CN109579838A - Agv小车的定位方法及定位系统 - Google Patents

Agv小车的定位方法及定位系统 Download PDF

Info

Publication number
CN109579838A
CN109579838A CN201910030711.6A CN201910030711A CN109579838A CN 109579838 A CN109579838 A CN 109579838A CN 201910030711 A CN201910030711 A CN 201910030711A CN 109579838 A CN109579838 A CN 109579838A
Authority
CN
China
Prior art keywords
imu
zero
speed
data
algorithm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910030711.6A
Other languages
English (en)
Inventor
罗世彬
刘海桥
胡茂青
孙方德
王钰婕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Haixun Automation Technology Co Ltd
Original Assignee
Hunan Haixun Automation Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Haixun Automation Technology Co Ltd filed Critical Hunan Haixun Automation Technology Co Ltd
Priority to CN201910030711.6A priority Critical patent/CN109579838A/zh
Publication of CN109579838A publication Critical patent/CN109579838A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

本发明提供一种AGV小车的定位方法,包括如下步骤:系统启动、前端采集、数据同步、姿态解算、数据融合、判定AGV小车速度、零速修正。本发明还提供一种AGV小车的定位系统。本发明解决了AGV的高精度定位问题;采用视觉与惯性导航融合的方式来对惯性导航和视觉的误差进行互相修正,来提高定位的精度,采用零速修正的方式来对累计误差进行消除,达到高精度定位的目的。

Description

AGV小车的定位方法及定位系统
技术领域
本发明属于定位系统技术领域,涉及一种AGV小车的定位方法及定位系统。
背景技术
AGV小车在室内进行自主导航、智能搬运,需要准确的位置信息和障碍物的信息。为了解决这个问题,现有的方案包括有:磁条导航、二维码导航、视觉导航、惯性导航等。磁条导航、二维码导航的主要缺点为:容易被碾压或者腐蚀而被损坏,不容易维护;视觉导航:在室内光线较暗,变化较大,导致采集的图像数据质量较差,影响导航;惯性导航:采用航迹推演的方式进行姿态解算,具有较大累计误差。
(1)磁条、二维码类导航方案:在室内空间当中,特别是机器人、AGV小车运动的过程当中,容易将磁条和二维码进行碾压,导致损坏从而导致无法进行导航,这就要求这里定位方式具有较好的维护,从而带来较高的维护成本。并且磁条导航还需要要求小车在磁条上进行运动,对运动进行了限制,不利于完全自主式的导航方式。
(2)传统的视觉惯导融合的方案:这种方案对场景具有一定的要求,需要曾在闭环情况下定位精度才会得到提升,在没有闭环信息的情况下,无法进行全局后端优化,无法消除累计误差,使得精度下降。
(3)传统的视觉导航方案:视觉导航在室内环境下,容易受到环境的影响,如:光线、粉尘等,在光线不稳定下,所找到的特征点和特征点数将会不一样,导致整个导航系统的鲁棒性降低;而且视觉导航比较依赖于闭环修正,需要在一个有闭环的环境下进行导航,因此对场景具有一定的限制。
(4)传统惯性导航中的零速修正方案:惯性导航的不足在于容易发散,不适合应用于长时间的导航,累计误差较大,加入零速修正后的惯性导航,虽能够在一定程度上起到消除累计误差的作用,但仍然曾在停车较频繁,停车时间较长的问题。
发明内容
本发明的目的是提供一种AGV小车的定位方法,解决了AGV的高精度定位问题;采用视觉与惯性导航融合的方式来对惯性导航和视觉的误差进行互相修正,来提高定位的精度,采用零速修正的方式来对累计误差进行消除,达到高精度定位的目的。
本发明的技术方案为:
本发明提供一种AGV小车的定位方法,包括如下步骤:
(1)系统启动;
(2)前端采集:工业相机采集图像数据,IMU采集数据信息,并将图形数据和IMU数据输入导航计算机;
(3)数据同步:在图像数据传输进导航计算机后,通过一个标志位,将图像信息传输给IMU,将图像数据与IMU数据进行同步;
(4)姿态解算;视觉姿态解算和IMU姿态计算;
(6)数据融合:将IMU姿态解算后的结果作为运动量,构建运动方程,将视觉解算出来的姿态信息作为观测量,来构建观测方程,构建Kalman滤波方程,进行数据融合,得到最优结果;
(7)判定AGV小车速度:根据判定方法,判定AGV小车处于绝对零速的时候,进入步骤(8);反之,得到导航相关的定位信息,导航结束;
(8)零速修正:构建速度误差方程,运用Kalman滤波,对姿态信息进行修正,并将修正后的状态进行零速更新,达到消除累计误差的目的,导航结束。
优选的,所述步骤(2)中,工业相机将采集的图像数据通过USB端口传输进入导航计算机,IMU通过串口,并运用串口转换成USB端口,将IMU数据传输进入导航计算机;
优选的,所述视觉姿态解算为:将图像数据依次经过视觉跟踪、图像通过配置算法、PnP姿态解算算法,得到视觉姿态信息。
优选的,所述IMU姿态解算为:IMU数据通过航机推演算法进行姿态解算,并进行姿态更新,得到IMU姿态信息。
优选的,所述零速修正的判定方法为:
根据IMU中的加速度计和陀螺仪的输出来判定零速区间:通过第i时刻加速度计输出的比力信息fi=[fxi fyi fzi]T,陀螺仪输出的角速度信息ωi=[ωxi ωyi ωzi]T进行零速检测。
优选的,采用IMU检测零速,其检测算法包括三个条件:加速度模值、加速度滑动方差和角速度模值,分别记为Q1,Q2,Q3;
各条件实现方式如下:
a.加速度模值检测,即当加速度模值大于等于最小阈值且小于等于最小阈值时,条件Q1(i)=1;
b.比力滑动方差检测,即当滑动窗口大小为N时比力方差小于等于给定阈值时,条件Q2(i)=1;
其中,为[i-n i+n]时间间隔内采样得到的2n+1个比力f的均值,即:
c.角速度模值检测,即当角速度模值小于等于给定阈值thmax时,条件Q3(i)=1;
IMU检测算法为多条件符合检测方法,即同时满足以上三个条件时为零速区间:
QIMU(i)=Q1∧Q2∧Q3
优选的,所述零速更新为:由于AGV定位系统是非线性的,利用扩展卡尔曼滤波对非线性系统中的待估参数X进行线性化,得到线性化的模型,然后在利用标准Kalman滤波进行估计;
选取地理坐标中姿态误差角、速度误差、位置误差、陀螺常值漂移和加速度计常值漂移为状态量取系统速度误差δv为观测量,建立15维Kalman滤波器:
式中:F是根据误差模型和状态矢量构成的15*15维系统矩阵;W为15维系统随机过程噪声序列;V为三维系统随机观测噪声序列;H=[03×3 I3×3 03×3 03×3 03×3]是3×15维观测矩阵;
在零速阶段AGV小车的速度是绝对零,因此可以将零速作为外参考速度,应用Kalman滤波器对系统状态进行估计。
本发明的另一方面还提供一种AGV小车定位系统,所述定位系统采用上述所述的任意一种定位方法。
优选的,所述定位系统包括:惯性测量单元(IMU),工业相机,导航计算机,AGV小车;
所述IMU中配备有陀螺仪和加速度计;
所述AVG小车搭载有工业相机、IMU和导航计算机,所述工业相机通过接口与导航计算机相连,所述IMU通过接口与导航计算机相连。
本发明的有益效果为:
1.本发明解决了AGV的高精度定位问题:采用视觉与惯性导航(本发明采用IMU)融合的方式来对惯性导航和视觉的误差进行互相修正,来提高定位的精度,采用零速修正的方式来对累计误差进行消除,达到高精度定位的目的。
2.本发明采用工业相机和惯性测量单元(IMU)相结合,不需要对场景进行特殊的处理和维护,也不需要AGV小车在特定的路线上进行运动,具备完全的自主性;本发明引入零速修正的策略,利用AGV小车停车中的绝对零速来对累计误差进行修正,不需要特定的场景,不需要有闭环的信息(场景识别),依然能够消除累积误差,比传统的视觉惯性融合的方式更加的方便,具有更广泛的应用空间。本发明采用工业相机,加入了视觉部分,它很好的对IMU进行了修正,能够使得IMU的误差发散较慢,因此需要停车的时间更短,停车的频率更低。
3.本发明是典型的多源融合导航系统,由惯性导航(本发明采用的惯性导航系统为IMU)和视觉导航(工业相机)共同组成,同时引入零速修正的策略,在光线不稳定或者较差时,可以惯性导航为主,视觉导航为辅来进行导航;而惯性导航本身也不会受到外界的影响,因此本发明具有高效稳定的特点,不容易受到外在条件的影响,当视觉方面受到影响而不准的时候惯性导航(IMU)能够起到对应的作用。
4.在传统的视觉SLAM(即时定位与地图构建)和传统VISLAM(视觉slam)的基础上引入了零速修正的概念,即使在无闭环条件的环境中,依旧可以对整个系统进行全局优化,消除整个的累计误差,具有非常广泛的应用空间,而不需要局限在有闭环信息的空间当中,也不需要小车按照既定的轨迹和轨道进行运行(词条导航)。
5.在整个系统当中,采用工业相机,就可以测出任意时刻的速度值,不管是当场景较简单,特征较明显时,还是在光线较暗或者图像质量较差时,都可以得到准确的速度信息,进行误差修正,对累计误差进行消除,因此本发明在提供高精度定位信息的基础之上,能够做到停车少、时间短、甚至可以不停车。
附图说明
图1是本发明实施例提供的一种AGV小车的定位方法的流程示意图;
图2是本发明实施例提供的AGV小车的定位系统的结构示意图;
图3是本发明实施例提供的一种AGV小车的定位方法中视觉的解算位置误差仿真数据示意图;
图4是本发明实施例提供的一种AGV小车的定位方法中IMU的解算位置误差仿真数据示意图;
图5是本发明实施例提供的一种AGV小车的定位方法中视觉与IMU结合的解算位置误差仿真数据示意图;
图6是本发明实施例提供的一种AGV小车的定位方法中视觉、IMU与零速修正结合的解算位置误差仿真数据示意图。
具体实施方式
下面将根据附图以及具体实施方式对发明进行详细的说明。以下为本发明的优选实施例,本发明的实施例不限制本发明的保护范围,本发明的保护范围以其权利要求书为准。
实施例一
本发明的实施例一一种AGV小车的定位方法,包括如下步骤:
(1)系统启动;
(2)前端采集:工业相机采集图像数据,工业相机将采集的图像数据通过USB端口传输进入导航计算机;IMU采集数据信息,通过串口,并运用串口转换成USB端口,将IMU数据传输进入导航计算机;
(3)数据同步:在图像数据传输进导航计算机后,通过一个标志位,将图像信息传输给IMU,将图像数据与IMU数据进行同步;
(4)姿态解算:IMU数据通过航机推演算法进行姿态解算,并进行姿态更新,得到IMU姿态信息。将图像数据依次经过视觉跟踪、图像通过配置算法、PnP姿态解算算法,得到视觉姿态信息。
(6)数据融合:将IMU姿态解算后的结果作为运动量,构建运动方程,将视觉解算出来的姿态信息作为观测量,来构建观测方程,构建Kalman滤波方程,进行数据融合,得到最优结果;
(7)判定AGV小车速度:根据判定方法,判定AGV小车处于绝对零速的时候,进入步骤(8);反之,得到导航相关的定位信息,导航结束;
(8)零速修正:构建速度误差方程,运用Kalman滤波,对姿态信息进行修正,并将修正后的状态进行零速更新,达到消除累计误差的目的,导航结束。
所述零速修正的判定方法为:
根据IMU中的加速度计和陀螺仪的输出来判定零速区间:通过第i时刻加速度计输出的比力信息fi=[fxi fyi fzi]T,陀螺仪输出的角速度信息ωi=[ωxi ωyi ωzi]T进行零速检测。
优选的,采用IMU检测零速,其检测算法包括三个条件:加速度模值、加速度滑动方差和角速度模值,分别记为Q1,Q2,Q3;
各条件实现方式如下:
a.加速度模值检测,即当加速度模值大于等于最小阈值且小于等于最小阈值时,条件Q1(i)=1;
b.比力滑动方差检测,即当滑动窗口大小为N时比力方差小于等于给定阈值时,条件Q2(i)=1;
其中,为[i-n i+n]时间间隔内采样得到的2n+1个比力f的均值,即:
c.角速度模值检测,即当角速度模值小于等于给定阈值thmax时,条件Q3(i)=1;
IMU检测算法为多条件符合检测方法,即同时满足以上三个条件时为零速区间:
QIMU(i)=Q1∧Q2∧Q3
所述零速更新为:由于AGV定位系统是非线性的,利用扩展卡尔曼滤波对非线性系统中的待估参数X进行线性化,得到线性化的模型,然后在利用标准Kalman滤波进行估计;
选取地理坐标中姿态误差角、速度误差、位置误差、陀螺常值漂移和加速度计常值漂移为状态量取系统速度误差δv为观测量,建立15维Kalman滤波器:
式中:F是根据误差模型和状态矢量构成的15*15维系统矩阵;W为15维系统随机过程噪声序列;V为三维系统随机观测噪声序列;H=[03×3 I3×3 03×3 03×3 03×3]是3×15维观测矩阵;
在零速阶段AGV小车的速度是绝对零,因此可以将零速作为外参考速度,应用Kalman滤波器对系统状态进行估计。
实施例二
本发明的实施例二提供一种AGV小车定位系统,所述定位系统采用如上述所述的定位方法。
所述定位系统包括:惯性测量单元(IMU),工业相机,导航计算机,AGV小车;
所述IMU中配备有陀螺仪和加速度计;
所述AVG小车搭载有工业相机、IMU和导航计算机,所述工业相机通过接口(可以采用USB端口)与导航计算机相连,所述IMU通过接口(可以采用串口)与导航计算机相连。
从图3-6中可以看出,图3是视觉的解算位置误差仿真数据,有误匹配的情况,所以会出现误差较大的点。图4是IMU的解算位置误差仿真数据,它随时间误差累计,且发散较快。图5是视觉与惯性导航(本实施例采用IMU)结合的解算位置误差仿真数据,虽然误差发散的满,但依旧有累计误差,且无法消除。图6是视觉与惯性导航(本实施例采用IMU)以及零速修正结合的解算位置误差,发散慢的情况下,且能够消除累计误差。
本发明具体应用途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (9)

1.一种AGV小车的定位方法,其特征在于,包括如下步骤:
(1)系统启动;
(2)前端采集:工业相机采集图像数据,IMU采集数据信息,并将图形数据和IMU数据输入导航计算机;
(3)数据同步:在图像数据传输进导航计算机后,通过一个标志位,将图像信息传输给IMU,将图像数据与IMU数据进行同步;
(4)姿态解算;视觉姿态解算和IMU姿态计算;
(6)数据融合:将IMU姿态解算后的结果作为运动量,构建运动方程,将视觉解算出来的姿态信息作为观测量,来构建观测方程,构建Kalman滤波方程,进行数据融合,得到最优结果;
(7)判定AGV小车速度:根据判定方法,判定AGV小车处于绝对零速的时候,进入步骤(8);反之,得到导航相关的定位信息,导航结束;
(8)零速修正:构建速度误差方程,运用Kalman滤波,对姿态信息进行修正,并将修正后的状态进行零速更新,达到消除累计误差的目的,导航结束。
2.根据权利要求1所述的方法,其特征在于,所述步骤(2)中,工业相机将采集的图像数据通过USB端口传输进入导航计算机,IMU通过串口,并运用串口转换成USB端口,将IMU数据传输进入导航计算机。
3.根据权利要求1所述的方法,其特征在于,所述视觉姿态解算为:将图像数据依次经过视觉跟踪、图像通过配置算法、PnP姿态解算算法,得到视觉姿态信息。
4.根据权利要求1所述的方法,其特征在于,所述IMU姿态解算为:IMU数据通过航机推演算法进行姿态解算,并进行姿态更新,得到IMU姿态信息。
5.根据权利要求1所述的方法,其特征在于,所述零速修正的判定方法为:
根据IMU中的加速度计和陀螺仪的输出来判定零速区间:通过第i时刻加速度计输出的比力信息fi=[fxi fyi fzi]T,陀螺仪输出的角速度信息ωi=[ωxi ωyi ωzi]T进行零速检测。
6.根据权利要求5所述的方法,其特征在于,所述步骤(7)中采用IMU检测零速,其检测算法包括三个条件:加速度模值、加速度滑动方差和角速度模值,分别记为Q1,Q2,Q3;
各条件实现方式如下:
a.加速度模值检测,即当加速度模值大于等于最小阈值且小于等于最小阈值时,条件Q1(i)=1;
b.比力滑动方差检测,即当滑动窗口大小为N时比力方差小于等于给定阈值时,条件Q2(i)=1;
其中,为[i-n i+n]时间间隔内采样得到的2n+1个比力f的均值,即:
c.角速度模值检测,即当角速度模值小于等于给定阈值thmax时,条件Q3(i)=1;
IMU检测算法为多条件符合检测方法,即同时满足以上三个条件时为零速区间:
QIMU(i)=Q1∧Q2∧Q3
7.根据权利要求1所述的方法,其特征在于,所述零速更新为:由于AGV定位系统是非线性的,利用扩展卡尔曼滤波对非线性系统中的待估参数X进行线性化,得到线性化的模型,然后在利用标准Kalman滤波进行估计;
选取地理坐标中姿态误差角、速度误差、位置误差、陀螺常值漂移和加速度计常值漂移为状态量取系统速度误差δv为观测量,建立15维Kalman滤波器:
式中:F是根据误差模型和状态矢量构成的15*15维系统矩阵;W为15维系统随机过程噪声序列;V为三维系统随机观测噪声序列;H=[03×3I3×303×303×303×3]是3×15维观测矩阵;
在零速阶段AGV小车的速度是绝对零,因此可以将零速作为外参考速度,应用Kalman滤波器对系统状态进行估计。
8.一种AGV小车定位系统,其特征在于,所述定位系统采用如权利要求1-6任意一项所述的定位方法。
9.根据权利要求8所述的定位系统,其特征在于,所述定位系统包括:惯性测量单元(IMU),工业相机,导航计算机,AGV小车;
所述IMU中配备有陀螺仪和加速度计;
所述AVG小车搭载有工业相机、IMU和导航计算机,所述工业相机通过接口与导航计算机相连,所述IMU通过接口与导航计算机相连。
CN201910030711.6A 2019-01-14 2019-01-14 Agv小车的定位方法及定位系统 Pending CN109579838A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910030711.6A CN109579838A (zh) 2019-01-14 2019-01-14 Agv小车的定位方法及定位系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910030711.6A CN109579838A (zh) 2019-01-14 2019-01-14 Agv小车的定位方法及定位系统

Publications (1)

Publication Number Publication Date
CN109579838A true CN109579838A (zh) 2019-04-05

Family

ID=65916645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910030711.6A Pending CN109579838A (zh) 2019-01-14 2019-01-14 Agv小车的定位方法及定位系统

Country Status (1)

Country Link
CN (1) CN109579838A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110308729A (zh) * 2019-07-18 2019-10-08 石家庄辰宙智能装备有限公司 基于视觉与imu或里程计的agv组合导航定位方法
CN110645975A (zh) * 2019-10-16 2020-01-03 北京华捷艾米科技有限公司 一种单目视觉定位的imu辅助跟踪方法及装置
CN111002991A (zh) * 2019-04-28 2020-04-14 和芯星通(上海)科技有限公司 一种车载导航信息处理的方法、装置及计算机存储介质
CN111780785A (zh) * 2020-07-20 2020-10-16 武汉中海庭数据技术有限公司 车载memsimu零偏自标定方法及系统
CN111829552A (zh) * 2019-04-19 2020-10-27 北京初速度科技有限公司 一种视觉惯性系统的误差修正方法和装置
CN113758502A (zh) * 2021-09-24 2021-12-07 广东汇天航空航天科技有限公司 组合导航处理方法及装置
CN113759409A (zh) * 2021-08-24 2021-12-07 广州文远知行科技有限公司 一种导航数据传输装置、方法及计算机可读存储介质
CN114136339A (zh) * 2021-11-29 2022-03-04 中国船舶重工集团公司第七0七研究所 一种基于单位置基准点的里程计参数标定方法
CN114370885A (zh) * 2021-10-29 2022-04-19 北京自动化控制设备研究所 一种惯性导航系统误差补偿方法及系统
CN114812513A (zh) * 2022-05-10 2022-07-29 北京理工大学 一种基于红外信标的无人机定位系统及方法
CN113759409B (zh) * 2021-08-24 2024-05-24 广州文远知行科技有限公司 一种导航数据传输装置、方法及计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090254276A1 (en) * 2008-04-08 2009-10-08 Ensco, Inc. Method and computer-readable storage medium with instructions for processing data in an internal navigation system
CN102901514A (zh) * 2012-09-25 2013-01-30 北京航空航天大学 一种基于多惯组信息约束的协同初始对准方法
CN106017461A (zh) * 2016-05-19 2016-10-12 北京理工大学 基于人体/环境约束的行人导航系统三维空间定位方法
CN106482733A (zh) * 2016-09-23 2017-03-08 南昌大学 行人导航中基于足底压力检测的零速修正方法
CN106908060A (zh) * 2017-02-15 2017-06-30 东南大学 一种基于mems惯性传感器的高精度室内定位方法
CN108426574A (zh) * 2018-02-02 2018-08-21 哈尔滨工程大学 一种基于zihr的航向角修正算法的mems行人导航方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090254276A1 (en) * 2008-04-08 2009-10-08 Ensco, Inc. Method and computer-readable storage medium with instructions for processing data in an internal navigation system
CN102901514A (zh) * 2012-09-25 2013-01-30 北京航空航天大学 一种基于多惯组信息约束的协同初始对准方法
CN106017461A (zh) * 2016-05-19 2016-10-12 北京理工大学 基于人体/环境约束的行人导航系统三维空间定位方法
CN106482733A (zh) * 2016-09-23 2017-03-08 南昌大学 行人导航中基于足底压力检测的零速修正方法
CN106908060A (zh) * 2017-02-15 2017-06-30 东南大学 一种基于mems惯性传感器的高精度室内定位方法
CN108426574A (zh) * 2018-02-02 2018-08-21 哈尔滨工程大学 一种基于zihr的航向角修正算法的mems行人导航方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周绍磊等: ""一种单目视觉ORB-SLAM/INS组合导航方法"", 《中国惯性技术学报》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111829552A (zh) * 2019-04-19 2020-10-27 北京初速度科技有限公司 一种视觉惯性系统的误差修正方法和装置
CN111002991A (zh) * 2019-04-28 2020-04-14 和芯星通(上海)科技有限公司 一种车载导航信息处理的方法、装置及计算机存储介质
CN110308729A (zh) * 2019-07-18 2019-10-08 石家庄辰宙智能装备有限公司 基于视觉与imu或里程计的agv组合导航定位方法
CN110645975A (zh) * 2019-10-16 2020-01-03 北京华捷艾米科技有限公司 一种单目视觉定位的imu辅助跟踪方法及装置
CN111780785A (zh) * 2020-07-20 2020-10-16 武汉中海庭数据技术有限公司 车载memsimu零偏自标定方法及系统
CN113759409A (zh) * 2021-08-24 2021-12-07 广州文远知行科技有限公司 一种导航数据传输装置、方法及计算机可读存储介质
CN113759409B (zh) * 2021-08-24 2024-05-24 广州文远知行科技有限公司 一种导航数据传输装置、方法及计算机可读存储介质
CN113758502A (zh) * 2021-09-24 2021-12-07 广东汇天航空航天科技有限公司 组合导航处理方法及装置
CN113758502B (zh) * 2021-09-24 2024-02-20 广东汇天航空航天科技有限公司 组合导航处理方法及装置
CN114370885A (zh) * 2021-10-29 2022-04-19 北京自动化控制设备研究所 一种惯性导航系统误差补偿方法及系统
CN114370885B (zh) * 2021-10-29 2023-10-13 北京自动化控制设备研究所 一种惯性导航系统误差补偿方法及系统
CN114136339A (zh) * 2021-11-29 2022-03-04 中国船舶重工集团公司第七0七研究所 一种基于单位置基准点的里程计参数标定方法
CN114136339B (zh) * 2021-11-29 2023-06-20 中国船舶重工集团公司第七0七研究所 一种基于单位置基准点的里程计参数标定方法
CN114812513A (zh) * 2022-05-10 2022-07-29 北京理工大学 一种基于红外信标的无人机定位系统及方法

Similar Documents

Publication Publication Date Title
CN109579838A (zh) Agv小车的定位方法及定位系统
Zhao et al. A robust laser-inertial odometry and mapping method for large-scale highway environments
Li et al. LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments
RU2670243C9 (ru) Способ начального выравнивания устройства инерциальной навигации
CN110084832B (zh) 相机位姿的纠正方法、装置、系统、设备和存储介质
Fan et al. Data fusion for indoor mobile robot positioning based on tightly coupled INS/UWB
CN110044354A (zh) 一种双目视觉室内定位与建图方法及装置
CN113781582B (zh) 基于激光雷达和惯导联合标定的同步定位与地图创建方法
Su et al. GR-LOAM: LiDAR-based sensor fusion SLAM for ground robots on complex terrain
Yoshida et al. A sensor platform for outdoor navigation using gyro-assisted odometry and roundly-swinging 3D laser scanner
CN108981687A (zh) 一种视觉与惯性融合的室内定位方法
CN109737968B (zh) 基于二维LiDAR和智能手机的室内融合定位方法
Wang et al. Visual odometry based on locally planar ground assumption
Liu et al. Bidirectional trajectory computation for odometer-aided visual-inertial SLAM
Xiao et al. LIO-vehicle: A tightly-coupled vehicle dynamics extension of LiDAR inertial odometry
CN109387198A (zh) 一种基于序贯检测的惯性/视觉里程计组合导航方法
Ling et al. RGB-D inertial odometry for indoor robot via keyframe-based nonlinear optimization
Huai et al. Segway DRIVE benchmark: Place recognition and SLAM data collected by a fleet of delivery robots
Tang et al. Ic-gvins: A robust, real-time, ins-centric gnss-visual-inertial navigation system for wheeled robot
CN115326068B (zh) 激光雷达-惯性测量单元融合里程计设计方法及系统
CN114543786B (zh) 一种基于视觉惯性里程计的爬壁机器人定位方法
CN116380070A (zh) 一种基于时间戳优化的视觉惯性定位方法
CN115540854A (zh) 一种基于uwb辅助的主动定位方法、设备和介质
CN115183767A (zh) 一种基于arkf的单目vio/uwb室内组合定位方法
Qin et al. Multi-modal sensor fusion method based on Kalman filter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190405

WD01 Invention patent application deemed withdrawn after publication