CN109572694A - 一种考虑不确定性的自动驾驶风险评估方法 - Google Patents

一种考虑不确定性的自动驾驶风险评估方法 Download PDF

Info

Publication number
CN109572694A
CN109572694A CN201811320132.7A CN201811320132A CN109572694A CN 109572694 A CN109572694 A CN 109572694A CN 201811320132 A CN201811320132 A CN 201811320132A CN 109572694 A CN109572694 A CN 109572694A
Authority
CN
China
Prior art keywords
vehicle
model
probability
unbiased
automatic pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811320132.7A
Other languages
English (en)
Other versions
CN109572694B (zh
Inventor
余卓平
曾德全
熊璐
张培志
李志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201811320132.7A priority Critical patent/CN109572694B/zh
Publication of CN109572694A publication Critical patent/CN109572694A/zh
Application granted granted Critical
Publication of CN109572694B publication Critical patent/CN109572694B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed

Abstract

本发明涉及一种考虑不确定性的自动驾驶风险评估方法,本发明方法包括先验环境地图构建步骤、交通参与车辆状态观测步骤、自车执行轨迹调取步骤、基于先验知识的自适应多目标追踪步骤,通过驾驶行为似然估计、轨形匹配、轨迹预测,利用多安全裕度对行车碰撞风险估计,最后输出时空行车风险态势图进行评估,可以实现自动驾驶的多安全裕度风险估计,提高自动驾驶对环境的适应能力,使自动驾驶过程更加平稳可靠。

Description

一种考虑不确定性的自动驾驶风险评估方法
技术领域
本发明涉及智能汽车风险评估技术领域,尤其是涉及一种考虑不确定性的自动驾驶风险评估方法。
背景技术
随着社会经济的高速发展,道路上的机动车辆越来越多,行车安全问题也随之愈显突出,作为有望缓解交通压力与行车安全的无人驾驶技术正逐步从实验室走向大众。对行车安全的高要求,需要自动驾驶车辆应具备先于人发现风险、先于人处理的风险的能力,尽可能避免碰撞,将受损度降到最低。然而,由于传感器的分辨率、测量精度的限制,交通参与驾驶员的行为不可观测以及交通参与车辆参数难以测量,智能车环境感知结果不可避免的存在高不确定性。因此,如何提供一种能考虑环境感知不确定性的可靠的风险评估策略是本领域技术人员亟待解决的问题。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种考虑不确定性的自动驾驶风险评估方法。
本发明的目的可以通过以下技术方案来实现:
一种考虑不确定性的自动驾驶风险评估方法,包括以下步骤:
S1:构建先验环境地图,并获取道路信息。
先验环境地图为以路面特征和道路结构要素作为知识、包含行驶方向的有向节点的多粒度地图,所述的实时的环境地图为以自车质心为地图核心,以传感器探测视距为上限构造的栅格地图,该栅格地图中每一个栅格点的碰撞联合概率被初始化为0。
S2:观测交通参与车辆状态,获取状态数据。所述的观测交通参与车辆状态包括空间观测和时间观测,所述的空间观测获取车辆水平面内的位置和朝向角,所述的时间观测获取车辆的速度、加速度和横摆角速度。
S3:调取自车执行轨迹,将状态数据与自车执行轨迹融合至构建的先验环境地图,获取实时环境地图。
S4:构建基于扩展卡尔曼滤波的自适应交互式多模型数据关联为框架的多目标追踪预测模型,将交通知识、道路知识、车辆知识、驾驶员知识输入模型中,输出交通参与车辆状态的多目标追踪估计结果,所述的多目标追踪结果包括多目标追踪轨迹及轨迹状态信息。具体包括以下步骤:
41)根据道路信息的道路曲率先验知识和模型概率进行模型转移概率的自适应调整,获取交互后的模型输入状态和协方差矩阵。
对于模型i的转移概率调整策略为:
411)模型i在时刻k模型转移概率调整因子
412)模型i在时刻k模型转移概率
Pii,k=max{1,αi,k·Pii,k-1}
413)其他模型在时刻k模型转移概率
其中,ui,k表示模型i在k时刻的模型概率,ui,k-1表示模型i在k-1时刻的模型概率,M表示总的模型数量(此处M=4)。
42)利用无偏直线匀速模型、无偏直线匀加速模型、无偏匀角速度模型、无偏匀角加速度模型的扩展卡尔曼滤波进行下一步的状态预测和协方差预测。
无偏直线匀速模型、无偏直线匀加速模型、无偏匀角速度模型、无偏匀角加速度模型中的无偏指的是目标的无偏观测模型:
其中,车辆坐标系——x表示自车纵向(向前为正),y表示自车横向(向右为正),分别表示纵横向的速度;传感器坐标系——rm、θm分别表示传感器返回的障碍物距离和方向角测量值,分别表示传感器返回的障碍物距离和方向角速率测量值,σθ表示角度的均方差;μa表示传感器坐标系测量值误差转换到下的车辆坐标系的误差;分别表示位置和速度测量误差。
无偏直线匀速模型的系统方程为:
无偏直线匀加速模型系统方程为:
无偏匀角速度模型系统方程为:
无偏匀角加速度模型系统方程为:
其中,x(t)、y(t)表示t时刻目标的纵向与横向位置,表示t时刻目标的纵向与横向速度,表示t时刻目标的纵向与横向加速度,ω表示目标的横摆角速度,α表示机动频率,wc(t)表示系统噪声。
四种模型的输入是所测量的障碍物的距离rm和方位角θm
43)根据道路曲率先验知识和车辆动力学约束的先验知识,计算关联波门的上下限和波门的形状,并自适应调整关联波门。
优选地,采用道路曲率、车速以及车辆转弯半径计算波门的上下限和波门的形状。波门总体由三段圆弧组成,分别标记为则三段圆弧的长度计算公式为:
中间参数满足:
lv=αego·vego·Tego
θv=π-2·θρ
其中,Rρ为波门切圆弧半径,lv为波门长度,θρ为波门切圆弧半径Rρ与波门长度lv的夹角,θv为波门长度lv的夹角,ρroad为当前道路的曲率,ρego为自车当前的转弯曲率,βego为波门半径系数,αego为波门长度系数,vego为自车当前车速,Tego为自车感知系统采样周期。
对关联波门的调整过程具体包括下列步骤:
1)对当前波门进行判断,若当前波门内有交通参与车辆的量测值,跳转至步骤44),若无,则执行下一步;
2)将波门沿纵向放大,并在放大后的波门内检测是否有量测值落入,若有,则跳转至步骤44),若无,则执行下一步;
3)将波门沿纵向放大,并在放大后的波门内检测是否有量测值落入,有则跳转到步骤44),若无,则执行下一步;
4)将波门沿横向放大,并在在放大后的波门内检测是否有量测值落入,若有或者横向未执行到波门边缘,则跳转到步骤44),否则,执行步骤1);
44)利用无偏直线匀速模型、无偏直线匀加速模型、无偏匀角速度模型、无偏匀角加速度模型的扩展卡尔曼滤波进行下一步的状态、协方差、新息、新息的协方差更新;
45)结合新息和新息的协方差进行模型似然估计,并更新模型概率;
46)输出交通参与车辆状态的估计结果;
S5:结合先验知识和多目标追踪估计结果对交通参与车辆进行行为识别与分类。
S6:根据道路信息获取道路曲率,根据多目标追踪轨迹的状态信息获取曲率变化,对曲率变化和道路曲率做差分,获取驾驶行为似然估计的结果,根据驾驶行为似然估计的结果调取对应行为的路径库,并结合多目标追踪估计结果匹配对应的路径作为轨形。
S7:将匹配的轨形与多目标追踪估计结果作为输入,基于模型预测控制获取交通参与车辆预测轨迹。
S8:基于多裕度安全机制,计算碰撞联合概率,输出包含时空碰撞风险的概率地图,根据包含时空碰撞风险的概率地图对自动驾驶风险进行评估。具体内容为:
将车辆碰撞分为两级,第一级为以车辆纵向最短安全距离Δa为长半轴,侧面最短安全距离Δb为短半轴构造的椭圆区域,该区域内若出现存在障碍物的点,则认为100%发生碰撞;第二级为满足舒适性为前提的椭圆区,以车辆纵向舒适安全距离max{Δa,Δa+(vego-vcar)2/aego}为长半轴,侧面舒适安全距离max{Δb,Δb+(vego-vcar)2/aego}为短半轴构造的椭圆区域,该区域为正态分布的碰撞区。
碰撞联合概率以障碍物的点靠近第一级椭圆的距离由近及远来判断,数值在100%~0%之间,其中,vego为自车车速,vcar为他车车速,aego为自车舒适的减速度,一般取小于2m/s2
沿障碍物的预测轨迹以及自车执行轨迹,按照执行时间步长,对每一个节点的碰撞联合概率进行估计;根据估计结果,输出包含每个节点在每一时刻的碰撞联合概率的时空行车风险态势图。
其中,基于多裕度安全机制的碰撞联合概率计算方法为:
a)若障碍物的点落在第一级椭圆区内,碰撞联合概率为:
Pcollision=100%
b)若障碍物的点落在第二级椭圆区外,碰撞联合概率为:
Pcollision=0%
c)若障碍物的点落在第一级椭圆区外,第二级椭圆区内,碰撞联合概率为:
Pcollision=max{Pcollisionx,Pcollisiony}
其中,x、y表示障碍物点在地图中的坐标位置,σx、σx纵横向的安全距离的均方差,μx、μy纵横向的安全距离的期望。计算概率的模型输入为障碍物点在地图中的坐标位置x、y。
将态势图的输入(包括自车当前的车速、加速度、横摆角速度、航向、转弯半径、规划的轨迹和障碍车的位置、方向角、速度、横摆角速度、大小)经由以上步骤的多目标跟踪和碰撞联合概率计算,输出包含障碍物车辆预测的轨迹(位置和速度)与该轨迹对应的碰撞联合概率的栅格地图,即获取时空风险态势图。
与现有技术相比,本发明具有以下优点:
一、本发明考虑了测量不精确、交通参与车辆模型不精确等导致的环境感知不确定性,风险评估结果对环境的适应能力强,结果更可靠;
二、本发明利用基于先验知识的自适应多目标追踪、驾驶行为似然估计和轨迹预测,进行行车碰撞风险估计,最终输出时空行车风险态势图,可以实现自动驾驶的多安全裕度风险估计,提高自动驾驶对环境的适应能力,使自动驾驶过程更加平稳可靠与安全;
三、本发明结合先验知识构建了先验环境地图,辅助风险评估,使评估过程耗时降低,结果更加精确;
四、本发明使用驾驶行为似然估计、轨形匹配和模型预测控制的轨迹预测对交通参与车辆的运动轨迹进行预测,预测过程简单,收敛速度快,结果可靠;
五、本发明设计了自适应多目标追踪,多目标追踪能力强。
附图说明
图1为本发明方法的流程图;
图2为本发明方法中基于先验知识的自适应多目标追踪的流程图;
图3为本发明的纵向自适应波门示意图;
图4为本发明的横向自适应波门示意图;
图5为本发明的自适应波门计算方法示意图;
图6为本发明的直行轨形示意图;
图7为本发明的换道轨形示意图;
图8为本发明的转弯轨形示意图;
图9为本发明的调头轨形示意图;
图10为本发明实施例中多安全裕度行车碰撞风险椭圆示意图;
图11为本发明实施例中一种十字交叉路口场景示意图;
图12为本发明实施例中一种十字交叉路口场景的时空碰撞风险态势图示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
本发明涉及一种考虑不确定性的自动驾驶风险评估方法,如图1所示,该方法包括下列步骤:
步骤一、构建先验环境地图;
先验环境地图包含行驶方向的有向节点的多粒度地图,将路面特征(主要是道路曲率、坡度等)和道路结构要素(减速带、路桩、路沿等)等固定的信息作为知识。
步骤二、观测交通参与车辆状态,获取状态数据;
车辆状态观测分为空间观测和时间观测。其中,空间观测主要获取的是车辆水平面内的位置和朝向角;时间观测主要获取的是车辆的速度、加速度和横摆角速度。
步骤三、调取自车执行轨迹;
步骤四、基于步骤一构建的先验环境地图,将步骤二和步骤三的数据融合,得到一幅实时的环境地图,融合得到的实时环境地图是以自车质心为地图核心,以传感器探测视距为上限构造的一幅栅格地图,地图中每一个栅格点的碰撞联合概率被初始化为0%(安全,无碰撞风险)。
步骤五、基于先验知识的自适应多目标追踪,将交通知识、道路知识、车辆知识、驾驶员知识融合到以基于扩展卡尔曼滤波的自适应交互式多模型快速数据关联为框架的多目标追踪中,实现交通参与车辆(动态障碍物)状态的精确估计与状态分布确定,并输出。具体步骤如图2所示,包括:
步骤51、输入交互:模型转移概率根据道路曲率先验知识和跟踪效果进行自适应调整,计算交互后的模型输入状态和协方差矩阵;
步骤52、状态预测:利用无偏直线匀速模型、无偏直线匀加速模型、无偏匀角速度模型、无偏匀角加速度模型的扩展卡尔曼滤波进行下一步的状态和协方差预测;
步骤53、量测预测:根据道路曲率先验知识和车辆动力学约束的先验知识,自适应调整关联波门,且关联波门是一种结合车辆转弯半径的新型波门,如图3和图4所示,其中,道路曲率、车速以及车辆转弯半径用于计算波门的上下限和形状波门的形状。调整策略包括如下步骤:
步骤531:假设此时当前波门为OA1B1(如图3所示),若波门内有交通参与车辆的量测值,跳转到步骤54,若无,则执行步骤532;
步骤532:将波门沿纵向放大(如图3所示),并在A1A2B2B1波门内检测是否有量测值落入,有则跳转到步骤54,若无,则执行步骤533;
步骤533:将波门沿纵向放大(如图3所示),并在A2A3B3B2波门内检测是否有量测值落入,有则跳转到步骤54,若无,则执行步骤534;
步骤534:将波门沿横向放大(如图4所示),并在OA2B2波门内检测是否有量测值落入,有或者横向未执行到波门OA3B3,则跳转到步骤54,反之无则执行步骤531。
波门总体由三段圆弧组成(如图5所示),分别标记为三段圆弧的长度计算如下:
中间参数满足:
lv=αego·vego·Tego
θv=π-2·θρ
其中,Rρ为波门切圆弧半径,lv为波门长度,θρ为波门切圆弧半径Rρ与波门长度lv的夹角,θv为波门长度lv的夹角,ρroad为当前道路的曲率,ρroad为当前道路的曲率,ρego为自车当前的转弯曲率,βego为波门半径系数(当前设置为1,2,3共三个档次),αego为波门长度系数(当前设置为1,2,3共三个档次),vego为自车当前车速,Tego为自车感知系统采样周期。
步骤54、利用无偏直线匀速、无偏直线匀加速、无偏匀角速度、无偏匀角加速度模型的扩展卡尔曼滤波进行下一步的状态、协方差、新息、新息的协方差更新。
步骤55、结合新息和新息的协方差进行模型似然估计,并更新模型概率。
步骤56、输出交互。最终输出交通参与车辆状态的估计结果。
步骤六、结合先验知识和多目标追踪估计的结果对交通参与车辆进行行为识别与分类,将交通参与车辆的驾驶行为分类为直行(如图6所示)、换道(如图7所示)、转弯(如图8所示)和调头四大类(如图9所示),其中直行是广义上的直行,并不只有在行驶路径为直线时才是直行,对于弯道上的车道保持动作,也对应于直行,因为此时驾驶员并无主观的更改当前行驶车道的意图。
步骤七、根据驾驶行为似然估计的结果,调取对应行为的路径库,然后结合目标状态估计结果匹配对应的路径作为轨形。行为路径库,主要包含直行、换道、转弯和调头四大类轨形模板,轨形的坐标系是车辆的SAE坐标系(车头方向为纵向,即x坐标轴正轴,右侧为横向,即y坐标轴正轴),各轨形模板中的子轨形是以车辆的质心为起点(也是坐标系的原点),以横向间距、纵向间距、航向间距为变量进行离散,采集自然驾驶数据后处理得到的。
步骤八、将匹配的轨形和多目标追踪的结果作为输入,基于模型预测控制得到完整的交通参与车辆预测轨迹。轨迹预测是通过将匹配的轨形和目标多目标追踪估计的结果作为输入,基于模型预测控制得到轨形的速度曲线,之后将轨形的路径与速度曲线合并得到完整的交通参与车辆预测轨迹。
步骤九、基于多裕度安全机制,计算碰撞联合概率,并输出一幅包含时空碰撞风险的概率地图。步骤主要包括:
步骤91、将车辆碰撞分为两级(如图10所示),第一级是以车辆纵向最短安全距离为长半轴,侧面最短安全距离为短半轴,构造的一个椭圆区域,该区域内一旦出现存在障碍物的点,则认为100%发生碰撞,第二级为满足舒适性为前提的椭圆区,以车辆纵向舒适安全距离max{Δa,Δa+(vego-vcar)2/aego}为长半轴,侧面舒适安全距离max{Δb,Δb+(vego-vcar)2/aego}为短半轴构造的椭圆区域,该区域为正态分布的碰撞区,碰撞联合概率的数值以障碍物的点靠近第一级椭圆区的距离由近及远来判断,数值为100%~0%,其中,vego为自车车速,vcar为他车车速,aego为自车舒适的减速度,一般取小于2m/s2;碰撞联合概率的计算如下:
若障碍物的点落在第一级椭圆区内,则碰撞联合概率为:
Pcollision=100%
若障碍物的点落在第二级椭圆区外,则碰撞联合概率为:
Pcollision=0%
若障碍物的点落在第一级椭圆区外,第二级椭圆区内,则碰撞联合概率为:
Pcollision=max{Pcollisionx,Pcollisiony}
其中:
式中:x、y为障碍物点在地图中的坐标位置,σx、σy分别为纵、横向的安全距离的均方差,μx、μy分别为纵、横向的安全距离的期望。
步骤92、沿障碍物的预测轨迹以及自车执行轨迹,按照执行时间步长,进行每一个节点的碰撞联合概率估计,如图11和图12所示。
步骤93、输出一幅时空行车风险态势图,态势图中包含了每个节点在每一时刻的碰撞联合概率,如图12所示。图中,ego_k表示自车k时刻的规划位姿和碰撞联合概率椭圆,ego_k+n表示自车k+n时刻的规划位姿和碰撞联合概率椭圆,ego_k到ego_k+n的整段轨迹代表自车的规划轨迹和和碰撞联合概率椭圆;car1_k、car2_k、car3_k分别表示障碍车1、2、3号目标的k时刻预测位姿和碰撞联合概率椭圆,car1_k+n、car2_k+n、car3_k+n分别表示障碍车1、2、3号目标的k+n时刻预测位姿和碰撞联合概率椭圆,car1_k到car1_k+n、car2_k到car2_k+n、和car3_k到car3_k+n、的整段轨迹代表障碍车的预测轨迹和和碰撞联合概率椭圆。
本发明利用基于先验知识的自适应多目标追踪、驾驶行为似然估计和轨迹预测,进行行车碰撞风险估计,最终输出时空行车风险态势图,可以实现自动驾驶的多安全裕度风险估计,提高自动驾驶对环境的适应能力,使自动驾驶过程更加平稳可靠与安全。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的工作人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

1.一种考虑不确定性的自动驾驶风险评估方法,其特征在于,该方法包括以下步骤:
1)构建先验环境地图,并获取道路信息;
2)观测交通参与车辆状态,获取状态数据;
3)获取自车执行轨迹,将状态数据与自车执行轨迹融合至构建的先验环境地图,获取实时环境地图;
4)构建基于扩展卡尔曼滤波的自适应交互式多模型数据关联为框架的多目标追踪预测模型,将交通知识、道路知识、车辆知识、驾驶员知识输入模型中,输出交通参与车辆状态的多目标追踪估计结果,所述的多目标追踪结果包括多目标追踪轨迹及轨迹状态信息;
5)结合先验知识和多目标追踪估计结果对交通参与车辆进行行为识别与分类;
6)根据道路信息获取道路曲率,根据多目标追踪轨迹的状态信息获取曲率变化,对曲率变化和道路曲率做差分,获取驾驶行为似然估计的结果,根据驾驶行为似然估计的结果调取对应行为的路径库,并结合多目标追踪估计结果匹配对应的路径作为轨形;
7)将匹配的轨形与多目标追踪估计结果作为输入,基于模型预测控制获取交通参与车辆预测轨迹;
8)基于多裕度安全机制,计算碰撞联合概率,输出包含时空碰撞风险的概率地图,根据包含时空碰撞风险的概率地图对自动驾驶风险进行评估。
2.根据权利要求1所述的一种考虑不确定性的自动驾驶风险评估方法,其特征在于,步骤2)中,所述的观测交通参与车辆状态包括空间观测和时间观测,所述的空间观测获取车辆水平面内的位置和朝向角,所述的时间观测获取车辆的速度、加速度和横摆角速度。
3.根据权利要求1所述的一种考虑不确定性的自动驾驶风险评估方法,其特征在于,步骤4)具体包括以下步骤:
41)根据道路信息的道路曲率先验知识和模型概率进行模型转移概率的自适应调整,获取交互后的模型输入状态和协方差矩阵;对于模型i的转移概率调整内容为:
411)模型i在时刻k模型转移概率调整因子为:
412)模型i在时刻k的模型转移概率的表达式为:
Pii,k=max{1,αi,k·Pii,k-1}
413)其他模型在时刻k模型转移概率的表达式为:
j=1,...M且j≠i
其中,ui,k为模型i在k时刻的模型概率,ui,k-1为模型i在k-1时刻的模型概率,M为总的模型数量;
42)利用无偏直线匀速模型、无偏直线匀加速模型、无偏匀角速度模型、无偏匀角加速度模型的扩展卡尔曼滤波进行下一步的状态预测和协方差预测;
43)根据道路曲率先验知识和车辆动力学约束的先验知识,计算关联波门的上下限和波门的形状,并自适应调整关联波门;
44)利用无偏直线匀速模型、无偏直线匀加速模型、无偏匀角速度模型、无偏匀角加速度模型的扩展卡尔曼滤波进行下一步的状态、协方差、新息、新息的协方差更新;
45)结合新息和新息的协方差进行模型似然估计,并更新模型概率;
46)输出交通参与车辆状态的估计结果。
4.根据权利要求3所述的一种考虑不确定性的自动驾驶风险评估方法,其特征在于,无偏直线匀速模型、无偏直线匀加速模型、无偏匀角速度模型、无偏匀角加速度模型的输入为测量的障碍物的距离rm和方位角θm,其中:
无偏直线匀速模型的系统方程的表达式为:
无偏直线匀加速模型系统方程的表达式为:
无偏匀角速度模型系统方程的表达式为:
无偏匀角加速度模型系统方程的表达式为:
式中:x(t)、y(t)分别为t时刻目标的纵向位置与横向位置,分别为t时刻目标的纵向速度与横向速度,分别为t时刻目标的纵向加速度与横向加速度,ω为目标的横摆角速度,α为机动频率,wc(t)为系统噪声。
5.根据权利要求4所述的一种考虑不确定性的自动驾驶风险评估方法,其特征在于,采用道路曲率、车速以及车辆转弯半径计算波门的上下限和波门的形状,具体内容为:
波门总体由三段圆弧组成,分别标记为其长度的表达式为:
其中,Rρ为波门切圆弧半径,lv为波门长度,θρ为波门切圆弧半径与波门长度lv的夹角,θv为波门长度lv的夹角,各参数的表达式为:
lv=αego·vego·Tego
θv=π-2·θρ
式中:ρroad为当前道路的曲率,ρego为自车当前的转弯曲率,βego为波门半径系数,αego为波门长度系数,vego为自车当前车速,Tego为自车感知系统采样周期。
6.根据权利要求5所述的一种考虑不确定性的自动驾驶风险评估方法,其特征在于,自适应调整关联波门具体包括下列步骤:
431)对当前波门进行判断,若当前波门内有交通参与车辆的量测值,则跳转至步骤44),若无,则执行步骤432);
432)将波门沿纵向放大,并在放大后的波门内检测是否有量测值落入,若有,则跳转至步骤44),若无,则执行步骤433);
433)将步骤432)中放大的波门沿纵向再次放大,并在放大后的波门内检测是否有量测值落入,若有,则跳转到步骤44)若无,则执行步骤434);
434)将波门沿横向放大,并在在放大后的波门内检测是否有量测值落入,若有或者横向未执行到波门边缘,则跳转到步骤44),否则,执行步骤431)。
7.根据权利要求6所述的一种考虑不确定性的自动驾驶风险评估方法,其特征在于,步骤8)具体包括以下步骤:
81)将车辆碰撞分为两级,第一级为以车辆纵向最短安全距离为长半轴,侧面最短安全距离为短半轴构造的椭圆区,该区域内若出现存在障碍物的点,则认为100%发生碰撞,第二级为满足舒适性为前提的椭圆区,该区域为以车辆纵向舒适安全距离为长半轴,侧面舒适安全距离为短半轴构造的椭圆区域,该区域为正态分布的碰撞区,第二级椭圆区位于第一级椭圆区外;碰撞联合概率由障碍物的点靠近第一级椭圆区的距离的远近决定,其数值范围为0%~100%;
82)沿障碍物的预测轨迹以及自车执行轨迹,按照执行时间步长,对每一个节点的碰撞联合概率进行估计;
83)根据步骤82)的估计结果,输出包含每个节点在每一时刻的碰撞联合概率的时空行车风险态势图。
8.根据权利要求7所述的一种考虑不确定性的自动驾驶风险评估方法,其特征在于,碰撞联合概率的计算内容为:
若障碍物的点落在第一级椭圆区内,则碰撞联合概率为:
Pcollision=100%
若障碍物的点落在第二级椭圆区外,则碰撞联合概率为:
Pcollision=0%
若障碍物的点落在第一级椭圆区外,第二级椭圆区内,则碰撞联合概率为:
Pcollision=max{Pcollisionx,Pcollisiony}
其中:
式中:x、y为障碍物点在地图中的坐标位置,σx、σy分别为纵、横向的安全距离的均方差,μx、μy分别为纵、横向的安全距离的期望。
9.根据权利要求8所述的一种考虑不确定性的自动驾驶风险评估方法,其特征在于,若车辆纵向最短安全距离为Δa,侧面最短安全距离为Δb,则车辆纵向舒适安全距离为max{Δa,Δa+(vego-vcar)2/aego},侧面舒适安全距离为max{Δb,Δb+(vego-vcar)2/aego}。
10.根据权利要求9所述的一种考虑不确定性的自动驾驶风险评估方法,其特征在于,所述的包含时空碰撞风险的概率地图为包含障碍物车辆预测的轨迹、与该轨迹对应的碰撞联合概率的栅格地图。
CN201811320132.7A 2018-11-07 2018-11-07 一种考虑不确定性的自动驾驶风险评估方法 Active CN109572694B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811320132.7A CN109572694B (zh) 2018-11-07 2018-11-07 一种考虑不确定性的自动驾驶风险评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811320132.7A CN109572694B (zh) 2018-11-07 2018-11-07 一种考虑不确定性的自动驾驶风险评估方法

Publications (2)

Publication Number Publication Date
CN109572694A true CN109572694A (zh) 2019-04-05
CN109572694B CN109572694B (zh) 2020-04-28

Family

ID=65921725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811320132.7A Active CN109572694B (zh) 2018-11-07 2018-11-07 一种考虑不确定性的自动驾驶风险评估方法

Country Status (1)

Country Link
CN (1) CN109572694B (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110007675A (zh) * 2019-04-12 2019-07-12 北京航空航天大学 一种基于行车态势图的车辆自动驾驶决策系统及基于无人机的训练集制备方法
CN110334863A (zh) * 2019-07-03 2019-10-15 西北工业大学 一种地面移动单元路网区域巡逻问题建模与轨迹生成方法
CN110356408A (zh) * 2019-07-31 2019-10-22 百度在线网络技术(北京)有限公司 自动驾驶车辆行驶方案的确定方法及装置
CN110488816A (zh) * 2019-08-06 2019-11-22 华为技术有限公司 自动驾驶纵向规划方法及相关设备
CN110503667A (zh) * 2019-08-06 2019-11-26 北京超维度计算科技有限公司 一种基于扩展卡尔曼滤波和交互多模型的目标追踪方法
CN110758382A (zh) * 2019-10-21 2020-02-07 南京航空航天大学 一种基于驾驶意图的周围车辆运动状态预测系统及方法
CN110850455A (zh) * 2019-10-18 2020-02-28 浙江天尚元科技有限公司 一种基于差分gps和车辆运动学模型的轨迹录制方法
CN111079834A (zh) * 2019-12-16 2020-04-28 清华大学 一种考虑多车交互的智能车辆安全态势评估方法
CN112180911A (zh) * 2019-06-13 2021-01-05 百度(美国)有限责任公司 用于监控自动驾驶车辆的控制系统的方法
CN112180923A (zh) * 2020-09-23 2021-01-05 深圳裹动智驾科技有限公司 自动驾驶方法、智能控制设备及自动驾驶车辆
CN112193244A (zh) * 2020-09-30 2021-01-08 浙江大学 基于线性约束的自动驾驶车辆运动规划方法
CN112242059A (zh) * 2020-09-30 2021-01-19 南京航空航天大学 基于动机与风险评估的无人驾驶车辆智能决策方法
CN112540365A (zh) * 2020-12-10 2021-03-23 中国第一汽车股份有限公司 一种评估方法、装置、设备及存储介质
CN112977442A (zh) * 2021-04-28 2021-06-18 中智行科技有限公司 控制车辆行驶的方法及装置
CN113424022A (zh) * 2020-01-02 2021-09-21 华为技术有限公司 一种处理预测运动轨迹的方法、显示约束屏障的方法以及装置
CN113470070A (zh) * 2021-06-24 2021-10-01 国汽(北京)智能网联汽车研究院有限公司 驾驶场景目标跟踪方法、装置、设备及存储介质
CN113963027A (zh) * 2021-10-28 2022-01-21 广州文远知行科技有限公司 不确定性检测模型的训练、不确定性的检测方法及装置
CN114005280A (zh) * 2021-11-17 2022-02-01 同济大学 一种基于不确定性估计的车辆轨迹预测方法
CN114261389A (zh) * 2021-11-29 2022-04-01 东风商用车有限公司 自动驾驶商用车的行驶轨迹碰撞风险分析方法
CN115236997A (zh) * 2021-05-27 2022-10-25 上海仙途智能科技有限公司 预测控制方法、装置、设备及计算机可读存储介质
CN115270999A (zh) * 2022-09-26 2022-11-01 毫末智行科技有限公司 一种障碍物风险等级分类方法、装置、存储介质和车辆
TWI808329B (zh) * 2020-07-14 2023-07-11 財團法人車輛研究測試中心 自動駕駛車輛之行車風險評估及控制機制決策方法
CN117698770A (zh) * 2024-02-06 2024-03-15 北京航空航天大学 基于多场景融合的自动驾驶决策安全碰撞风险评估方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6256565B1 (en) * 1999-06-08 2001-07-03 Takata Corporation Vehicle safety system
CN101837782A (zh) * 2009-01-26 2010-09-22 通用汽车环球科技运作公司 用于碰撞预备系统的多目标融合模块
JP2011221667A (ja) * 2010-04-06 2011-11-04 Toyota Motor Corp 対象物リスク予測装置
JP2012148747A (ja) * 2011-01-21 2012-08-09 Toyota Motor Corp 運転支援装置
CN106355883A (zh) * 2016-10-20 2017-01-25 同济大学 基于风险评估模型的交通事故发生概率获取方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6256565B1 (en) * 1999-06-08 2001-07-03 Takata Corporation Vehicle safety system
CN101837782A (zh) * 2009-01-26 2010-09-22 通用汽车环球科技运作公司 用于碰撞预备系统的多目标融合模块
JP2011221667A (ja) * 2010-04-06 2011-11-04 Toyota Motor Corp 対象物リスク予測装置
JP2012148747A (ja) * 2011-01-21 2012-08-09 Toyota Motor Corp 運転支援装置
CN106355883A (zh) * 2016-10-20 2017-01-25 同济大学 基于风险评估模型的交通事故发生概率获取方法及系统

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110007675A (zh) * 2019-04-12 2019-07-12 北京航空航天大学 一种基于行车态势图的车辆自动驾驶决策系统及基于无人机的训练集制备方法
CN112180911A (zh) * 2019-06-13 2021-01-05 百度(美国)有限责任公司 用于监控自动驾驶车辆的控制系统的方法
CN110334863A (zh) * 2019-07-03 2019-10-15 西北工业大学 一种地面移动单元路网区域巡逻问题建模与轨迹生成方法
CN110334863B (zh) * 2019-07-03 2023-05-02 西北工业大学 一种地面移动单元路网区域巡逻问题建模与轨迹生成方法
CN110356408A (zh) * 2019-07-31 2019-10-22 百度在线网络技术(北京)有限公司 自动驾驶车辆行驶方案的确定方法及装置
CN110488816A (zh) * 2019-08-06 2019-11-22 华为技术有限公司 自动驾驶纵向规划方法及相关设备
CN110503667A (zh) * 2019-08-06 2019-11-26 北京超维度计算科技有限公司 一种基于扩展卡尔曼滤波和交互多模型的目标追踪方法
CN110488816B (zh) * 2019-08-06 2021-12-31 华为技术有限公司 自动驾驶纵向规划方法及相关设备
CN110850455A (zh) * 2019-10-18 2020-02-28 浙江天尚元科技有限公司 一种基于差分gps和车辆运动学模型的轨迹录制方法
CN110850455B (zh) * 2019-10-18 2023-04-07 浙江天尚元科技有限公司 一种基于差分gps和车辆运动学模型的轨迹录制方法
CN110758382A (zh) * 2019-10-21 2020-02-07 南京航空航天大学 一种基于驾驶意图的周围车辆运动状态预测系统及方法
CN111079834A (zh) * 2019-12-16 2020-04-28 清华大学 一种考虑多车交互的智能车辆安全态势评估方法
CN111079834B (zh) * 2019-12-16 2020-10-02 清华大学 一种考虑多车交互的智能车辆安全态势评估方法
CN113424022A (zh) * 2020-01-02 2021-09-21 华为技术有限公司 一种处理预测运动轨迹的方法、显示约束屏障的方法以及装置
CN113424022B (zh) * 2020-01-02 2024-04-16 华为技术有限公司 一种处理预测运动轨迹的方法、显示约束屏障的方法以及装置
TWI808329B (zh) * 2020-07-14 2023-07-11 財團法人車輛研究測試中心 自動駕駛車輛之行車風險評估及控制機制決策方法
CN112180923A (zh) * 2020-09-23 2021-01-05 深圳裹动智驾科技有限公司 自动驾驶方法、智能控制设备及自动驾驶车辆
CN112193244B (zh) * 2020-09-30 2021-07-20 浙江大学 基于线性约束的自动驾驶车辆运动规划方法
CN112242059A (zh) * 2020-09-30 2021-01-19 南京航空航天大学 基于动机与风险评估的无人驾驶车辆智能决策方法
CN112193244A (zh) * 2020-09-30 2021-01-08 浙江大学 基于线性约束的自动驾驶车辆运动规划方法
CN112540365A (zh) * 2020-12-10 2021-03-23 中国第一汽车股份有限公司 一种评估方法、装置、设备及存储介质
CN112977442A (zh) * 2021-04-28 2021-06-18 中智行科技有限公司 控制车辆行驶的方法及装置
WO2022247303A1 (zh) * 2021-05-27 2022-12-01 上海仙途智能科技有限公司 预测控制的方法、装置、设备及计算机可读存储介质
CN115236997A (zh) * 2021-05-27 2022-10-25 上海仙途智能科技有限公司 预测控制方法、装置、设备及计算机可读存储介质
CN115236997B (zh) * 2021-05-27 2023-08-25 上海仙途智能科技有限公司 预测控制方法、装置、设备及计算机可读存储介质
CN113470070A (zh) * 2021-06-24 2021-10-01 国汽(北京)智能网联汽车研究院有限公司 驾驶场景目标跟踪方法、装置、设备及存储介质
CN113963027A (zh) * 2021-10-28 2022-01-21 广州文远知行科技有限公司 不确定性检测模型的训练、不确定性的检测方法及装置
CN114005280A (zh) * 2021-11-17 2022-02-01 同济大学 一种基于不确定性估计的车辆轨迹预测方法
CN114261389A (zh) * 2021-11-29 2022-04-01 东风商用车有限公司 自动驾驶商用车的行驶轨迹碰撞风险分析方法
CN114261389B (zh) * 2021-11-29 2023-05-12 东风商用车有限公司 自动驾驶商用车的行驶轨迹碰撞风险分析方法
CN115270999A (zh) * 2022-09-26 2022-11-01 毫末智行科技有限公司 一种障碍物风险等级分类方法、装置、存储介质和车辆
CN115270999B (zh) * 2022-09-26 2022-12-06 毫末智行科技有限公司 一种障碍物风险等级分类方法、装置、存储介质和车辆
CN117698770A (zh) * 2024-02-06 2024-03-15 北京航空航天大学 基于多场景融合的自动驾驶决策安全碰撞风险评估方法
CN117698770B (zh) * 2024-02-06 2024-04-12 北京航空航天大学 基于多场景融合的自动驾驶决策安全碰撞风险评估方法

Also Published As

Publication number Publication date
CN109572694B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN109572694A (zh) 一种考虑不确定性的自动驾驶风险评估方法
CN112347567B (zh) 一种车辆意图和轨迹预测的方法
CN110298122B (zh) 基于冲突消解的无人驾驶车辆城市交叉口左转决策方法
Kim et al. Probabilistic and holistic prediction of vehicle states using sensor fusion for application to integrated vehicle safety systems
CN108536149A (zh) 一种基于Dubins路径的无人驾驶车辆避障控制装置及控制方法
JP4229141B2 (ja) 車両状態量推定装置及びその装置を用いた車両操舵制御装置
US9868443B2 (en) Reactive path planning for autonomous driving
CN110264721B (zh) 一种城市交叉口周边车辆轨迹预测方法
EP1537440B1 (en) Road curvature estimation and automotive target state estimation system
CN110703804B (zh) 一种固定翼无人机集群的分层防撞控制方法
CN106428009A (zh) 车辆轨迹确定
CN104950313A (zh) 一种路面提取及道路坡度识别方法
CN105699964A (zh) 一种基于汽车防撞雷达的道路多目标跟踪方法
CN114005280A (zh) 一种基于不确定性估计的车辆轨迹预测方法
CN112965476A (zh) 一种基于多窗口抽样的高速无人车轨迹规划系统及方法
Dong et al. Smooth behavioral estimation for ramp merging control in autonomous driving
CN112577506A (zh) 一种自动驾驶局部路径规划方法和系统
Heirich et al. Probabilistic localization method for trains
CN108614580A (zh) 一种无人机目标跟踪中的分层避障控制方法
Carvalho et al. Autonomous cruise control with cut-in target vehicle detection
CN115848398B (zh) 一种基于学习及考虑驾驶员行为特征的车道偏离预警系统评估方法
Sarholz et al. Evaluation of different approaches for road course estimation using imaging radar
Schlechtriemen et al. A probabilistic long term prediction approach for highway scenarios
Lee et al. Probabilistic inference of traffic participants' lane change intention for enhancing adaptive cruise control
CN114442630A (zh) 一种基于强化学习和模型预测的智能车规划控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant