CN109603800B - 一种超薄多金属纳米片堆叠组装材料的制备方法及其应用 - Google Patents

一种超薄多金属纳米片堆叠组装材料的制备方法及其应用 Download PDF

Info

Publication number
CN109603800B
CN109603800B CN201910026237.XA CN201910026237A CN109603800B CN 109603800 B CN109603800 B CN 109603800B CN 201910026237 A CN201910026237 A CN 201910026237A CN 109603800 B CN109603800 B CN 109603800B
Authority
CN
China
Prior art keywords
precursor salt
metal
ultrathin
stacking assembly
assembly material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910026237.XA
Other languages
English (en)
Other versions
CN109603800A (zh
Inventor
谢水奋
王媛媛
刘凯
王伟
吕梓禧
严贤冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN201910026237.XA priority Critical patent/CN109603800B/zh
Publication of CN109603800A publication Critical patent/CN109603800A/zh
Application granted granted Critical
Publication of CN109603800B publication Critical patent/CN109603800B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种超薄多金属纳米片堆叠组装材料的制备方法及其应用,包括如下步骤:(1)将十六烷基三甲基氯化铵、聚乙烯吡咯烷酮、钯前驱盐、铂前驱盐、可选金属前驱盐、三氯化铁和六羧基钨用乙醇溶解并搅拌混合均匀;(2)将步骤(1)所得的物料由室温升至175‑185℃,恒温反应30‑90min,然后冷却至室温;(3)将步骤(2)所得的物料用乙醇充分洗涤后,获得所述超薄多金属纳米片堆叠组装材料。本发明通过一步法制备得到超薄多金属纳米片堆叠组装材料,其产品能够用于小分子燃料的电催化反应中。

Description

一种超薄多金属纳米片堆叠组装材料的制备方法及其应用
技术领域
本发明属于电催化技术领域,具体涉及一种超薄多金属纳米片堆叠组装材料的制备方法及其应用。
背景技术
近年来,由于贵金属纳米材料在催化、能源、生物医药等各个领域都体现出重要的应用前景,发展制备具有特定结构和特殊功能的贵金属基纳米结构的方法极为重要。其中,铂系贵金属在电催化领域方面的应用尤为突出。比如,目前众多的电催化材料中,铂基(Pt-)材料是许多燃料小分子电催化氧化反应的优良催化剂。然而Pt的价格昂贵、储量稀少,同时易产生类CO有毒中间体,极大地制约了其在工业生产上的进一步推广应用。为了提高Pt材料的催化活性和电池性能,主要的研究途径是添加其他金属元素(如Pd、Ru、Rh、Ir、Cu、Co和Ni等)以形成合金,通过元素之间的电子效应和协同效应增强催化性能。例如,杜玉扣团队合成的PtRu双金属纳米颗粒用于乙醇的电催化氧化,发现其催化活性和稳定性相比于商业化Pt/C都得到了很大的提高(Gu,Z.L.;Li,S.M.;Xiong,Z.P.;Xu,H..;Gao,F.;Du,Y.K.J.Colloid Interface Sci.2018,521,118.);王训课题组将Pd、Rh与Pt合金化,得到三元纳米晶,并发现其对多个醇类氧化(乙二醇、甘油、甲醇和乙醇)都有较好的催化活性(Huang,D.B.;Yuan,Q.;He,P.P.;Wang,K.;Wang,X.Nanoscale.2016,8,14705)。另一方面,Pt-基催化剂的形貌结构会直接影响其表面性质,进而表现出不同的催化活性。近年来,二维(2D)材料表现出优异的催化性能,这是由于纳米片拥有较大的比表面积和丰富的配位不饱和位点。有文献报道,PdPtAg纳米片通过促进OHads的形成和提高抗CO毒害能力而对乙醇电催化氧化表现出较好的催化活性(Hong,J.W.;Kim,Y.;Wi,D.H.;Lee,S.;Lee,S.-U.;Lee,Y.W.;Choi,S.-I.;Han,S.W.Angew.Chem.Int.Ed.2016,55,2753)。然而,超薄二维纳米结构高度的分散性往往导致材料的稳定性下降,也为材料的回收和重复利用带来极大不便。因此,发展制备二维超薄多金属纳米片的组装结构的方法及研究其在电催化方面的应用,对于提高小分子醇类电催化活性和燃料电池性能来说是非常重要的。
发明内容
本发明的目的在于克服现有技术缺陷,提供一种超薄多金属纳米片堆叠组装材料的制备方法。
本发明的另一目的在于提供上述超薄多金属纳米片堆叠组装材料的应用
本发明的技术方案如下:
一种超薄多金属纳米片堆叠组装材料的制备方法,包括如下步骤:
(1)将十六烷基三甲基氯化铵、聚乙烯吡咯烷酮、钯前驱盐、铂前驱盐、可选金属前驱盐、三氯化铁和六羧基钨用乙醇溶解并搅拌混合均匀;
(2)将步骤(1)所得的物料由室温升至175-185℃,恒温反应30-90min,然后冷却至室温;
(3)将步骤(2)所得的物料用乙醇充分洗涤后,获得所述超薄多金属纳米片堆叠组装材料。
在本发明的一个优选实施方案中,所述钯前驱盐为乙酰丙酮钯。
在本发明的一个优选实施方案中,所述铂前驱盐为乙酰丙酮铂。
在本发明的一个优选实施方案中,可选金属前驱盐为三氯化钌、无水氯化镍、三氯化铑和氯化铱中的至少一种。
在本发明的一个优选实施方案中,所述步骤(2)为:将步骤(1)所得的物料由室温升至180℃,恒温反应30-90min,然后冷却至室温。
在本发明的一个优选实施方案中,所述十六烷基三甲基氯化铵、聚乙烯吡咯烷酮、钯前驱盐、铂前驱盐、可选金属前驱盐、三氯化铁和六羧基钨的质量比为90-110∶90-110∶7-9∶8-12∶3-55∶1.2-8.5∶45-55。
进一步优选的,所述十六烷基三甲基氯化铵、聚乙烯吡咯烷酮、钯前驱盐、铂前驱盐、可选金属前驱盐、三氯化铁和六羧基钨的质量比为100∶100∶8∶10∶3-52.5∶1.35-8.1∶50。
本发明的另一技术方案如下:
一种电催化材料,其原料包括上述制备方法制得的超薄多金属纳米片堆叠组装材料。
本发明的再一技术方案如下:
上述制备方法制得的超薄多金属纳米片堆叠组装材料在制备电催化材料中的应用。
本发明的有益效果是:本发明通过一步法制备得到超薄多金属纳米片堆叠组装材料,其产品能够用于小分子燃料的电催化反应中。
附图说明
图1为本发明实施例1制得的PdPtRu三金属纳米片堆叠组装材料的(A)低倍透射电子显微镜(TEM)图片及(B)高倍透射电子显微镜(HRTEM)图片。
图2为本发明实施例制得的PdPtRu三金属纳米片堆叠组装材料能谱分析面扫描图,其中(A)Pd,(B)Pt,(C)Ru,(D)Pd+Pt+Ru。
图3为本发明实施例制得的PdPtRu三金属纳米片堆叠组装材料的(A)X射线粉末衍射(XRD)图片及(B)扫描电子显微镜-能谱分析(SEM-EDS)图片;
图4为本发明实施例2制得的PdPtNi三金属纳米片堆叠组装材料(A,B)的低倍透射电子显微镜(TEM)图片;
图5为本发明实施例3制得的PdPtRh三金属纳米片堆叠组装材料(A,B)的低倍透射电子显微镜(TEM)图片;
图6为本发明实施例4制得的PdPtIr三金属纳米片堆叠组装材料(A,B)低倍透射电子显微镜(TEM)图片。
图7四金属纳米片堆叠组装材料的低倍透射电子显微镜(TEM)图片,其中,(A)PdPtRuRh,(B)PdPtRuNi,(C)PdPtRhNi。
图8三金属PdPtRu纳米片堆叠组装结构和商业化Pt/C催化剂在碱性条件下对乙醇的电催化氧化性能比较图片。
具体实施方式
以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述。
实施例1:
在25mL聚四氟乙烯反应釜内胆中,加入100mg的十六烷基三甲基氯化铵、100mg的聚乙烯吡咯烷酮、8mg的乙酰丙酮钯、10mg的乙酰丙酮铂、3-13mg的三氯化钌、1.35-8.1mg的三氯化铁、50mg的六羰基钨和12mL的无水乙醇。室温下以600rpm的转速搅拌30min,放烘箱里,从30℃升温至180℃(升温速率:5℃/min),并保持180℃30-90min,然后自然冷却至室温,最后用乙醇清洗数次并保存在乙醇备用,即得超薄PdPtRu三金属纳米片堆叠组装材料。
该超薄PdPtRu三金属纳米片堆叠组装材料经TEM、HRTEM、SEM-EDS等现代纳米测试分析技术对其形貌、成分、微结构进行系统的研究。TEM、HRTEM(图1A、B)表征为二维纳米片堆叠组装结构;能谱分析面扫描图(EDS-mapping)(图2A、B、C、D)表征纳米片堆叠组装结构为PdPtRu合金,其中Pd的信号最强,Pt信号强度次之,Ru含量最少;XRD谱图表征PdPtRu三金属纳米片堆叠组装材料为合金结构;SEM-EDS表征超枝状纳米晶Pd、Pt、Ru的含量,本实施例制得的超薄PdPtRu三金属纳米片堆叠组装材料和商业化Pt/C催化剂在碱性条件下对乙醇的电催化氧化性能比较结果如图8所示。
实施例2:
在25mL聚四氟乙烯反应釜内胆中,加入100mg的十六烷基三甲基氯化铵、100mg的聚乙烯吡咯烷酮、8mg的乙酰丙酮钯、10mg的乙酰丙酮铂、8mg的无水氯化镍、1.35-8.1mg的三氯化铁、50mg的六羰基钨和12mL的无水乙醇。室温下以600rpm的转速搅拌30min,放烘箱里,从30℃升温至180℃(升温速率:5℃/min),并保持180℃30-90min,然后自然冷却至室温,最后用乙醇清洗数次并保存在乙醇中备用,即得超薄PdPtRh三金属纳米片堆叠组装材料。
TEM表征如图4A、B,三金属PdPtNi纳米晶为二维六角环组装结构。
实施例3:
在25mL聚四氟乙烯反应釜内胆中,加入100mg的十六烷基三甲基氯化铵、100mg的聚乙烯吡咯烷酮、8mg的乙酰丙酮钯、10mg的乙酰丙酮铂、13mg的三氯化铑、1.35-8.1mg的三氯化铁、50mg的六羰基钨和12mL的无水乙醇。室温下以600rpm的转速搅拌30min,放烘箱里,从30℃升温至180℃(升温速率:5℃/min),并保持180℃30-90min,然后自然冷却至室温,最后用乙醇清洗数次并保存在乙醇中备用,即得超薄PdPtRh三金属纳米片堆叠组装材料。
TEM表征如图5A、B,三金属PdPtRh纳米晶为六角片组装结构。
实施例4:
在25mL聚四氟乙烯反应釜内胆中,加入100mg的十六烷基三甲基氯化铵、100mg的聚乙烯吡咯烷酮、8mg的乙酰丙酮钯、10mg的乙酰丙酮铂、18.5mg的氯化铱、1.35-8.1mg的三氯化铁、50mg的六羰基钨和12mL的无水乙醇。室温下以600rpm的转速搅拌30min,放烘箱里,从30℃升温至180℃(升温速率:5℃/min),并保持180℃30-90min,然后自然冷却至室温,最后用乙醇清洗数次并保存在乙醇中备用,即得超薄PdPtIr三金属纳米片堆叠组装材料。
TEM表征如图6A、B,三金属PdPtIr纳米晶为六角片组装结构。
实施例5:
在25mL聚四氟乙烯反应釜内胆中,加入100mg的十六烷基三甲基氯化铵,100mg的聚乙烯吡咯烷酮、8mg的乙酰丙酮钯、10mg的乙酰丙酮铂、3-13mg的三氯化钌、8mg的无水氯化镍/13mg的三氯化铑/18.5mg的氯化铱、1.35-8.1mg的三氯化铁、50mg的六羰基钨和12mL的无水乙醇。室温下以600rpm的转速搅拌30min,放烘箱里,从30℃升温至180℃(升温速率:5℃/min),并保持180℃ 30-90min,然后自然冷却至室温,最后用乙醇清洗数次并保存在乙醇中备用,即得超薄PdPtRuRh/PdPtRuRh/PdPtRuRh四金属纳米片堆叠组装材料
TEM表征如图7,四金属(A)PdPtRuRh,(B)PdPtRuRh,(C)PdPtRuRh纳米晶为六角片组装结构。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (6)

1.一种超薄多金属纳米片堆叠组装材料的制备方法,其特征在于:包括如下步骤:
(1)将十六烷基三甲基氯化铵、聚乙烯吡咯烷酮、钯前驱盐、铂前驱盐、可选金属前驱盐、三氯化铁和六羰基钨用乙醇溶解并搅拌混合均匀;
(2)将步骤(1)所得的物料由室温升至175-185 ℃,恒温反应30-90min,然后冷却至室温;
(3)将步骤(2)所得的物料用乙醇充分洗涤后,获得所述超薄多金属纳米片堆叠组装材料;
其中,钯前驱盐为乙酰丙酮钯,所述铂前驱盐为乙酰丙酮铂,可选金属前驱盐为三氯化钌、无水氯化镍、三氯化铑和氯化铱中的至少一种。
2.如权利要求1所述的制备方法,其特征在于:所述步骤(2)为:将步骤(1)所得的物料由室温升至180 ℃,恒温反应30-90min,然后冷却至室温。
3.如权利要求1或2所述的制备方法,其特征在于:所述十六烷基三甲基氯化铵、聚乙烯吡咯烷酮、钯前驱盐、铂前驱盐、可选金属前驱盐、三氯化铁和六羰基钨的质量比为90-110:90-110:7-9:8-12:3-55:1.2-8.5:45-55。
4.如权利要求3所述的制备方法,其特征在于:所述十六烷基三甲基氯化铵、聚乙烯吡咯烷酮、钯前驱盐、铂前驱盐、可选金属前驱盐、三氯化铁和六羰基钨的质量比为100:100:8:10:3-52.5:1.35-8.1:50。
5.一种电催化材料,其特征在于:其原料包括权利要求1至4中任一权利要求所述的制备方法制得的超薄多金属纳米片堆叠组装材料。
6.权利要求1至4中任一权利要求所述的制备方法制得的超薄多金属纳米片堆叠组装材料在制备电催化材料中的应用。
CN201910026237.XA 2019-01-11 2019-01-11 一种超薄多金属纳米片堆叠组装材料的制备方法及其应用 Active CN109603800B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910026237.XA CN109603800B (zh) 2019-01-11 2019-01-11 一种超薄多金属纳米片堆叠组装材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910026237.XA CN109603800B (zh) 2019-01-11 2019-01-11 一种超薄多金属纳米片堆叠组装材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN109603800A CN109603800A (zh) 2019-04-12
CN109603800B true CN109603800B (zh) 2022-03-04

Family

ID=66016984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910026237.XA Active CN109603800B (zh) 2019-01-11 2019-01-11 一种超薄多金属纳米片堆叠组装材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN109603800B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114669753B (zh) * 2022-01-20 2023-11-10 华东理工大学 一种表面富含缺陷的超薄钯纳米片及其制备方法
CN114875435B (zh) * 2022-04-06 2023-10-24 杭州师范大学 树枝状纳米钯催化剂的制备方法及在电化学半加氢中应用
CN114990573A (zh) * 2022-06-06 2022-09-02 济南大学 一种自组装二维Ir金属烯电催化剂的制备方法
CN115852396A (zh) * 2022-11-17 2023-03-28 杭州师范大学 一种PdMoFe超薄纳米片合金催化剂及其制备和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817090A (zh) * 2010-04-23 2010-09-01 厦门大学 一种钯纳米片的合成方法
CN108435201A (zh) * 2018-03-09 2018-08-24 华侨大学 一种多枝状Pd@PtNi核壳纳米催化剂的合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817090A (zh) * 2010-04-23 2010-09-01 厦门大学 一种钯纳米片的合成方法
CN108435201A (zh) * 2018-03-09 2018-08-24 华侨大学 一种多枝状Pd@PtNi核壳纳米催化剂的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
2D Porous Carbons prepared from Layered Organic–Inorganic Hybrids and their Use as Oxygen-Reduction Electrocatalysts;Shuang Li et al.,;《Adv. Mater.》;20171231;第1-9页 *
One-pot synthesis of Pd@Pt3Ni core–shell nanobranches with ultrathin Pt3Ni{111} skins for efficient ethanol lectrooxidation;Yuanyuan Wang et al.,;《Chem. Commun.》;20180425;第 5185-5188页 *

Also Published As

Publication number Publication date
CN109603800A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN109603800B (zh) 一种超薄多金属纳米片堆叠组装材料的制备方法及其应用
Xu et al. Race on engineering noble metal single-atom electrocatalysts for water splitting
CN109014237B (zh) 一种铂-非贵金属合金纳米线及其水相合成方法和应用
Han et al. Platinum-rhodium alloyed dendritic nanoassemblies: An all-pH efficient and stable electrocatalyst for hydrogen evolution reaction
Luo et al. Hydrothermal synthesis of PdAu nanocatalysts with variable atom ratio for methanol oxidation
Deivaraj et al. Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications–a comparative study
Jiang et al. 1-Naphthol induced Pt 3 Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells
Jiang et al. Facile solvothermal synthesis of monodisperse Pt2. 6Co1 nanoflowers with enhanced electrocatalytic activity towards oxygen reduction and hydrogen evolution reactions
Zhao et al. One-dimensional rhodium-nickel alloy assemblies with nanodendrite subunits for alkaline methanol oxidation
Wang et al. Bimetallic PdAu alloyed nanowires: Rapid synthesis via oriented attachment growth and their high electrocatalytic activity for methanol oxidation reaction
Wang et al. Ultrathin PtMo-CeOx hybrid nanowire assemblies as high-performance multifunctional catalysts for methanol oxidation, oxygen reduction and hydrogen oxidation
Zhang et al. Unconventional phase engineering of fuel-cell electrocatalysts
Shang et al. Three-dimensional palladium-rhodium nanosheet assemblies: Highly efficient catalysts for methanol electrooxidation
CN111916771B (zh) 一种高活性、高稳定性PtNi纳米合金催化剂及其制备方法、应用
CN110576189B (zh) 一种铑铂核壳双金属纳米枝的制备方法及应用
Wang et al. AgPdCo hollow nanospheres electrocatalyst with high activity and stability toward the formate electrooxidation
Sui et al. Facile synthesis of Ternary Au@ PdNi core-shell nanoparticles with enhanced electrocatalytic performance for ethanol oxidation reaction
Li et al. Assembly of trimetallic palladium-silver-copper nanosheets for efficient C2 alcohol electrooxidation
Sun et al. PtRhCu ternary alloy nanodendrites with enhanced catalytic activity and durability toward methanol electro-oxidation
Sun et al. Ultrathin one-dimensional platinum-cobalt nanowires as efficient catalysts for the glycerol oxidation reaction
Wang et al. One-pot synthesis of PdPtAg porous nanospheres with enhanced electrocatalytic activity toward polyalcohol electrooxidation
Xie et al. A general strategy for synthesizing hierarchical architectures assembled by dendritic Pt-based nanoalloys for electrochemical hydrogen evolution
Cao et al. Impact of CuFe bimetallic core on the electrocatalytic activity and stability of Pt shell for oxygen reduction reaction
Su et al. The controlled NiO nanoparticles for dynamic ion exchange formation of unique NiS/CdS composite for efficient photocatalytic H2 production
CN112599797B (zh) 一种高活性燃料电池用双金属PtSn/C催化剂及其制备与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant