CN109574824B - β-CF3取代的α,β-不饱和酮的还原方法 - Google Patents

β-CF3取代的α,β-不饱和酮的还原方法 Download PDF

Info

Publication number
CN109574824B
CN109574824B CN201811608864.6A CN201811608864A CN109574824B CN 109574824 B CN109574824 B CN 109574824B CN 201811608864 A CN201811608864 A CN 201811608864A CN 109574824 B CN109574824 B CN 109574824B
Authority
CN
China
Prior art keywords
substituted
beta
reduction
benzylamine
unsaturated ketone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811608864.6A
Other languages
English (en)
Other versions
CN109574824A (zh
Inventor
孔丽
张万斌
谢芳
李雪薇
吴小婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Shanghai University of Medicine and Health Sciences
Original Assignee
Shanghai Jiaotong University
Shanghai University of Medicine and Health Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University, Shanghai University of Medicine and Health Sciences filed Critical Shanghai Jiaotong University
Priority to CN201811608864.6A priority Critical patent/CN109574824B/zh
Publication of CN109574824A publication Critical patent/CN109574824A/zh
Application granted granted Critical
Publication of CN109574824B publication Critical patent/CN109574824B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/62Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种β‑CF3取代的α,β‑不饱和酮的还原方法,本发明的方法首次采用苄胺或取代的苄胺作为分子内的1,5氢迁移氢转移试剂,在Lewis酸金属盐的促进下,仅需一步反应就能实现β‑CF3取代的α,β‑不饱和酮的还原,缩短合成工艺技术路线,提高了合成效率;另外,本发明的方法还具有底物适用性强、反应产率较高、反应条件温和、操作简单以及合成成本低的优点。

Description

β-CF3取代的α,β-不饱和酮的还原方法
技术领域
本发明涉及一种β-CF3取代的α,β-不饱和酮的还原方法,属于有机化学合成技术领域。
背景技术
关于α,β-不饱和羰基化合物的还原方法,特别是对于羰基的化学选择性还原,是合成有机化学中最重要的主题之一。
关于β-CF3取代的烯酮的羰基的选择性还原,目前现有技术中常用的方法主要为用氢气催化氢化,或者用醇或其它昂贵的氢源催化转移氢化,然而这些方法通常需要进行两步构建得以实现。
前不久,有Yoko Hamada等人发表的“在无金属条件下,碱促进的含 CF3的烯丙醇异构化成相应的饱和酮”(“Base-promoted isomerization of CF3-containing allylicalcohols to the corresponding saturated ketones under metal-free conditions”,Hamada,Y.;Kawasaki-Takasuka,T.;Yamazaki,T. Beilstein J.Org.Chem.2017,13,1507.)报道了:通过两步构建反应,第一步先还原β-CF3取代的烯酮的羰基,然后对β-CF3取代的烯丙基醇进行异构化。然而,需要通过两步反应才能完成选择性还原,反应效率较低,另一方面,在这两步反应需在昂贵的过渡金属(如Ru,Rh和Ir金属)催化作用下完成。
目前一步构建合成β-CF3取代的α,β-不饱和酮的方法,技术上还无法实现。
由此,本领域技术人员希望能够开发出一种新的β-CF3取代的α,β-不饱和酮的还原方法,能够一步反应实现还原,合成效率更高。
发明内容
鉴于相关技术的上述问题和/或其他问题,本发明一方面提供了一种β-CF3取代的α,β-不饱和酮的还原方法,其中,
所述还原方法包括在Lewis酸金属盐的存在下,在有机溶剂环境中,使用苄胺或取代的苄胺为氢转移还原试剂对所述β-CF3取代的α,β-不饱和酮的羰基进行还原反应,以获得β-CF3取代的饱和酮的步骤,
所述Lewis酸金属盐为三氯化铝、三氟甲烷磺酸铜、二氯化锌、六水合高氯酸镍或六水合高氯酸钴中的任意一种;
所述有机溶剂为甲苯、乙醇、间二甲苯、1,4-二恶烷、三氟乙醇或均三甲苯中的任意一种;
所述取代的苄胺是其芳香环被取代,所述芳香环上的取代基为C1~C2的烷基,羰基或三氟甲基。
所述还原反应的温度为80~120℃。
优选的,所述β-CF3取代的α,β-不饱和酮具有如下式(I)化学式:
Figure BDA0001924229680000021
在所述式(I)化学式中,R1为C1~C2的烷基、取代或未取代的芳香基,所述芳香基为苯基、萘基或呋喃基;若R1为取代的芳香基,则所述取代的芳香基上的取代基团可以为苯基、甲氧基、卤素基或C1~C2的卤代烷基;
在所述式(I)化学式中,R2为取代或未取代的苯基;若R2为取代的苯基,则所述取代的苯基上的取代基为卤素基。
优选的,所述作为氢转移还原试剂的苄胺或取代的苄胺与所述β-CF3取代的α,β-不饱和酮的摩尔比为(1~5.0):1;以及,所述Lewis酸金属盐与所述β-CF3取代的α,β-不饱和酮的摩尔比为(0.0004~0.02):1。
优选的,所述β-CF3取代的α,β-不饱和酮、所述作为氢转移还原试剂的苄胺或取代的苄胺和所述Lewis酸金属盐的摩尔比为1:3:0.005。
优选的,所述有机溶剂为甲苯。
优选的,所述Lewis酸金属盐为六水合高氯酸钴或二氯化锌。
优选的,所述取代的苄胺具有下述式(a)、式(b)或式(c)的结构式,
Figure BDA0001924229680000031
本发明的β-CF3取代的α,β-不饱和酮的还原方法,首次采用苄胺或取代的苄胺作为分子内的1,5氢迁移氢转移试剂,在Lewis酸金属盐的促进下,仅需一步反应就能实现β-CF3取代的α,β-不饱和酮的还原,缩短合成工艺技术路线,提高了合成效率;另外,本发明的方法还具有底物适用性强、反应产率较高、反应条件温和、操作简单以及合成成本低的优点。
具体实施方式
以下通过实施例对本发明作进一步的说明,但本发明并不限于这些具体实施方式。
实施例1
在15mL的反应瓶中,加入2.0ml甲苯,再分别加入如下式(1)所示的β-CF3取代的α,β-不饱和酮(69.4mg,0.25mmol)、苄胺(107μl,0.75mmol) 和六水合高氯酸钴金属盐(2.0mg,0.005mmol),三者的摩尔比为1:3:0.005;
将反应瓶置于油浴中加热,在100℃下剧烈搅拌24小时,停止反应,加入盐酸酸化,乙酸乙酯萃取;
取1mL浓缩旋干使用1H-NMR检测到还原产物(下式(1’)所示的β-CF3取代的饱和酮),还原产物的产率为89%。
Figure BDA0001924229680000032
上述式(1)中,(E)表示E构型(立体异构体),是指与双键相连的原子序数大的原子或基团在双键平面的不同侧。以下实施例中皆同。
实施例2-10
实施例2-10与实施例1的不同之处在于:式(1)所示的β-CF3取代的α,β-不饱和酮、苄胺与六水合高氯酸钴金属盐,三者之间的摩尔比不同。其余反应条件和操作完全相同,具体不再赘述。
实施例2-10中三者摩尔比值以及还原产物的产率结果如下表1。
表1
三者摩尔比值 产率
实施例2 1:4.5:0.002 85%
实施例3 1:1:0.002 96%
实施例4 1:2:0.002 89%
实施例5 1:3:0.002 91%
实施例6 1:3:0.0004 80%
实施例7 1:1:0.005 93%
实施例8 1:2:0.005 82%
实施例9 1:3:0.01 62%
实施例10 1:3:0.015 71%
实施例11
在15mL的反应瓶中,加入2.0ml甲苯,再分别加入如上式(1)所示的β-CF3取代的α,β-不饱和酮(69.4mg,0.25mmol)、苄胺(160μl,1.13mmol) 和二氯化锌(0.68mg,0.005mmol),三者的摩尔比为1:4.52:0.02;
将反应瓶置于油浴中加热,在100℃下剧烈搅拌24小时,停止反应,加入盐酸酸化,乙酸乙酯萃取;
取1mL浓缩旋干使用1H-NMR检测到还原产物(上式(1’)所示的β-CF3取代的饱和酮),还原产物的产率为80%。
实施例12
在15mL的反应瓶中,加入2.0ml甲苯,再分别加入如上式(1)所示的β-CF3取代的α,β-不饱和酮(69.4mg,0.25mmol)、取代的苄胺(160μl, 1.13mmol)和三氯化铝(0.67mg,0.005mmol)),三者的摩尔比为1:4.52: 0.02;
实施例12采用的取代的苄胺的结构式如下式(a)所示:
Figure BDA0001924229680000051
将反应瓶置于油浴中加热,在100℃下剧烈搅拌24小时,停止反应,加入盐酸酸化,乙酸乙酯萃取;
取1mL浓缩旋干使用1H-NMR检测到还原产物(上式(1’)所示的β-CF3取代的饱和酮),还原产物的产率为50%。
实施例13
在15mL的反应瓶中,加入2.0ml甲苯,再分别加入如上式(1)所示的β-CF3取代的α,β-不饱和酮(69.4mg,0.25mmol)、取代的苄胺(160μl, 1.13mmol)和三氟甲烷磺酸铜(5.1mg,0.005mmol),三者的摩尔比为1: 4.52:0.02;
实施例13采用的取代的苄胺的结构式如下式(b)所示:
Figure BDA0001924229680000052
将反应瓶置于油浴中加热,在100℃下剧烈搅拌24小时,停止反应,加入盐酸酸化,乙酸乙酯萃取;
取1mL浓缩旋干使用1H-NMR检测到还原产物(上式(1’)所示的β-CF3取代的饱和酮),还原产物的产率为51%。
实施例14
在15mL的反应瓶中,加入2.0ml甲苯,再分别加入如上式(1)所示的β-CF3取代的α,β-不饱和酮(69.4mg,0.25mmol)、取代的苄胺(160μl, 1.13mmol)和三氯化铁(0.8mg,0.005mmol),三者的摩尔比为1:4.52: 0.02;
实施例14采用的取代的苄胺的结构式如下式(c)所示:
Figure BDA0001924229680000061
将反应瓶置于油浴中加热,在100℃下剧烈搅拌24小时,停止反应,加入盐酸酸化,乙酸乙酯萃取;
取1mL浓缩旋干使用1H-NMR检测到还原产物(上式(1’)所示的β-CF3取代的饱和酮),还原产物的产率为47%。
实施例15-30
实施例15-30与上述实施例1的区别在于:还原底物(β-CF3取代的α,β-不饱和酮)不同;其余反应条件和操作完全相同,具体不再赘述。
实施例15-30的还原底物的结构式分别如下式(15)-(30)所示:
Figure BDA0001924229680000062
Figure BDA0001924229680000071
实施例15-实施例30的还原产物的产率结果如下表2。
表2
Figure BDA0001924229680000072
Figure BDA0001924229680000081
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (5)

1.一种β-CF3取代的α,β-不饱和酮的还原方法,其特征在于:
所述还原方法包括在Lewis酸金属盐的存在下,在有机溶剂环境中,使用苄胺或取代的苄胺为氢转移还原试剂对所述β-CF3取代的α,β-不饱和酮的羰基进行还原反应,以获得β-CF3取代的饱和酮的步骤,
所述Lewis酸金属盐为三氯化铝、三氟甲烷磺酸铜、二氯化锌或六水合高氯酸钴中的任意一种;
所述有机溶剂为甲苯、乙醇、间二甲苯、1,4-二恶烷、三氟乙醇或均三甲苯中的任意一种;
所述取代的苄胺是其芳香环被取代,所述芳香环上的取代基为C1~C2的烷基,或三氟甲基;或者,
所述取代的苄胺具有下述式(a)的结构式:
Figure FDA0003149832940000011
所述还原反应的温度为80~120℃;
所述β-CF3取代的α,β-不饱和酮具有如下式(I)化学式:
Figure FDA0003149832940000012
在所述式(I)化学式中,R1为C1~C2的烷基、取代或未取代的芳香基,所述芳香基为苯基、萘基或呋喃基;若R1为取代的芳香基,则所述取代的芳香基上的取代基团为C1~C2的烷基、苯基、甲氧基、卤素基或C1~C2的卤代烷基;
在所述式(I)化学式中,R2为取代或未取代的苯基;若R2为取代的苯基,则所述取代的苯基上的取代基为卤素基;
所述作为氢转移还原试剂的苄胺或取代的苄胺与所述β-CF3取代的α,β-不饱和酮的摩尔比为(1~5.0):1;以及,
所述Lewis酸金属盐与所述β-CF3取代的α,β-不饱和酮的摩尔比为(0.0004~0.02):1。
2.如权利要求1所述的β-CF3取代的α,β-不饱和酮的还原方法,其特征在于:
所述β-CF3取代的α,β-不饱和酮、所述作为氢转移还原试剂的苄胺或取代的苄胺和所述Lewis酸金属盐的摩尔比为1:3:0.005。
3.如权利要求1所述的β-CF3取代的α,β-不饱和酮的还原方法,其特征在于:
所述有机溶剂为甲苯。
4.如权利要求1至3中任意一项所述的β-CF3取代的α,β-不饱和酮的还原方法,其特征在于:
所述Lewis酸金属盐为六水合高氯酸钴或二氯化锌。
5.如权利要求1至3中任意一项所述的β-CF3取代的α,β-不饱和酮的还原方法,其特征在于:
所述取代的苄胺具有式(b)或式(c)的结构式,
Figure FDA0003149832940000021
CN201811608864.6A 2018-12-27 2018-12-27 β-CF3取代的α,β-不饱和酮的还原方法 Active CN109574824B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811608864.6A CN109574824B (zh) 2018-12-27 2018-12-27 β-CF3取代的α,β-不饱和酮的还原方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811608864.6A CN109574824B (zh) 2018-12-27 2018-12-27 β-CF3取代的α,β-不饱和酮的还原方法

Publications (2)

Publication Number Publication Date
CN109574824A CN109574824A (zh) 2019-04-05
CN109574824B true CN109574824B (zh) 2021-09-10

Family

ID=65933023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811608864.6A Active CN109574824B (zh) 2018-12-27 2018-12-27 β-CF3取代的α,β-不饱和酮的还原方法

Country Status (1)

Country Link
CN (1) CN109574824B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053567A (zh) * 2018-10-25 2018-12-21 西南石油大学 一种氢转移还原含氮杂环化合物的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053567A (zh) * 2018-10-25 2018-12-21 西南石油大学 一种氢转移还原含氮杂环化合物的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A New Entry to Pd-H Chemistry:Catalytic Asymmetric Conjugate Reduction of Enones with EtOH and a Highly Enantioselective Synthesis of Warfarin;Yasunori Tsuchiya等;《Org. Lett.》;20060920;第8卷(第21期);第4851-4854页 *
Base-promoted isomerization of CF3-containing allylic alcohols to the corresponding saturated ketones under metal-free conditions;Yoko Hamada等;《Beilstein J. Org. Chem.》;20170801;第13卷;第1507-1512页 *
Ruthenium-Catalyzed One-Pot Tandem Isomerization–Transfer Hydrogenation Reactions of g-Trifluoromethylated Allylic Alcohols and b-Trifluoromethylated Enones;Vincent Bizet等;《Adv. Synth. Catal.》;20130430;第355卷;第1394-1402页 *
Ruthenium-Catalyzed Redox Isomerization of Trifluoromethylated Allylic Alcohols: Mechanistic Evidence for an Enantiospecific Pathway;Vincent Bizet等;《Angew. Chem. Int. Ed.》;20120515;第51卷;第6467-6470页 *
Synthesis of b-CF3 ketones from trifluoromethylated allylic alcohols by ruthenium catalyzed isomerization;Vincent Bizet等;《Journal of Fluorine Chemistry》;20130131;第152卷;第56-61页 *

Also Published As

Publication number Publication date
CN109574824A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
US6545188B2 (en) Transfer hydrogenation process and catalyst
Liu et al. Highly efficient and convenient asymmetric hydrosilylation of ketones catalyzed with zinc Schiff base complexes
US20080015376A1 (en) Catalytic hydrogenation processes
US8871982B2 (en) Hydrogenation of dienals with rhodium complexes under carbon monoxide free atmosphere
Wang et al. Sodium hydroxide-catalyzed transfer hydrogenation of carbonyl compounds and nitroarenes using ethanol or isopropanol as both solvent and hydrogen donor
US8859815B2 (en) Sulphonylated diphenylethylenediamines, method for their preparation and use in transfer hydrogenation catalysis
Hu et al. A Sc (OTf) 3 catalyzed Mukaiyama–Mannich reaction of difluoroenoxysilanes with unactivated ketimines
US7291753B2 (en) Transfer hydrogenation processes and catalysts
CN109574824B (zh) β-CF3取代的α,β-不饱和酮的还原方法
Hsieh et al. A simple route to 1, 4-addition reactions by Co-catalyzed reductive coupling of organic tosylates and triflates with activated alkenes
US20150329452A1 (en) Method for producing optically active isopulegol and optically active menthol
US7884223B2 (en) Chiral compound suitable as a catalyst for asymmetric transfer hydrogenation
US6187961B1 (en) Process for the preparation of trans-(R,R)-actinol
CN117157273A (zh) 无一氧化碳气氛下二烯醛或二烯酮与铑络合物的氢化
Zhou et al. Cyclodimerization of α, β-unsaturated ketones promoted by samarium diiodide
US9029540B2 (en) Ruthenium catalysts and their use for asymmetric reduction of ketones
Tenaglia et al. Ruthenium (II)-catalyzed homo-Diels–Alder reactions of disubstituted alkynes and norbornadiene
Tong et al. Synthesis of N, N-dimethyl-2-amino-1, 2-dicyclohexylethanol and its application in the enantioselective conjugate addition of diethylzinc to enones: a convenient upgrade of the chiral ligand via hydrogenation
WO2009122408A1 (en) STABLE C - (sup3) - CYCLOMETALATED PINCER COMPLEXES, THEIR PREPARATION AND USE AS CATALYSTS
CN106986754B (zh) 一种钴催化制备甲基酮的方法
US20200055037A1 (en) Transition metal isonitrile catalysts
CN101784527B (zh) 顺式-3-取代-3-氮杂二环[3.2.1]辛烷-8-醇衍生物的制造方法
US8692010B1 (en) Synthesis method for copper compounds
US8034971B2 (en) Method for producing 1,2-phenylethane compound using atom transfer radical coupling reaction
JP2018528954A (ja) ファルネソールの製造

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant