瓶中,然后加热到约80℃,保温10分钟,然后加入聚异丁烯马来酸酐2.2当量的四甘醇单甲醚,升温至回流温度,TLC跟踪反应至结束,冷却得到下述结构式的聚合物。
Figure BDA0001937237820000072
1HNMR(DMSO):δ4,82(s,H,1H),4,57(s,H,1H),4.25(m,CH2,2H),4.20(m,CH2,2H),3.63(t,CH2,4H),3.55(s,CH2,4H),3.52(m,CH2,20H),3.40(s,CH3,6H),2.99(m,CH,1H),2.94(t,CH2,2H),2.42(q,CH2,2H),1.82(s,CH2,2H),0.94(s,CH3,9H).
式I聚合物的制备实施例2:
氮气气氛下,用滴液漏斗加入聚异丁烯马来酸酐(n=20)加入到500毫升的圆底烧瓶中,然后加热到约75℃,保温15分钟,然后加入聚异丁烯马来酸酐2.2当量的三甘醇单甲醚,升温至回流温度,TLC跟踪反应至结束,冷却得到下述结构式的聚合物。
Figure BDA0001937237820000081
1HNMR(DMSO):δ4,82(s,H,1H),4,57(s,H,1H),4.25(m,CH2,2H),4.20(m,CH2,2H),3.63(t,CH2,4H),3.55(s,CH2,4H),3.52(m,CH2,12H),3.40(s,CH3,6H),2.99(m,CH,1H),2.94(t,CH2,2H),2.42(q,CH2,2H),1.82(s,CH2,2H),0.94(s,CH3,9H).
基础生物柴油的制备实施例1:
1)将亚麻荠种子干燥,粉碎至200目,称取5Kg,用5L石油醚浸泡提取3次,加热至30-40℃,合并提取液,减压蒸馏得到亚麻荠种子油;
2)称取步骤1)得到的亚麻荠种子油0.5Kg,加入催化剂氢氧化钾0.01Kg,0.2Kg乙醇,回流反应,2小时。
3)在按步骤2)所得油品中加入2L石油醚,静置,分层,减压蒸馏即得基础生物柴油。对所制得产品利用气相色谱进行测定,脂肪酸乙酯含量为96.6%。气相色谱条件如下
色谱柱:AT-FFAP(30m×0.32mm×0.50μm)。
程序升温:初始温度为80℃,保持3min,以10℃/min的升温速率升温至230℃,后恒温保持12min。
检测器:氢火焰离子检测器,检测器温度250℃,进样口温度250℃。
载气:干燥的高纯氮气。
燃气:高纯氢气,用压缩空气作为助燃气。
进样量:1μL
下表给出了本发明生物柴油和0#柴油的性能对比
生物柴油的制备实施例2:
取基础生物柴油的制备实施例1中的产品0.1Kg×2,分别加入其质量分数10%的制备实施例1和制备实施例2的式I聚合物,制备得到相关样品,记为TB-1和TB-2
Figure BDA0001937237820000091
本发明所述生物柴油性能测试研究:
试验用发动机为R4105T型柴油机,主要技术参数为:
汽缸数4;缸径/mm:105;活塞行程/mm:105;排量/L:3.6;标定油耗率/g·(kW·h)-1:≤239;额定功率/kW:55;额定转速/r·min-1:2000。
试验时,利用本发明基础生物柴油、TB-1、TB-2、0#柴油作为燃料,测定所述燃料在2000r/min转速下,柴油机的燃油消耗率随负荷的变化。如下所示:
Figure BDA0001937237820000092
Figure BDA0001937237820000101
从上表可以看出:相同转速下,随负荷的增大,0#柴油和其它三种生物柴油燃油消耗率都呈现下降的趋势,当柴油机运转在2000r/min的小负荷时,除纯柴油外,其它三种生物柴油燃油消耗率相对较低,而添加了本申请添加剂的TB-1和TB-2#燃油,相对于未添加的燃油,消耗更低。

Claims (3)

1.一种高热值清洁环保型生物柴油,其特征在于所述生物柴油含有基础生物柴油和添加剂,所述基础生物柴油是由亚麻荠提取得到;所述添加剂为下述式I聚合物:
Figure DEST_PATH_IMAGE001
所述基础生物柴油是由下述方法制备得到的:
1)将亚麻荠干燥粉碎,提取得到亚麻荠种子油;
2)将步骤1)得到的亚麻荠种子油与醇发生反应;
3)有机溶剂洗涤,减压蒸馏得到基础生物柴油。
2.根据权利要求1所述的一种高热值清洁环保型生物柴油,其特征在于所述基础生物柴油是由下述方法制备得到的:
1)将亚麻荠种子干燥,粉碎180-220目,石油醚浸泡提取3-5次,提取过程中加热至30-40℃,合并提取液,减压蒸馏得到亚麻荠种子油;
2)将步骤1)得到的亚麻荠种子油在催化剂存在下,与甲醇或乙醇在60-70℃下发生反应,反应时间为1-2h,催化剂用量为油料质量的1%-2%,甲醇用量为油料质量的30-40%,乙醇用量为油料质量的40-55%;
3)按步骤2)所得油品的2-3倍体积加入石油醚,静置,分层,减压蒸馏即得基础生物柴油。
3.根据权利要求2所述的一种高热值清洁环保型生物柴油,其特征在于:所述催化剂选自甲酸锂、甲酸钠、甲酸钾、甲酸铷、醋酸锂、醋酸钠、氢氧化钠、氢氧化钾、二甲基丙酸钠、二甲基丙酸钾、草酸钾、草酸钠中的一种或多种。
CN201910010838.1A 2019-01-07 2019-01-07 一种高热值清洁环保型生物柴油 Active CN109609209B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910010838.1A CN109609209B (zh) 2019-01-07 2019-01-07 一种高热值清洁环保型生物柴油

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910010838.1A CN109609209B (zh) 2019-01-07 2019-01-07 一种高热值清洁环保型生物柴油

Publications (2)

Publication Number Publication Date
CN109609209A CN109609209A (zh) 2019-04-12
CN109609209B true CN109609209B (zh) 2021-09-10

Family

ID=66016801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910010838.1A Active CN109609209B (zh) 2019-01-07 2019-01-07 一种高热值清洁环保型生物柴油

Country Status (1)

Country Link
CN (1) CN109609209B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104830379A (zh) * 2015-04-14 2015-08-12 贵州大学 一种梧桐子生物柴油及其制备方法
WO2018178695A1 (en) * 2017-03-30 2018-10-04 Innospec Limited Method and use to prevent deposits in engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1475512A (zh) * 2002-08-16 2004-02-18 中国石油天然气股份有限公司 一种柴油降凝剂组合物的制备方法
US20100107482A1 (en) * 2008-11-06 2010-05-06 Bennett Joshua J Conductivity-improving additives for fuel
CN104449891A (zh) * 2014-11-20 2015-03-25 中国石油大学(北京) 一种生物柴油降凝剂配方

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104830379A (zh) * 2015-04-14 2015-08-12 贵州大学 一种梧桐子生物柴油及其制备方法
WO2018178695A1 (en) * 2017-03-30 2018-10-04 Innospec Limited Method and use to prevent deposits in engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Improvement on oxidation and storage stability of biodiesel derived from an emerging feedstock camelina;Jie Yang等;《Fuel Processing Technology》;20161210;第157卷;第90-98页 *

Also Published As

Publication number Publication date
CN109609209A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
Hasni et al. Optimization of biodiesel production from Brucea javanica seeds oil as novel non-edible feedstock using response surface methodology
Chen et al. Biodiesel production from tung (Vernicia montana) oil and its blending properties in different fatty acid compositions
Atabani et al. Calophyllum inophyllum L.–A prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance
Ashraful et al. Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review
Rashid et al. Biodiesel from Milo (Thespesia populnea L.) seed oil
Patel et al. Biodiesel from plant oils
Rashid et al. Moringa oleifera oil: a possible source of biodiesel
Meher et al. Methanolysis of Pongamia pinnata (karanja) oil for production of biodiesel
Vashist et al. STATISTICAL ANALYSIS OF DIESEL ENGINE PERFORMANCE FOR CASTOR AND JATROPHA BIODIESEL-BLENDED FUEL.
Singh et al. A comprehensive review on 1st-generation biodiesel feedstock palm oil: production, engine performance, and exhaust emissions
Hotti et al. Biodiesel production and fuel properties from non-edible Champaca (Michelia champaca) seed oil for use in diesel engine
Vashist et al. A comparative study of castor and jatropha oil source and its methyl ester test on the diesel engine
El-Baz et al. Comparative study of performance and exhaust emissions of a diesel engine fueled with algal, used cooked and Jatropha oils biodiesel mixtures
Thangaraj et al. Scope of biodiesel from oils of woody plants: a review
Prabhahar et al. Studies on pongamia oil methyl ester fueled direct injection diesel engine to increase efficiency and to reduce harmful emissions
Umaru et al. Production and characterization of biodiesel from Nigerian mango seed oil
Ahmad et al. Base catalyzed transesterification of sunflower oil biodiesel
Sun et al. Bifunctional additive phenolic acids grafted ethylene-vinyl acetate copolymers for improving the cold flow properties and oxidative stability of waste cooking oil biodiesel-diesel blends
CN109609209B (zh) 一种高热值清洁环保型生物柴油
Kalbande et al. Jatropha and Karanj bio-fuel: an alternate fuel for diesel engine
BRPI1015168B1 (pt) "Combustível biodiesel, e, processo de fabricação de um combustível diesel"
Sharma et al. Biodiesel production for sustainable agriculture
CN101503628B (zh) 一种利用文冠果籽油制备生物柴油的方法
Yogish et al. Optimization of experimental conditions for composite biodiesel production from transesterification of mixed oils of Jatropha and Pongamia
CN103436303A (zh) 一种b5用生物柴油

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TA01 Transfer of patent application right

Effective date of registration: 20210907

Address after: 418000 Qiancheng Town Industrial Park concentration area, Hongjiang City, Huaihua City, Hunan Province

Applicant after: Hongjiang Yuchang Biotechnology Co.,Ltd.

Address before: Room 202, unit 2, building 6, longyueyuan Fourth District, Huilongguan, Changping District, Beijing 102208

Applicant before: Xie Kai

TA01 Transfer of patent application right