CN109584539A - 一种高饱和度路段上下游交叉口间相位差优化方法 - Google Patents

一种高饱和度路段上下游交叉口间相位差优化方法 Download PDF

Info

Publication number
CN109584539A
CN109584539A CN201811418873.9A CN201811418873A CN109584539A CN 109584539 A CN109584539 A CN 109584539A CN 201811418873 A CN201811418873 A CN 201811418873A CN 109584539 A CN109584539 A CN 109584539A
Authority
CN
China
Prior art keywords
wave
section
phase
wagon flow
intersection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811418873.9A
Other languages
English (en)
Other versions
CN109584539B (zh
Inventor
李鑫
林晓琼
马莹莹
首艳芳
徐建闽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201811418873.9A priority Critical patent/CN109584539B/zh
Publication of CN109584539A publication Critical patent/CN109584539A/zh
Application granted granted Critical
Publication of CN109584539B publication Critical patent/CN109584539B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/081Plural intersections under common control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明涉及一种高饱和度路段上下游交叉口间相位差优化方法,该方法包括以下步骤:首先,对多股车流汇入情形下的路段排队演变进行分析,利用冲击波理论建立排队长度模型和延误模型;其次,定义排队权重用于表示不同情形下排队长度的影响程度,建立以上下行加权排队总长最小为主目标、总延误最小为次目标,分层求解最优相位差的流程;最后,建立了高饱和度路段上下游交叉口间相位差优化方法。本发明克服了已有模型方法不考虑多股车流汇入而导致在实际应用中存在的缺陷,提出了更符合城市交通管理者及实际交通参与者期望的路段协调控制目标及方法,为城市交通拥堵主动防控特别是高饱和度路段上下游信号协调优化问题的解决提供方法支持。

Description

一种高饱和度路段上下游交叉口间相位差优化方法
技术领域
本发明涉及智能交通领域,更具体的,涉及一种高饱和度路段上下游交叉口间的相位差优化方法。
背景技术
在交通高峰期,城市路段流量趋于饱和时,常出现周期性的长距离排队,甚至出现溢流现象,造成路口瘫痪,严重影响交通安全。信号协调控制在干道交通控制和缓解拥堵方面有着至关重要的作用,故众多学者对干道协调优化展开了深入研究,其方向主要分为两类:
一类是以绿波带最宽为优化目标,通过建立绿波带宽与信号周期、相位差、相序方式、绿信比、行驶速度等变量间的数学模型,以求解最大带宽的信号参数取值,其中LITTLE、GARTNER分别提出了经典的MAXBAND模型和MULTIBAND模型;李祥尘通过优化干线上交叉口的信号相位和相序,来增加干线上相邻交叉口间相位差的调整区间,从而提升干线双向绿波带的带宽;刘小明提出了一种优化相位差时兼顾协调范围内不同数量连续路口间的绿波带宽,进而使控制范围内绿波协调的综合带宽最大化的方法;荆彬彬在MAXBAND模型的基础上考虑车队实际行驶速度在一定范围随机波动的特性,以双向绿波带宽之和最大为一级目标,以速度波动百分比之和最大为二级目标,建立了一种绿波协调控制目标规划模型。
另一类则是以延误最小为优化目标,通过分析不同情形下车流到达规律,提出延误计算方法并建立相位差优化模型。万绪军对上、下行车辆在交叉口的延误规律进行分析研究,提出三角形延误方程,并以沿干线双向行驶的车辆延误最小为目标,建立了干线相位差调节的优化模型;卢凯针对行驶车队在一个以红灯启亮为起始的信号周期之内到达和跨越一个以红灯启亮为起始的信号周期到达两种情况,对停车延误进行了分析研究,得到了包括延误时间在内的性能指标与相邻交叉口相位差等协调控制变量之间的相关关系;曲大义基于相邻信号交叉口的车流到达特性,针对各种状况下关联交叉口间的排队集结与消散,建立了干线协调控制相位差优化模型;鄢小文通过分析不同周期下相邻交叉口间的车流到达规律,利用交通波理论建立了不同周期相邻交叉口间的延误模型,并提出了基于最小延误的不同周期交叉口间的相位差优化方法。
对于饱和度较高的路段,相比绿波带带宽及延误,周期性的长距离排队是城市交通管理者及实际交通参与者更迫切期待解决的问题,而现有对排队长度研究主要集中于如何利用先进交通检测技术精准估计路段排队长度,鲜有考虑排队长度的影响程度、以排队长度影响最小为干道协调优化目标的研究。
发明内容
为了解决现有技术对排队长度研究鲜有考虑排队长度的影响程度、以排队长度影响最小为干道协调优化目标进行研究的不足,本发明提供了一种高饱和度路段上下游交叉口间的相位差优化方法。本发明首先使用适用于高和度路段的冲击波理论描述存在直行、左转、右转三股汇入车流时下游交叉口排队车辆的集结-消散过程,其次建立相邻交叉口间的排队长度模型与延误模型,定义排队影响权重,提出了上下行加权排队总长最小作为主、总延误最小为次的相位差分层优化方法。
为实现以上发明目的,采用的技术方案是:
一种高饱和度路段上下游交叉口间相位差优化方法,包括以下步骤:
步骤S1:路段说明及建系,具体包括以下步骤:
步骤S101:路段几何条件及上下游相位设置,有相邻十字交叉口Ia、Ib,路段Ia Ib长度为L,公共信号周期为C,皆设置为三相位,相序依次为相位1南北直行、相位2南北左转、相位3东西放行,依相序用表示交叉口Ia各相位时长,用表示交叉口Ib各相位时长,不考虑黄灯时间与全红时间,即下游交叉口Ib相位1相对上游交叉口Ia相位1的红灯相位差为上游交叉口Ia相位1相对上游交叉口Ib相位1的红灯相位差可为各股车流平均速度km/h等于路段下行车速vab
步骤S102:进行建系;以交叉口Ib西进口停车线为初始距离建立距离轴,方向指向交叉口Ia,初始距离l=0m;以Ib交叉口第n个周期相位1红灯起始时刻为初始时刻建立时间轴,初始时刻t=0s;
步骤S2:路段排队长度与延误建模,具体包括以下步骤:
步骤S201:排队长度建模:t=0时,到达车流自停车线起停车排队,车流状态由变为停车状态(0,kj),同时产生波速为的排队波向Ia传播;时,波速为的排队波传播了的时长后,与进入路段时产生的到达波相遇,的车流状态由向停车状态(0,kj)转变,排队波波速变为
时,波速的排队波传播了的时长后与的到达波相遇,波速变为 时,波速的排队波传播了的时长后与的到达波相遇,波速变为
时,交叉口Ib相位1绿灯起亮,停车线后的车流由停车状态(0,kj)转变为消散状态(qm,km),产生波速为uj,m的消散波向Ia传播,有
时,波速的排队波传播了时长后与消散波相遇,路段排队长度达到最大值 时,有
步骤S202:延误时间建模:延误是因信号控制造成车流状态改变,实际行驶时长相对车流状态不变通过路段所增加的时长,即实际行驶时长与以到达车速驶过排队路段的时间差,可分为排队延误和消散延误,对车流排队消散的分析如下;
时,最大排队处与Ib间的车辆自停车状态(0,kj)完全转变成消散状态(qm,km),自Ia到达最大排队处的车流为车流状态为两不同的车流状态间产生波速为的离去波向Ib传播,有
假定排队车辆均清空,则时,离去波在初始周期结束前到达Ib,消散状态车流全部驶离交叉口Ib,有
以排队演变分分析与排队消散分析为基础,构建延误模型,表示到达车流形成的排队波、消散波与头车轨迹、后续车流的头车轨迹围成的面积,表示后续车流对应围成的面积;表示形成的消散波、离去波与头车轨迹、后续车流头车轨迹所围成的面积, 表示后续车流对应围成的面积;车流延误可用各区域的面积与对应车流密度的相乘得到,Dn表示第n周期的总排队延误、总消散延误、总延误,有
步骤S3:提出高饱和度路段上下游交叉口间相位差优化方法,具体包括以下步骤:
步骤S301:定义排队长度影响系数:
高饱和度城市路段常出现周期性长距离排队甚至溢流,不同情形下,同一路段上、下行方向排队长度的影响也存在不同,通常有以下情形:
(1)路段上、下行方向所处道路环境对排队长度无特殊要求;
(2)路段某方向的下游路段易出现溢流现象,该方向的排队长度适当增加将有利于下游的溢流控制;
(3)路段某方向上设有一重要场所的出入口,当该方向的排队车辆超过出入口位置时,出入车辆需停车等待直至排队消散至出入口处;
故定义路段上下行加权总长ΔL,上下行总延误D,有
式中:分表示上、下行最大排队长度;αu、αd分别表示上、下行排队长度影响权重,其取值规则为:在情形(1)下取值1,情形(2)下结合实际取大于1值,情形(3)下结合实际取小于1值;Du、Dd分别表示上、下行延误;
步骤S302:对相位差进行优化,依次以minΔL和minD作为目标建立相位差优化流程,对相位差进行分层求解。
优选的,步骤S302的具体步骤如下:
步骤S303:输入上下游交叉口信号参数、交通流参数,并根据路段环境特征,确定上、下行排队长度影响权重αu、αd
步骤S304:令相位差判段初始周期到达车流归属,依次建立排队长度模型、延误模型;
步骤S305:以1s为步长,使用枚举法遍历同时计算并存储相应相位差下的ΔL、D;
步骤S306:以minΔL为第一层优化目标,寻找对应的相位差取值范围,得到有效解空间;
步骤S307:以minD为第二层优化目标,从上一层优化的有效解空间中得到最优相位差。
与现有技术相比,本发明的有益效果是:
1、本发明通过分析存在直行、左转、右转三股汇入车流情形下的路段排队演变,构建了更具有广泛适用性的排队长度模型,现有研究中往往忽略左转或右转车流汇入而导致理论模型在实际应用中存在一定制约性。
2、相比现有基于最小延误的相位差优化方法,本发明所提出的优化方法更符合城市交通管理者及实际交通参与者对于路段协调控制目标的期望,能够获得更优的综合效益。
3、本发明为为城市交通拥堵主动防控及快速疏导问题的解决提供方法支持。
附图说明
图1为高饱和度路段上下游交叉口间相位差优化方法解析图。
图2为路段几何条件及相位设置示意图。
图3为排队演变分析示意图。
图4为延误分析示意图。
图5为路网参数输入参数图。
图6为路网配时信息图。
图7为仿真实验结果图。
图8为本发明的流程图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
以下结合附图和实施例对本发明做进一步的阐述。
实施例1
如图1、图3以及图4所示,一种高饱和度路段上下游交叉口间相位差优化方法,包括以下步骤:
步骤S1:路段说明及建系,具体包括以下步骤:
步骤S101:路段几何条件及上下游相位设置,有相邻十字交叉口Ia、Ib,路段Ia Ib长度为L,公共信号周期为C,皆设置为三相位,相序依次为相位1南北直行、相位2南北左转、相位3东西放行,依相序用表示交叉口Ia各相位时长,用表示交叉口Ib各相位时长,不考虑黄灯时间与全红时间,即下游交叉口Ib相位1相对上游交叉口Ia相位1的红灯相位差为上游交叉口Ia相位1相对上游交叉口Ib相位1的红灯相位差可为各股车流平均速度km/h等于路段下行车速vab
步骤S102:进行建系;以交叉口Ib西进口停车线为初始距离建立距离轴,方向指向交叉口Ia,初始距离l=0m;以Ib交叉口第n个周期相位1红灯起始时刻为初始时刻建立时间轴,初始时刻t=0s;
步骤S2:路段排队长度与延误建模,具体包括以下步骤:
步骤S201:排队长度建模:t=0时,到达车流自停车线起停车排队,车流状态由变为停车状态(0,kj),同时产生波速为的排队波向Ia传播;
时,波速为的排队波传播了的时长后,与进入路段时产生的到达波相遇,的车流状态由向停车状态(0,kj)转变,排队波波速变为
时,波速的排队波传播了的时长后与的到达波相遇,波速变为 时,波速的排队波传播了的时长后与的到达波相遇,波速变为
时,交叉口Ib相位1绿灯起亮,停车线后的车流由停车状态(0,kj)转变为消散状态(qm,km),产生波速为uj,m的消散波向Ia传播,有
时,波速的排队波传播了时长后与消散波相遇,路段排队长度达到最大值 时,有
步骤S202:延误时间建模:延误是因信号控制造成车流状态改变,实际行驶时长相对车流状态不变通过路段所增加的时长,即实际行驶时长与以到达车速驶过排队路段的时间差,可分为排队延误和消散延误,对车流排队消散的分析如下;
时,最大排队处与Ib间的车辆自停车状态(0,kj)完全转变成消散状态(qm,km),自Ia到达最大排队处的车流为车流状态为两不同的车流状态间产生波速为的离去波向Ib传播,有
假定排队车辆均清空,则时,离去波在初始周期结束前到达Ib,消散状态车流全部驶离交叉口Ib,有
以排队演变分分析与排队消散分析为基础,构建延误模型,表示到达车流形成的排队波、消散波与头车轨迹、后续车流的头车轨迹围成的面积,表示后续车流对应围成的面积;表示形成的消散波、离去波与头车轨迹、后续车流头车轨迹所围成的面积, 表示后续车流对应围成的面积;车流延误可用各区域的面积与对应车流密度的相乘得到,Dn表示第n周期的总排队延误、总消散延误、总延误,有
步骤S3:提出高饱和度路段上下游交叉口间相位差优化方法,具体包括以下步骤:
步骤S301:定义排队长度影响系数:
高饱和度城市路段常出现周期性长距离排队甚至溢流,不同情形下,同一路段上、下行方向排队长度的影响也存在不同,通常有以下情形:
(1)路段上、下行方向所处道路环境对排队长度无特殊要求;
(2)路段某方向的下游路段易出现溢流现象,该方向的排队长度适当增加将有利于下游的溢流控制;
(3)路段某方向上设有一重要场所的出入口,当该方向的排队车辆超过出入口位置时,出入车辆需停车等待直至排队消散至出入口处;
故定义路段上下行加权总长ΔL,上下行总延误D,有
式中:分表示上、下行最大排队长度;αu、αd分别表示上、下行排队长度影响权重,其取值规则为:在情形(1)下取值1,情形(2)下结合实际取大于1值,情形(3)下结合实际取小于1值;Du、Dd分别表示上、下行延误;
步骤S302:对相位差进行优化,依次以minΔL和minD作为目标建立相位差优化流程,对相位差进行分层求解。
实施例2
本实施例以图2所示为仿真路段建立仿真对上述模型进行验证,包括2个交叉口(Ia、Ib)和1条路段Ia Ib,路段Ia Ib长度为L,公共信号周期为C,皆设置为三相位,相序依次为相位1南北直行、相位2南北左转、相位3东西放行,依相序用表示交叉口Ia各相位时长,用表示交叉口Ib各相位时长,不考虑黄灯时间与全红时间,即下游交叉口Ib相位1相对上游交叉口Ia相位1的红灯相位差为上游交叉口Ia相位1相对上游交叉口Ib相位1的红灯相位差可为以下所指相位差均为下行红灯相位差路网参数输入信息如图5所示,路网配饰信息如图6所示。
路段交通模拟结果分析:
改变仿真软件中“随机因子”参数,模拟5组仿真实验,对比本发明输出的相位差方案与基于延误最小的相位差方案所得的路段车均延误、上下行最大排队总长、平均停车次数三项指标,对高饱和度路段上下游交叉口间相位差优化方法的结果的可靠性验证分析。两方案车均延误、上下行最大排队总长、平均停车次数的输出情况,如图7所示。
(1)上下行最大排队总长
从图7可以看出,本发明所得方案的最大排队总长明显优于基于延误最小的相位差方案,其中方案1所得上下行最大排队总长平均值为225.39m,方案2所得上下行最大排队总长平均值为255.45。本发明有效缩短了路段上下行最大排队总长。
(2)平均停车次数
从图7可以看出,本发明所得方案的平均停车次数明显优于基于延误最小的相位差方案,其中方案1所得上下行最大排队总长平均值为0.52次,方案2所得上下行最大排队总长平均值为0.58次。本发明有效减少了平均停车次数。
(3)车均延误
从图7可以看出,本发明所得方案的车均延误略高于基于延误最小的相位差方案,其中方案1所得车均延误的平均值为30.33s,方案2所得车均延误的平均值为29.56s。本发明将引发车均延误的轻微上升。
以上分析说明了高饱和度路段上下游交叉口间相位差优化方法对路段相位差协调的可靠性。

Claims (2)

1.一种高饱和度路段上下游交叉口间相位差优化方法,其特征在于,包括以下步骤:
步骤S1:路段说明及建系,具体包括以下步骤:
步骤S101:路段几何条件及上下游相位设置,有相邻十字交叉口Ia、Ib,路段IaIb长度为L,公共信号周期为C,皆设置为三相位,相序依次为相位1南北直行、相位2南北左转、相位3东西放行,依相序用表示交叉口Ia各相位时长,用表示交叉口Ib各相位时长,不考虑黄灯时间与全红时间,即下游交叉口Ib相位1相对上游交叉口Ia相位1的红灯相位差为上游交叉口Ia相位1相对上游交叉口Ib相位1的红灯相位差可为各股车流平均速度km/h等于路段下行车速vab
步骤S102:进行建系;以交叉口Ib西进口停车线为初始距离建立距离轴,方向指向交叉口Ia,初始距离l=0m;以Ib交叉口第n个周期相位1红灯起始时刻为初始时刻建立时间轴,初始时刻t=0s;
步骤S2:路段排队长度与延误建模,具体包括以下步骤:
步骤S201:排队长度建模:t=0时,到达车流自停车线起停车排队,车流状态由变为停车状态(0,kj),同时产生波速为的排队波向Ia传播;时,波速为的排队波传播了的时长后,与进入路段时产生的到达波相遇,的车流状态由向停车状态(0,kj)转变,排队波波速变为
时,波速的排队波传播了的时长后与的到达波相遇,波速变为 时,波速的排队波传播了的时长后与的到达波相遇,波速变为
时,交叉口Ib相位1绿灯起亮,停车线后的车流由停车状态(0,kj)转变为消散状态(qm,km),产生波速为uj,m的消散波向Ia传播,有
时,波速的排队波传播了时长后与消散波相遇,路段排队长度达到最大值 时,有
步骤S202:延误时间建模:延误是因信号控制造成车流状态改变,实际行驶时长相对车流状态不变通过路段所增加的时长,即实际行驶时长与以到达车速驶过排队路段的时间差,可分为排队延误和消散延误,对车流排队消散的分析如下;
时,最大排队处与Ib间的车辆自停车状态(0,kj)完全转变成消散状态(qm,km),自Ia到达最大排队处的车流为车流状态为两不同的车流状态间产生波速为的离去波向Ib传播,有
假定排队车辆均清空,则时,离去波在初始周期结束前到达Ib,消散状态车流全部驶离交叉口Ib,有
以排队演变分分析与排队消散分析为基础,构建延误模型;表示到达车流形成的排队波、消散波与头车轨迹、后续车流的头车轨迹围成的面积,表示后续车流对应围成的面积;表示形成的消散波、离去波与头车轨迹、后续车流头车轨迹所围成的面积, 表示后续车流对应围成的面积;车流延误可用各区域的面积与对应车流密度的相乘得到,Dn表示第n周期的总排队延误、总消散延误、总延误,有
步骤S3:提出高饱和度路段上下游交叉口间相位差优化方法,具体包括以下步骤;
步骤S301:定义排队长度影响系数;
高饱和度城市路段常出现周期性长距离排队甚至溢流,不同情形下,同一路段上、下行方向排队长度的影响也存在不同,通常有以下情形:
(1)路段上、下行方向所处道路环境对排队长度无特殊要求;
(2)路段某方向的下游路段易出现溢流现象,该方向的排队长度适当增加将有利于下游的溢流控制;
(3)路段某方向上设有一重要场所的出入口,当该方向的排队车辆超过出入口位置时,出入车辆需停车等待直至排队消散至出入口处;
故定义路段上下行加权总长ΔL,上下行总延误D,有
式中:分表示上、下行最大排队长度;αu、αd分别表示上、下行排队长度影响权重,其取值规则为:在情形(1)下取值1,情形(2)下结合实际取大于1值,情形(3)下结合实际取小于1值;Du、Dd分别表示上、下行延误;
步骤S302:对相位差进行优化,依次以minΔL和minD作为目标建立相位差优化流程,对相位差进行分层求解。
2.根据权利要求1所述的一种高饱和度路段上下游交叉口间相位差优化方法,其特征在于,步骤S302的具体步骤如下:
步骤S303:输入上下游交叉口信号参数、交通流参数,并根据路段环境特征,确定上、下行排队长度影响权重αu、αd
步骤S304:令相位差判段初始周期到达车流归属,依次建立排队长度模型、延误模型;
步骤S305:以1s为步长,使用枚举法遍历同时计算并存储相应相位差下的ΔL、D;
步骤S306:以minΔL为第一层优化目标,寻找对应的相位差取值范围,得到有效解空间;
步骤S307:以minD为第二层优化目标,从上一层优化的有效解空间中得到最优相位差。
CN201811418873.9A 2018-11-26 2018-11-26 一种高饱和度路段上下游交叉口间相位差优化方法 Active CN109584539B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811418873.9A CN109584539B (zh) 2018-11-26 2018-11-26 一种高饱和度路段上下游交叉口间相位差优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811418873.9A CN109584539B (zh) 2018-11-26 2018-11-26 一种高饱和度路段上下游交叉口间相位差优化方法

Publications (2)

Publication Number Publication Date
CN109584539A true CN109584539A (zh) 2019-04-05
CN109584539B CN109584539B (zh) 2020-10-02

Family

ID=65924662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811418873.9A Active CN109584539B (zh) 2018-11-26 2018-11-26 一种高饱和度路段上下游交叉口间相位差优化方法

Country Status (1)

Country Link
CN (1) CN109584539B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110175692A (zh) * 2019-04-16 2019-08-27 同济大学 一种基于轨迹数据的干线交叉口协调控制方法
CN110853380A (zh) * 2019-10-15 2020-02-28 同济大学 一种基于轨迹数据的信号控制时段划分方法
CN111311949A (zh) * 2020-02-29 2020-06-19 华南理工大学 一种面向非封闭式协调线网的信号相位相序优化方法
CN111612669A (zh) * 2020-04-24 2020-09-01 浙江大华技术股份有限公司 车道排队长度估算方法、系统、计算机设备和存储介质
CN111899506A (zh) * 2020-06-12 2020-11-06 上海应用技术大学 基于电子警察数据的交通溢流判别方法
CN111951567A (zh) * 2019-05-14 2020-11-17 阿里巴巴集团控股有限公司 数据的处理方法、装置、设备及计算机存储介质
CN113284336A (zh) * 2021-04-04 2021-08-20 北方工业大学 一种用于计算上下游路口协调度的通行状态表征方法
CN113706895A (zh) * 2021-08-31 2021-11-26 深圳大学 干道相位差的优化方法、装置、设备和计算机存储介质
CN114187766A (zh) * 2021-11-08 2022-03-15 航天科工广信智能技术有限公司 一种基于饱和率的道路服务水平评价方法
CN114627660A (zh) * 2022-03-11 2022-06-14 公安部交通管理科学研究所 面向非均衡交通流的交叉口信号实时迭代优化控制方法
CN115035716A (zh) * 2022-05-31 2022-09-09 上海商汤智能科技有限公司 控制信号相位差确定方法及装置、电子设备和存储介质
CN115691105A (zh) * 2022-09-06 2023-02-03 昆明理工大学 一种考虑车队离散的路段行人过街最大压信号控制方法
CN115691172A (zh) * 2022-10-26 2023-02-03 山东理工大学 高负荷状态强关联交叉口群链式防堵控制相位差优化方法
CN116434575A (zh) * 2022-12-15 2023-07-14 东南大学 一种考虑行进时间不确定性的公交绿波方案鲁棒生成方法
CN116631202A (zh) * 2022-10-27 2023-08-22 东南大学 面向交通溢流的瓶颈交叉口群信号控制优化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257194A (en) * 1991-04-30 1993-10-26 Mitsubishi Corporation Highway traffic signal local controller
CN103927892A (zh) * 2014-04-29 2014-07-16 山东比亚科技有限公司 一种交通溢流协调控制优化模型的建立方法及其工作方法
CN104123849A (zh) * 2014-07-14 2014-10-29 昆明理工大学 一种考虑动态排队长度的相邻交叉口双向联动控制方法
EP2846320A1 (en) * 2013-08-30 2015-03-11 Siemens Industry, Inc. Single cycle offset adjustment for traffic signal controllers
CN108010345A (zh) * 2017-11-30 2018-05-08 中原智慧城市设计研究院有限公司 用于溢流防控的过饱和交通干道协调控制方法
CN108510764A (zh) * 2018-04-24 2018-09-07 南京邮电大学 一种基于q学习的多路口自适应相位差协调控制系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257194A (en) * 1991-04-30 1993-10-26 Mitsubishi Corporation Highway traffic signal local controller
EP2846320A1 (en) * 2013-08-30 2015-03-11 Siemens Industry, Inc. Single cycle offset adjustment for traffic signal controllers
CN103927892A (zh) * 2014-04-29 2014-07-16 山东比亚科技有限公司 一种交通溢流协调控制优化模型的建立方法及其工作方法
CN104123849A (zh) * 2014-07-14 2014-10-29 昆明理工大学 一种考虑动态排队长度的相邻交叉口双向联动控制方法
CN108010345A (zh) * 2017-11-30 2018-05-08 中原智慧城市设计研究院有限公司 用于溢流防控的过饱和交通干道协调控制方法
CN108510764A (zh) * 2018-04-24 2018-09-07 南京邮电大学 一种基于q学习的多路口自适应相位差协调控制系统及方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GANG LIU ET AL.: "Development of a Dynamic Control Model for Oversaturated Arterial Corridor", 《PROCEDIA - SOCIAL AND BEHAVIORAL SCIENCES》 *
XINKAI WU ET AL.: "Identification of oversaturated intersections using high-resolution traffic signal data", 《TRANSPORTATION RESEARCH PART C: EMERGING TECHNOLOGIES》 *
万孟飞等: "考虑关联交叉口排队长度的干线协调相位差模型", 《科学技术与工程》 *
吕斌等: "城市交通线控系统相位差优化方法", 《交通运输工程学报》 *
王浩等: "过饱和条件下信号交叉口协调控制可靠性优化", 《公路交通科技》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110175692A (zh) * 2019-04-16 2019-08-27 同济大学 一种基于轨迹数据的干线交叉口协调控制方法
CN110175692B (zh) * 2019-04-16 2023-05-02 同济大学 一种基于轨迹数据的干线交叉口协调控制方法
CN111951567A (zh) * 2019-05-14 2020-11-17 阿里巴巴集团控股有限公司 数据的处理方法、装置、设备及计算机存储介质
CN110853380A (zh) * 2019-10-15 2020-02-28 同济大学 一种基于轨迹数据的信号控制时段划分方法
CN111311949A (zh) * 2020-02-29 2020-06-19 华南理工大学 一种面向非封闭式协调线网的信号相位相序优化方法
CN111612669B (zh) * 2020-04-24 2023-04-25 浙江大华技术股份有限公司 车道排队长度估算方法、系统、计算机设备和存储介质
CN111612669A (zh) * 2020-04-24 2020-09-01 浙江大华技术股份有限公司 车道排队长度估算方法、系统、计算机设备和存储介质
CN111899506A (zh) * 2020-06-12 2020-11-06 上海应用技术大学 基于电子警察数据的交通溢流判别方法
CN113284336A (zh) * 2021-04-04 2021-08-20 北方工业大学 一种用于计算上下游路口协调度的通行状态表征方法
CN113706895A (zh) * 2021-08-31 2021-11-26 深圳大学 干道相位差的优化方法、装置、设备和计算机存储介质
CN114187766B (zh) * 2021-11-08 2023-04-07 航天科工广信智能技术有限公司 一种基于饱和率的道路服务水平评价方法
CN114187766A (zh) * 2021-11-08 2022-03-15 航天科工广信智能技术有限公司 一种基于饱和率的道路服务水平评价方法
CN114627660A (zh) * 2022-03-11 2022-06-14 公安部交通管理科学研究所 面向非均衡交通流的交叉口信号实时迭代优化控制方法
CN115035716A (zh) * 2022-05-31 2022-09-09 上海商汤智能科技有限公司 控制信号相位差确定方法及装置、电子设备和存储介质
CN115035716B (zh) * 2022-05-31 2024-04-12 上海商汤智能科技有限公司 控制信号相位差确定方法及装置、电子设备和存储介质
CN115691105A (zh) * 2022-09-06 2023-02-03 昆明理工大学 一种考虑车队离散的路段行人过街最大压信号控制方法
CN115691105B (zh) * 2022-09-06 2023-09-15 昆明理工大学 一种考虑车队离散的路段行人过街最大压信号控制方法
CN115691172A (zh) * 2022-10-26 2023-02-03 山东理工大学 高负荷状态强关联交叉口群链式防堵控制相位差优化方法
CN115691172B (zh) * 2022-10-26 2024-04-26 山东理工大学 高负荷状态强关联交叉口群链式防堵控制相位差优化方法
CN116631202A (zh) * 2022-10-27 2023-08-22 东南大学 面向交通溢流的瓶颈交叉口群信号控制优化方法
CN116434575A (zh) * 2022-12-15 2023-07-14 东南大学 一种考虑行进时间不确定性的公交绿波方案鲁棒生成方法
CN116434575B (zh) * 2022-12-15 2024-04-09 东南大学 一种考虑行进时间不确定性的公交绿波方案鲁棒生成方法

Also Published As

Publication number Publication date
CN109584539B (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
CN109584539A (zh) 一种高饱和度路段上下游交叉口间相位差优化方法
CN110136455B (zh) 一种交通信号灯配时方法
Yao et al. A trajectory smoothing method at signalized intersection based on individualized variable speed limits with location optimization
CN107730886B (zh) 一种车联网环境下城市交叉口交通信号动态优化方法
CN103996289B (zh) 一种流量-速度匹配模型及行程时间预测方法及系统
Malakorn et al. Assessment of mobility, energy, and environment impacts of IntelliDrive-based Cooperative Adaptive Cruise Control and Intelligent Traffic Signal control
CN109949587B (zh) 一种相邻交叉口公交专用道信号协调控制优化方法
CN106297326A (zh) 基于全息路网潮汐交通流可变车道控制方法
CN111968377B (zh) 面向节油和驾驶舒适的基于车辆网的车辆轨迹优化方法
CN108629993B (zh) 一种适用于高饱和度交叉口的公交优先信号配时优化方法
CN104952263B (zh) 基于相位差渐进循环协调的应急车辆优先信号控制方法
CN102289943A (zh) 一种保证高架桥畅通的交通控制方法
CN110363997A (zh) 一种有施工区交叉口信号配时优化方法
CN104485004A (zh) 主干道双向动态绿波与次干道半感应相结合的信号控制方法
Wu et al. Integrated optimization of bus priority operations in connected vehicle environment
CN103208197B (zh) 交通信号配时的方法
Han et al. Development and evaluation of adaptive transit signal priority control with updated transit delay model
CN108922204B (zh) 一种考虑交叉口信号控制的元胞传输模型改进方法
Ma et al. A rule‐based model for integrated operation of bus priority signal timings and traveling speed
CN105206071A (zh) 基于混合交通流延误模型的交叉口配时方法
Li et al. Regional coordinated bus priority signal control considering pedestrian and vehicle delays at urban intersections
CN111009140B (zh) 一种基于开源路况信息的智能交通信号控制方法
CN110164148B (zh) 一种城市路口交通灯智能配时控制方法及控制系统
CN110009544A (zh) 一种并联双通道公交站台的设置方法
Rodriguez et al. Speed trajectory optimization for a heavy-duty truck traversing multiple signalized intersections: A dynamic programming study

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant