CN109591391B - 一种低反射高屏蔽梯度结构泡沫材料 - Google Patents

一种低反射高屏蔽梯度结构泡沫材料 Download PDF

Info

Publication number
CN109591391B
CN109591391B CN201811325670.5A CN201811325670A CN109591391B CN 109591391 B CN109591391 B CN 109591391B CN 201811325670 A CN201811325670 A CN 201811325670A CN 109591391 B CN109591391 B CN 109591391B
Authority
CN
China
Prior art keywords
foam
graphene
loaded
foam material
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811325670.5A
Other languages
English (en)
Other versions
CN109591391A (zh
Inventor
杨雅琦
许亚东
盛安
刘亚青
段宏基
赵贵哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201811325670.5A priority Critical patent/CN109591391B/zh
Publication of CN109591391A publication Critical patent/CN109591391A/zh
Application granted granted Critical
Publication of CN109591391B publication Critical patent/CN109591391B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/046Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/046Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/009Use of pretreated compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/04Inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及功能复合材料领域,具体为一种低反射高屏蔽梯度结构泡沫材料及其制备方法。本发明通过制备不同填料的泡沫材料,并通过梯度结构,实现电磁屏蔽泡沫材料的低反射高屏蔽功能。通过液氮冷冻干燥法分别制备以冰晶为模板的具有取向泡孔结构的石墨烯负载四氧化三铁纳米粒子泡沫,碳纳米管泡沫,通过共混浇注烘干制备四角针状氧化锌晶须纳米粒子负载银薄膜,最后通过胶粘剂将三者复合得到具有梯度层状结构的电磁屏蔽泡沫。本发明能够在有效减少电磁波反射的情况下,显著提高复合泡沫材料的电导率和电磁屏蔽性能,实现复合泡沫材料高导电、低反射、高电磁屏蔽效能的目标。

Description

一种低反射高屏蔽梯度结构泡沫材料
技术领域
本发明涉及功能复合材料领域,具体为一种具有低反射高屏蔽特性的梯度结构泡沫材料。
背景技术
随着电子工业的快速发展,电磁辐射也日益严重,进而造成一系列的负面影响(设备间电磁干扰,信息安全,人体危害)。因此,探索新型高效电磁屏蔽材料闲的至关重要。
目前研究表明,通过提高屏蔽材料的电导率是实现高屏蔽性能屏蔽材料的有效策略。例如:2D过渡金属碳化物(MXenes)已被研究者作为一种有前景的石墨烯替代品,用于实现屏蔽材料卓越的电磁干扰屏蔽效能。因为其具有超高电导率(5.8×104S/m),使得相应的复合材料屏蔽效能在X波段可以超过70dB(F.Shahzad,et al.,Science 353(2016)1137-1140.)。使用本征导电聚合物是另一个制备高效电磁屏蔽材料的有效途径。最近的研究表明,PEDOT:PSS/水性聚氨酯复合膜具有优异的导电性能(7.7×103S/m),同时电磁屏蔽效能能够达到62dB(P.C.Li,et al.,J.Mater.Chem.C 4(2016)6525-6532.)。然而,构建具有高导电性的导电网络并不是设计理想屏蔽材料的完美解决方案,高电导率也意味着电磁波与屏蔽材料之间阻抗不匹配情况愈严重,进而会大量反射电磁波造成二次污染。因此制备具有低反射特征高屏蔽效能的屏蔽材料显得尤为重要。
发明内容
本发明旨在提供一种具有低反射高屏蔽特性的梯度结构电磁屏蔽泡沫。
本发明是通过以下技术方案实现的:一种低反射高屏蔽梯度结构泡沫材料,包括位于顶层的一层石墨烯负载四氧化三铁纳米粒子泡沫层,位于中间的至少一层碳纳米管泡沫层,位于底层的一层四角针状氧化锌晶须纳米粒子负载银薄膜层;
所述石墨烯负载四氧化三铁纳米粒子泡沫层是石墨烯负载四氧化三铁纳米粒子与基体共混后浇注到模具中,通过液氮冷冻、真空冷冻干燥制备获得的;
所述碳纳米管泡沫层是碳纳米管与基体共混后浇注到模具中,通过液氮冷冻、真空冷冻干燥制备获得的;
所述四角针状氧化锌晶须纳米粒子负载银薄膜层是由四角针状氧化锌晶须纳米粒子负载银与基体共混后浇注烘干获得的。
在本发明中,石墨烯负载四氧化三铁纳米粒子泡沫作为复合泡沫的顶层对入射电磁波提供较强的磁损耗,同时减少因阻抗不匹配引起的电磁波反射;中间由多层碳纳米管泡沫组成,对入射电磁波有较强的电损耗;底层为四角针状氧化锌晶须纳米粒子负载银薄膜,高效的导电填料形成致密的屏蔽层,赋予材料优异的电磁屏蔽性能。其中,通过液氮冷冻、真空冷冻干燥后,石墨烯负载四氧化三铁纳米粒子泡沫层和碳纳米管泡沫层为以冰晶为模板的取向泡孔结构,参见图2。在本发明中,优选的,所述石墨烯负载四氧化三铁纳米粒子泡沫层和碳纳米管泡沫层的厚度为2mm,四角针状氧化锌晶须纳米粒子负载银薄膜层的厚度为0.15mm。
作为本发明技术方案的进一步改进,位于中间的各碳纳米管泡沫层中碳纳米管的含量从上至下逐渐增大,这样能够获得具有梯度层状结构的电磁屏蔽泡沫。
作为本发明技术方案的进一步改进,泡沫材料的相邻层之间是采用基体作为胶黏剂粘结在一起的。所述相邻层不仅仅指的是顶层泡沫层、中间至少一层泡沫层以及底层薄膜层之间,还包括各个泡沫层之间。各个泡沫层也是通过基体粘结复合在一起的。
作为本发明技术方案的进一步改进,石墨烯负载四氧化三铁纳米粒子在石墨烯负载四氧化三铁纳米粒子泡沫层中的含量为1wt%~40wt%,碳纳米管在碳纳米管泡沫层中的含量为1wt%~50wt%,四角针状氧化锌晶须纳米粒子负载银在四角针状氧化锌晶须纳米粒子负载银薄膜层中的含量为10wt%~50wt%。
作为本发明技术方案的进一步改进,所述基体选自水性聚氨酯、聚二甲基硅氧烷、硅橡胶、天然橡胶。优选的采用水性聚氨酯。
作为本发明技术方案的进一步改进,石墨烯负载四氧化三铁纳米粒子的电导率为2×10-2S/m,饱和磁化强度为39.7emu/g;碳纳米管的电导率为8.6×103S/m;四角针状氧化锌晶须纳米粒子负载银的电导率为4.9×104S/m。
作为本发明技术方案的进一步改进,所述泡沫材料的最低平均反射损耗达到-17.4dB,电磁屏蔽效能最高达到90dB,平均反射率低至3%。
本发明通过制备不同填料的泡沫材料,并进行梯度排列,来实现电磁屏蔽材料的低反射高屏蔽特性。首先将石墨烯负载四氧化三铁纳米粒子、碳纳米管与基体分别共混后浇注到模具中,通过液氮冷冻,真空冷冻干燥分别制备石墨烯负载四氧化三铁纳米粒子泡沫和碳纳米管泡沫;将四角针状氧化锌晶须纳米粒子和基体共混后,浇注,烘干,得到相应膜材料;最终,以水性聚氨酯溶液为胶粘剂将三者复合得到具有层状梯度结构的电磁屏蔽泡沫。其中,石墨烯负载四氧化三铁纳米粒子/基体泡沫作为复合泡沫的顶层,对入射电磁波有较强的磁损耗,同时减少因阻抗不匹配引起的电磁波反射;中间由多层碳纳米管/基体泡沫组成,对入射电磁波有较强的电损耗;底部为四角针状氧化锌晶须纳米粒子负载银/基体薄膜,高效的导电填料形成致密的屏蔽层,赋予材料优异的电磁屏蔽性能。
本发明所述的复合泡沫材料,能够在有效减少电磁波反射的情况下,显著提高复合泡沫材料的电导率和电磁屏蔽性能,实现复合泡沫材料高导电、低反射、高电磁屏蔽性能的目标;同时,通过改变填料的加入量,可以调节复合泡沫材料的电导率以及电磁屏蔽性能,得到电导率和电磁屏蔽性能稳定、重现性好的电磁屏蔽复合材料。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为所制备水性聚氨酯/石墨烯负载四氧化三铁纳米粒子/碳纳米管/四角针状氧化锌晶须纳米粒子负载银电磁屏蔽复合泡沫材料的结构示意图。从上往下分别是石墨烯负载四氧化三铁纳米粒子泡沫层,3层不同填料含量的碳纳米管泡沫层,四角针状氧化锌晶须纳米粒子负载银薄膜层。
图2为所制备的四角针状氧化锌晶须纳米粒子负载银薄膜层(a-c)和碳纳米管泡沫层(d-f)的扫描电镜图片。其中a-c中四角针状氧化锌晶须纳米粒子负载银粒子含量为30wt%,d-f中碳纳米管的含量为20wt%。从图中可以看出,四角针状氧化锌晶须纳米粒子负载银薄膜层呈现致密的导电层,有利于为复合材料提供高的屏蔽效能,碳纳米管泡沫呈现出取向泡孔结构,有利于电磁波的入射,减少电磁波的反射。
图3为实施例一、二、三和四所制备的水性聚氨酯/石墨烯负载四氧化三铁纳米粒子/碳纳米管/四角针状氧化锌晶须纳米粒子负载银电磁屏蔽复合泡沫材料的反射损耗测试图。从图中可以看出:不同梯度碳纳米管泡沫的反射损耗也不同,最低平均反射损耗可以达到-17.4dB。
图4为实施例三和四所制备的水性聚氨酯/石墨烯负载四氧化三铁纳米粒子/碳纳米管/四角针状氧化锌晶须纳米粒子负载银电磁屏蔽复合泡沫材料的电磁屏蔽效能图。从图(a)和(b)中可以看出,当四角针状氧化锌晶须纳米粒子负载银纳米粒子的含量相同时,复合泡沫的电磁屏蔽效能也大致相同,最低可以达到90dB,但是,从图(c)中可以看出,其反射率得到极大的降低,平均反射率低至3%。图(a)和(b)中,SEA和SET的数值非常接近,因此图中两条曲线几乎重合。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
一种低反射高屏蔽梯度结构泡沫材料,包括位于顶层的一层石墨烯负载四氧化三铁纳米粒子泡沫层,位于中间的至少一层碳纳米管泡沫层,位于底层的一层四角针状氧化锌晶须纳米粒子负载银薄膜层;所述石墨烯负载四氧化三铁纳米粒子泡沫层是石墨烯负载四氧化三铁纳米粒子与基体共混后浇注到模具中,通过液氮冷冻、真空冷冻干燥制备获得的;所述碳纳米管泡沫层是碳纳米管与基体共混后浇注到模具中,通过液氮冷冻、真空冷冻干燥制备获得的;所述四角针状氧化锌晶须纳米粒子负载银薄膜层是由四角针状氧化锌晶须纳米粒子负载银与基体共混后浇注烘干获得的。
在本发明中,所述碳纳米管泡沫层的层数至少为一层,优选为本发明实施例中的三层。并且位于中间的各碳纳米管泡沫层中碳纳米管的含量从上至下逐渐增大,这样能够获得具有梯度层状结构的电磁屏蔽泡沫。具体实施时,泡沫材料的相邻层之间是采用基体作为胶黏剂粘结在一起的。
优选的,石墨烯负载四氧化三铁纳米粒子在石墨烯负载四氧化三铁纳米粒子泡沫层中的含量为1wt%~40wt%,碳纳米管在碳纳米管泡沫层中的含量为1wt%~50wt%,四角针状氧化锌晶须纳米粒子负载银在四角针状氧化锌晶须纳米粒子负载银薄膜层中的含量为10wt%~50wt%。具体实施时,石墨烯负载四氧化三铁纳米粒子在石墨烯负载四氧化三铁纳米粒子泡沫层中的含量可以为1wt%,也可以为40wt%,更优选的为10wt%~20wt%;碳纳米管在碳纳米管泡沫层中的含量可以为1wt%,也可以为50wt%,更优选的为5wt%~20wt%;四角针状氧化锌晶须纳米粒子负载银在四角针状氧化锌晶须纳米粒子负载银薄膜层中的含量可以为10wt%,也可以为50wt%,更优选的为30wt%。
具体的,所述基体选自水性聚氨酯、聚二甲基硅氧烷、硅橡胶、天然橡胶。优选的采用水性聚氨酯。优选的,石墨烯负载四氧化三铁纳米粒子的电导率为2×10-2S/m,饱和磁化强度为39.7emu/g;碳纳米管的电导率为8.6×103S/m;四角针状氧化锌晶须纳米粒子负载银的电导率为4.9×104S/m。更进一步优选的,所述泡沫材料的最低平均反射损耗达到-17.4dB,电磁屏蔽效能最高达到90dB,平均反射率低至3%。
下面结合附图对本发明的技术方案进行详细的说明。
实施例一:水性聚氨酯/石墨烯负载四氧化三铁纳米粒子/碳纳米管/四角针状氧化锌晶须纳米粒子负载银电磁屏蔽复合泡沫材料的制备方法,包括以下步骤:
(1)石墨烯负载四氧化三铁纳米粒子的制备,包括:
称取20ml氧化石墨烯分散液(20mg氧化石墨烯),超声分散30min;将90mg三氯化铁和60mg硫酸亚铁溶于水中,加入到氧化石墨烯分散液中;将混合液置于50℃的水浴中,逐滴加入2ml氨水,反应2h,加入2ml水合肼,反应8h,得到石墨烯负载四氧化三铁纳米粒子。
(2)四角针状氧化锌晶须负载银纳米粒子是通过化学沉积方法制备得到的,其中银含量为50wt%,纳米粒子电导率为4.9×104S/m。
(3)水性聚氨酯/石墨烯负载四氧化三铁纳米粒子/碳纳米管/四角针状氧化锌晶须纳米粒子负载银电磁屏蔽复合泡沫材料的制备,包括:
将1.5g石墨烯负载四氧化三铁纳米粒子和17.2g水性聚氨酯(固含量为35wt%)进行共混,超声分散30min,浇注到模具中,置于液氮中进行冷冻定型,通过真空冷冻干燥的方法获得石墨烯负载四氧化三铁/水性聚氨酯泡沫层。
分别将0.7g,1.06g,1.5g碳纳米管和17.2g水性聚氨酯(固含量为35wt%)进行共混,超声分散30min,依次浇注到模具中,各碳纳米管泡沫层中碳纳米管的含量从上至下逐渐增大,置于液氮中进行冷冻定型,通过真空冷冻干燥的方法获得3种不同填料含量的碳纳米管/水性聚氨酯泡沫层。
将0.44g四角针状氧化锌晶须纳米粒子负载银和3g水性聚氨酯(固含量为35wt%)共混,超声分散30min,浇注到模具中,60℃的真空烘箱中干燥12h,得到四角针状氧化锌晶须纳米粒子负载银/水性聚氨酯薄膜层。
将所得的泡沫以及薄膜材料按制备顺序通过水性聚氨酯进行粘接最终获得水性聚氨酯/石墨烯负载四氧化三铁纳米粒子/碳纳米管/四角针状氧化锌晶须纳米粒子负载银电磁屏蔽复合泡沫材料。
实施例二:水性聚氨酯/石墨烯负载四氧化三铁纳米粒子/碳纳米管/四角针状氧化锌晶须纳米粒子负载银电磁屏蔽复合泡沫材料的制备方法,包括以下步骤:
(1)石墨烯负载四氧化三铁纳米粒子的制备,包括:
称取20ml氧化石墨烯分散液(20mg氧化石墨烯),超声分散30min;将90mg三氯化铁和60mg硫酸亚铁溶于水中,加入到氧化石墨烯分散液中;将混合液置于50℃的水浴中,逐滴加入2ml氨水,反应2h,加入2ml水合肼,反应8h,得到石墨烯负载四氧化三铁纳米粒子。
(2)四角针状氧化锌晶须负载银纳米粒子是通过化学沉积方法制备得到的,其中银含量为50wt%,纳米粒子电导率为4.9×104S/m。
(3)水性聚氨酯/石墨烯负载四氧化三铁纳米粒子/碳纳米管/四角针状氧化锌晶须纳米粒子负载银电磁屏蔽复合泡沫材料的制备,包括:
将0.7g石墨烯负载四氧化三铁纳米粒子和17.2g水性聚氨酯(固含量为35wt%)进行共混,超声分散30min,浇注到模具中,置于液氮中进行冷冻定型,通过真空冷冻干燥的方法获得石墨烯负载四氧化三铁/水性聚氨酯泡沫层。
分别将0.32g,1.06g,1.5g碳纳米管和17.2g水性聚氨酯(固含量为35wt%)进行共混,超声分散30min,依次浇注到模具中,各碳纳米管泡沫层中碳纳米管的含量从上至下逐渐增大,置于液氮中进行冷冻定型,通过真空冷冻干燥的方法获得3种不同填料含量的碳纳米管/水性聚氨酯泡沫层。
将0.44g四角针状氧化锌晶须纳米粒子负载银和3g水性聚氨酯(固含量为35wt%)共混,超声分散30min,浇注到模具中,60℃的真空烘箱中干燥12h,得到四角针状氧化锌晶须纳米粒子负载银/水性聚氨酯薄膜层。
将所得的泡沫以及薄膜材料按制备顺序通过水性聚氨酯进行粘接最终获得水性聚氨酯/石墨烯负载四氧化三铁纳米粒子/碳纳米管/四角针状氧化锌晶须纳米粒子负载银电磁屏蔽复合泡沫材料。
实施例三:水性聚氨酯/石墨烯负载四氧化三铁纳米粒子/碳纳米管/四角针状氧化锌晶须纳米粒子负载银电磁屏蔽复合泡沫材料的制备方法,包括以下步骤:
(1)石墨烯负载四氧化三铁纳米粒子的制备,包括:
称取20ml氧化石墨烯分散液(20mg氧化石墨烯),超声分散30min;将90mg三氯化铁和60mg硫酸亚铁溶于水中,加入到氧化石墨烯分散液中;将混合液置于50℃的水浴中,逐滴加入2ml氨水,反应2h,加入2ml水合肼,反应8h,得到石墨烯负载四氧化三铁纳米粒子。
(2)四角针状氧化锌晶须负载银纳米粒子是通过化学沉积方法制备得到的,其中银含量为50wt%,纳米粒子电导率为4.9×104S/m。
(3)水性聚氨酯/石墨烯负载四氧化三铁纳米粒子/碳纳米管/四角针状氧化锌晶须纳米粒子负载银电磁屏蔽复合泡沫材料的制备,包括:
将1.5g石墨烯负载四氧化三铁纳米粒子和17.2g水性聚氨酯(固含量为35wt%)进行共混,超声分散30min,浇注到模具中,置于液氮中进行冷冻定型,通过真空冷冻干燥的方法获得石墨烯负载四氧化三铁/水性聚氨酯泡沫层。
分别将0.32g,0.7g,1.5g碳纳米管和17.2g水性聚氨酯(固含量为35wt%)进行共混,超声分散30min,依次浇注到模具中,各碳纳米管泡沫层中碳纳米管的含量从上至下逐渐增大,置于液氮中进行冷冻定型,通过真空冷冻干燥的方法获得3种不同填料含量的碳纳米管/水性聚氨酯泡沫层。
将0.44g四角针状氧化锌晶须纳米粒子负载银和3g水性聚氨酯(固含量为35wt%)共混,超声分散30min,浇注到模具中,60℃的真空烘箱中干燥12h,得到四角针状氧化锌晶须纳米粒子负载银/水性聚氨酯薄膜层。
将所得的泡沫以及薄膜材料按制备顺序通过水性聚氨酯进行粘接最终获得水性聚氨酯/石墨烯负载四氧化三铁纳米粒子/碳纳米管/四角针状氧化锌晶须纳米粒子负载银电磁屏蔽复合泡沫材料。
实施例四:水性聚氨酯/石墨烯负载四氧化三铁纳米粒子/碳纳米管/四角针状氧化锌晶须纳米粒子负载银电磁屏蔽复合泡沫材料的制备方法,包括以下步骤:
(1)石墨烯负载四氧化三铁纳米粒子的制备,包括:
称取20ml氧化石墨烯分散液(20mg氧化石墨烯),超声分散30min;将90mg三氯化铁和60mg硫酸亚铁溶于水中,加入到氧化石墨烯分散液中;将混合液置于50℃的水浴中,逐滴加入2ml氨水,反应2h,加入2ml水合肼,反应8h,得到石墨烯负载四氧化三铁纳米粒子。
(2)四角针状氧化锌晶须负载银纳米粒子是通过化学沉积方法制备得到的,其中银含量为50wt%,纳米粒子电导率为4.9×104S/m。
(3)水性聚氨酯/石墨烯负载四氧化三铁纳米粒子/碳纳米管/四角针状氧化锌晶须纳米粒子负载银电磁屏蔽复合泡沫材料的制备,包括:
将0.7g石墨烯负载四氧化三铁纳米粒子和17.2g水性聚氨酯(固含量为35wt%)进行共混,超声分散30min,浇注到模具中,置于液氮中进行冷冻定型,通过真空冷冻干燥的方法获得石墨烯负载四氧化三铁/水性聚氨酯泡沫层。
分别将0.32g,0.53g,1.5g碳纳米管和17.2g水性聚氨酯(固含量为35wt%)进行共混,超声分散30min,依次浇注到模具中,各碳纳米管泡沫层中碳纳米管的含量从上至下逐渐增大,置于液氮中进行冷冻定型,通过真空冷冻干燥的方法获得3种不同填料含量的碳纳米管/水性聚氨酯泡沫层。
将0.44g四角针状氧化锌晶须纳米粒子负载银和3g水性聚氨酯(固含量为35wt%)共混,超声分散30min,浇注到模具中,60℃的真空烘箱中干燥12h,得到四角针状氧化锌晶须纳米粒子负载银/水性聚氨酯薄膜层。
将所得的泡沫以及薄膜材料按制备顺序通过水性聚氨酯进行粘接最终获得水性聚氨酯/石墨烯负载四氧化三铁纳米粒子/碳纳米管/四角针状氧化锌晶须纳米粒子负载银电磁屏蔽复合泡沫材料。
表1实施例一至实施例四所制泡沫的电磁屏蔽性能
Figure BDA0001858689130000051
表1中:对比例一的泡沫制备与实施例三的步骤相同,但未添加石墨烯负载四氧化三铁纳米粒子和碳纳米管;对比例二的泡沫制备与实施例二的步骤相同,但未添加石墨烯负载四氧化三铁纳米粒子;对比例三的泡沫制备与实施例二的步骤相同,但未添加碳纳米管。对比例四的泡沫制备与实施例三的步骤相同,但未添加填料。
表2实施例三中单层泡沫或薄膜的电磁屏蔽性能
Figure BDA0001858689130000052
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (7)

1.一种低反射高屏蔽梯度结构泡沫材料,其特征在于,包括位于顶层的一层石墨烯负载四氧化三铁纳米粒子泡沫层,位于中间的至少一层碳纳米管泡沫层,位于底层的一层四角针状氧化锌晶须纳米粒子负载银薄膜层;
所述石墨烯负载四氧化三铁纳米粒子泡沫层是石墨烯负载四氧化三铁纳米粒子与基体共混后浇注到模具中,通过液氮冷冻、真空冷冻干燥制备获得的;
所述碳纳米管泡沫层是碳纳米管与基体共混后浇注到模具中,通过液氮冷冻、真空冷冻干燥制备获得的;
所述四角针状氧化锌晶须纳米粒子负载银薄膜层是由四角针状氧化锌晶须纳米粒子负载银与基体共混后浇注烘干获得的。
2.根据权利要求1所述的一种低反射高屏蔽梯度结构泡沫材料,其特征在于,位于中间的各碳纳米管泡沫层中碳纳米管的含量从上至下逐渐增大。
3.根据权利要求2所述的一种低反射高屏蔽梯度结构泡沫材料,其特征在于,泡沫材料的相邻层之间是采用基体作为胶黏剂粘结在一起的。
4.根据权利要求3所述的一种低反射高屏蔽梯度结构泡沫材料,其特征在于,石墨烯负载四氧化三铁纳米粒子在石墨烯负载四氧化三铁纳米粒子泡沫层中的含量为1 wt%~40wt%,碳纳米管在碳纳米管泡沫层中的含量为1 wt%~50 wt%,四角针状氧化锌晶须纳米粒子负载银在四角针状氧化锌晶须纳米粒子负载银薄膜层中的含量为10 wt%~50 wt%。
5.根据权利要求4所述的一种低反射高屏蔽梯度结构泡沫材料,其特征在于,所述基体选自水性聚氨酯、聚二甲基硅氧烷、硅橡胶、天然橡胶。
6.根据权利要求1或2或3或4或5所述的一种低反射高屏蔽梯度结构泡沫材料,其特征在于,石墨烯负载四氧化三铁纳米粒子的电导率为2×10-2S/m,饱和磁化强度为39.7emu/g;碳纳米管的电导率为8.6×103S/m;四角针状氧化锌晶须纳米粒子负载银的电导率为4.9×104 S/m。
7.根据权利要求6所述的一种低反射高屏蔽梯度结构泡沫材料,其特征在于,所述泡沫材料的最低平均反射损耗达到-17.4 dB,电磁屏蔽效能最高达到90 dB,平均反射率低至3%。
CN201811325670.5A 2018-11-08 2018-11-08 一种低反射高屏蔽梯度结构泡沫材料 Active CN109591391B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811325670.5A CN109591391B (zh) 2018-11-08 2018-11-08 一种低反射高屏蔽梯度结构泡沫材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811325670.5A CN109591391B (zh) 2018-11-08 2018-11-08 一种低反射高屏蔽梯度结构泡沫材料

Publications (2)

Publication Number Publication Date
CN109591391A CN109591391A (zh) 2019-04-09
CN109591391B true CN109591391B (zh) 2020-11-27

Family

ID=65957580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811325670.5A Active CN109591391B (zh) 2018-11-08 2018-11-08 一种低反射高屏蔽梯度结构泡沫材料

Country Status (1)

Country Link
CN (1) CN109591391B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358136A (zh) * 2019-07-04 2019-10-22 武汉纺织大学 一种复合泡沫膜及其制备方法
CN112210766B (zh) * 2019-07-12 2022-11-22 中国科学院苏州纳米技术与纳米仿生研究所 具有电磁屏蔽性能的碳纳米管泡沫材料及其制备方法与应用
CN110641130A (zh) * 2019-11-06 2020-01-03 中国电子科技集团公司第三十三研究所 一种针对低频电磁波吸收的吸波泡沫的制备方法
CN111138706B (zh) * 2020-01-08 2021-08-31 四川大学 一种具有梯度填料结构的聚合物电磁屏蔽复合泡沫及其制备方法
CN111205820B (zh) * 2020-02-10 2020-12-11 大连理工大学 受金龟子甲壳螺旋结构启发的适应多种波及多功能仿生吸波超材料
CN111517831B (zh) * 2020-05-07 2022-01-28 中国科学院苏州纳米技术与纳米仿生研究所 金属-碳纳米管泡沫复合材料及其制备方法与应用
CN111660641B (zh) * 2020-06-24 2021-11-09 四川大学 一种具有多层泡孔结构的聚合物电磁屏蔽复合材料及其制备方法
CN112126197A (zh) * 2020-09-30 2020-12-25 贵州凯科特材料有限公司 一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法
CN112261859B (zh) * 2020-10-20 2023-04-21 苏州第一元素纳米技术有限公司 电磁屏蔽材料及其制备方法
CN112852010B (zh) * 2020-12-31 2022-03-11 深圳市铂易鸿电子有限公司 一种高屏蔽性复合导电海绵材料及其制备方法
CN113155329A (zh) * 2021-02-05 2021-07-23 宝峰时尚国际控股有限公司 一种压力传感器及其制备方法
CN113121982B (zh) * 2021-04-20 2022-05-31 浙江优可丽新材料有限公司 一种吸收损耗型梯度结构复合电磁屏蔽材料及其制备方法
CN115500067B (zh) * 2022-09-02 2023-08-29 苏州申赛新材料有限公司 一种低反射磁-电双功能梯度结构电磁屏蔽复合材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107627678B (zh) * 2017-09-07 2019-05-14 大连理工大学 高吸收低反射的电磁屏蔽材料及其制备方法
CN108192325B (zh) * 2017-12-22 2020-12-25 中北大学 具有梯度结构的低反射高屏蔽电磁屏蔽复合材料及其制备

Also Published As

Publication number Publication date
CN109591391A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN109591391B (zh) 一种低反射高屏蔽梯度结构泡沫材料
Lei et al. Electrically conductive gradient structure design of thermoplastic polyurethane composite foams for efficient electromagnetic interference shielding and ultra-low microwave reflectivity
Liang et al. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review
Xu et al. Flexible and conductive polyurethane composites for electromagnetic shielding and printable circuit
He et al. Electric-magnetic-dielectric synergism and Salisbury screen effect in laminated polymer composites with multiwall carbon nanotube, nickel, and antimony trioxide for enhancing electromagnetic interference shielding
Zhang et al. Thin and flexible Fe–Si–B/Ni–Cu–P metallic glass multilayer composites for efficient electromagnetic interference shielding
Yang et al. Fabrication of lightweight and flexible silicon rubber foams with ultra-efficient electromagnetic interference shielding and adjustable low reflectivity
CN105295303B (zh) 树脂、铁氧体与MXenes的复合块体材料、其制备方法与应用
Wang et al. Bird-nest-like multi-interfacial MXene@ SiCNWs@ Co/C hybrids with enhanced electromagnetic wave absorption
Liu et al. Toward the application of electromagnetic wave absorption by two-dimension materials
Chen et al. State-of-the-art synthesis strategy for nitrogen-doped carbon-based electromagnetic wave absorbers: from the perspective of nitrogen source
Long et al. Enhanced electromagnetic wave absorption performance of hematite@ carbon nanotubes/polyacrylamide hydrogel composites with good flexibility and biocompatibility
Guo et al. Robust multifunctional composite films with alternating multilayered architecture for highly efficient electromagnetic interference shielding, Joule heating and infrared stealth
Song et al. Carbon fibers embedded with aligned magnetic particles for efficient electromagnetic energy absorption and conversion
Guo et al. Flexible aramid nanofiber/Ag nanowires/graphene nanosheets composite films with sandwich structure for high-performance electromagnetic interference shielding and Joule heating
Shao et al. Microbuckling-enhanced electromagnetic-wave-absorbing capability of a stretchable Fe3O4/carbon nanotube/poly (dimethylsiloxane) composite film
Wang et al. Facile synthesis of anisotropic urchin-like Ni decorated reduced graphene oxide with enhanced impedance matching for effective electromagnetic wave absorption
Zhou et al. Boosted interfacial polarization from the multidimensional core–shell–flat heterostructure CNP@ PDA@ GO/rGO for enhanced microwave absorption
Danlée et al. Flexible multilayer combining nickel nanowires and polymer films for broadband microwave absorption
Zhang et al. Structural design and preparation of Ti 3 C 2 T x MXene/polymer composites for absorption-dominated electromagnetic interference shielding
Lei et al. A flexible metamaterial based on liquid metal patterns embedded in magnetic medium for lightweight microwave absorber
Guo et al. Durable and sustainable CoFe2O4@ MXene-silver nanowires/cellulose nanofibers composite films with controllable electric–magnetic gradient towards high-efficiency electromagnetic interference shielding and Joule heating capacity
Lu et al. Flexible Polypyrrole Nanotube–Polyethylene Glycol–Polyvinyl Alcohol Hydrogels for Enhanced Electromagnetic Shielding
Da et al. A high-performance, oxidation resistance and flexible Zn@ MXene/cellulose nanofibers electromagnetic shielding film
Wang et al. Progress in MXene-based materials for microwave absorption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant