CN109569549A - 一种多孔氧化石墨烯/CaO/葡萄糖复合吸附剂的制备方法 - Google Patents

一种多孔氧化石墨烯/CaO/葡萄糖复合吸附剂的制备方法 Download PDF

Info

Publication number
CN109569549A
CN109569549A CN201811592803.5A CN201811592803A CN109569549A CN 109569549 A CN109569549 A CN 109569549A CN 201811592803 A CN201811592803 A CN 201811592803A CN 109569549 A CN109569549 A CN 109569549A
Authority
CN
China
Prior art keywords
composite material
added
cao
graphene oxide
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201811592803.5A
Other languages
English (en)
Inventor
王欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xianyang Normal University
Original Assignee
Xianyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xianyang Normal University filed Critical Xianyang Normal University
Priority to CN201811592803.5A priority Critical patent/CN109569549A/zh
Publication of CN109569549A publication Critical patent/CN109569549A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Abstract

本发明公开了一种多孔氧化石墨烯/CaO/葡萄糖复合吸附剂的制备方法,包括以下步骤:步骤1、氧化石墨烯的制备:采用修正的Hummer’s实验方法制备氧化石墨;步骤2、多孔的氧化石墨烯/CaO/葡萄糖复合材料的制备。本发明制得的多孔氧化石墨烯复合材料对吖啶橙染料吸附效果较好,吸附剂最佳吸附pH值为8,在200min时达到吸附平衡,且加入NaCl溶液对吸附剂吸附性影响较大,异丙醇对吸附剂吸附性影响较小,说明多孔氧化石墨烯复合材料对吖啶橙的吸附机理为静电相互作用。吸附剂可重复利用3次。

Description

一种多孔氧化石墨烯/CaO/葡萄糖复合吸附剂的制备方法
技术领域
本发明属于化学技术领域,具体地说,涉及染料污水防治技术领域,涉及一种多孔氧化石墨烯/CaO/葡萄糖复合吸附剂的制备方法
背景技术
随着染料工业的不断发展,染料废水量在不断上升,染料废水的处理一直是废水处理中的难题。
氧化石墨烯是石墨经由氧化得到的产物,由单层碳原子构成二维的网络状结构,氧化石墨烯含有丰富的含氧官能团,引入的-OH和-CH(O)CH-官能团分布于其二维表面上,而-COOH和-C=O等官能团则分布于其边缘处。氧化石墨烯的比表面积大和含有含氧官能团等特性决定了氧化石墨烯作为吸附剂具有很大的优势。但单纯以氧化石墨烯作为吸附剂,由于氧化石墨烯亲水性,具有不易回收,重复性较差的缺点。
石墨烯具有疏水性和易团聚的特点,其化学活性差,石墨烯很难与无机化合物特别是与金属氧化物相容,因此将金属氧化物负载到石墨烯上具有相当大的难度。氧化石墨烯则相反,它的化学性质活泼,与其他物质的复合反应容易发生,其表面因含有大量的含氧官能团而成为金属氧化物理想的支撑材料,因此,以氧化石墨烯为模板,可制备新型金属氧化物氧化石墨烯复合吸附剂。
发明内容
本发明的目的在于克服现有技术中存在的缺陷,提出了一种多孔氧化石墨烯/CaO/葡萄糖复合吸附剂的制备方法。该方法通过氧化石墨烯与无水氯化钙及葡萄糖复合,制得多孔的氧化石墨烯复合材料,以提高其对染料废水的吸附性能。
其技术方案如下:
一种多孔氧化石墨烯/CaO/葡萄糖复合吸附剂的制备方法,包括以下步骤:
步骤1、氧化石墨烯的制备
采用修正的Hummer’s实验方法制备氧化石墨。
在冰水浴中装配好500mL的三颈烧瓶,加入46mL的浓硫酸,加入2.0g石墨粉,再分次加入6.0g高锰酸钾,在冰水浴下缓慢搅拌,反应一段时间后升温到35℃,继续搅拌30min,缓慢加入92mL蒸馏水,继续升温,保持混合物温度在98℃,反应40min后。向所得到的悬浮液中继续加入蒸馏水至280mL。最后加入6mL 30%的双氧水溶液,悬浮液由棕色变为亮黄色。使用离心机对悬浮液离心,将氧化石墨从中分离,自然风干备用。取0.2000g制得的氧化石墨分散于100mL蒸馏水中,超声处理1h,得到氧化石墨烯分散液。
步骤2、多孔的氧化石墨烯/CaO/葡萄糖复合材料的制备
准确称取0.5550g(5mmol)CaCl2和1.8000g(10mmol)葡萄糖,溶于60mL蒸馏水,向氧化石墨烯分散液中加入含这两种物质的混合溶液,超声处理10min后,加入40mL NaOH(1g,25mmol)水溶液,使用电动搅拌器搅拌20min后将混合物转移至250mL圆底烧瓶,在120℃条件下油浴冷凝回流4h。抽滤并用大量蒸馏水洗涤,将黑色氧化石墨烯复合材料从溶液中分离。最后,用无水乙醇洗涤并真空干燥,得到的材料即为氧化石墨烯复合材料。
称取0.25g氧化石墨烯复合材料在超声波辅助下分散于20mL 2mol·L-1硝酸水溶液中,在50℃混合搅拌2h。抽滤并用大量蒸馏水洗涤,将获得的复合材料从溶液中分离。最后,用无水乙醇洗涤并真空干燥,得到的材料即为多孔氧化石墨烯复合材料。
本发明的有益效果为:
本发明制得的多孔氧化石墨烯复合材料对吖啶橙染料吸附效果较好,吸附剂最佳吸附pH值为8,在200min时达到吸附平衡,在298K时,0.1000g的多孔氧化石墨烯复合材料对50mL的0.2g·L-1吖啶橙的吸附容量为90mg·g-1,当NaCl的浓度在0-100mmol·L-1范围时,多孔氧化石墨烯复合材料对吖啶橙的吸附容量逐渐降低,而0-2.8mol·L-1的异丙醇对吸附剂的吸附容量影响较小,说明多孔氧化石墨烯复合材料对吖啶橙的吸附机理为静电相互作用,吸附剂可重复利用3次。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1不同染料的吸附容量比较,其中,1-亚甲基蓝;2-吖啶橙;3-橙黄IV;
图2pH对吸附容量的影响;
图3pH对Zeta电位的影响;
图4不同温度下的吸附动力学曲线;
图5不同温度下的吸附等温线;
图6不同浓度的NaCl对吸附容量的影响;
图7不同浓度的异丙醇对吸附容量的影响;
图8吸附剂的重复利用。
具体实施方式
下面结合附图和具体实施方式对本发明的技术方案作进一步详细地说明。
(1)染料吸附性能的比较
分别准确称取0.2500g亚甲基蓝、吖啶橙和橙黄IV样品,溶解后定容至250mL容量瓶中,配制成1g·L-1染料溶液。
分别称取若干份0.0100g多孔氧化石墨烯复合材料、氧化石墨烯复合材料和未加氧化石墨的复合材料,将称取好的三种样品分别加入上述25.00mL 40mg·mL-1的装有染料溶液的比色管内。吸附24h后,在各染料的最大吸收波长下测定溶液的吸光度,几种染料的最大吸收波长分别为:亚甲基蓝:λ=660nm、吖啶橙:λ=488nm、橙黄IV:λ=443nm、根据标准曲线测定溶液的浓度,并采用下述公式(1)计算样品对染料的吸附容量:
式(1)中,qe为吸附剂对染料的吸附容量(mg·g-1);C0(mg·mL-1)为溶液的初始浓度,Ce(mg·mL-1)为吸附后的平衡溶液的浓度,V(mL)为溶液的体积,m(g)为吸附剂的质量。
(2)pH对吸附性能的影响
在298K时,准确称取0.1000g多孔氧化石墨烯复合材料分别加入到不同pH的250mL0.4g·L-1的吖啶橙溶液中,吸附24h后测定溶液在λ=488nm处的吸光度,并根据公式(1)计算吸附剂对染料的吸附容量,使用激光粒度仪测定不同pH值下样品悬浮液的Zeta电位。
(3)吸附动力学
准确称取三份0.1000g多孔氧化石墨烯复合材料分别加入到三份pH=8的250mL0.4g·L-1的吖啶橙溶液中,在298K、303K和313K下进行吸附实验,达到吸附平衡后,测定溶液在不同时间λ=488nm的吸光度,并根据公式(2)计算多孔氧化石墨烯复合材料对吖啶橙的吸光度。
式(2)中,qt为吸附剂对染料的吸附时间为t(min)时的吸附容量(mg·g-1);C0(mg·mL-1)为溶液的初始浓度,Ct(mg·mL-1)为吸附时间t(min)时的溶液的浓度,V(mL)为溶液的体积,m(mg)为吸附剂的质量。
(4)吸附等温线
准确称取0.1000g多孔氧化石墨烯复合材料分别加入到25.00mL pH=8的浓度为24mg·g-1、32mg·g-1、40mg·g-1、48mg·g-1、56mg·g-1、72mg·g-1的吖啶橙溶液中,吸附8h后测定溶液在λ=488nm处的吸光度,并根据公式(1)计算吸附剂对染料的吸附容量。
(5)NaCl浓度对吸附性能的影响
准确称取0.0100g的多孔氧化石墨烯复合材料分别加入到25.00mL pH=8的含有0mmol·L-1、20mmol·L-1、40mmol·L-1、60mmol·L-1、80mmol·L-1、100mmol·L-1NaCl的浓度为40mg·g-1的吖啶橙溶液中,吸附8h后测定溶液在λ=488nm处的吸光度,并根据公式(1)计算吸附剂对染料的吸附容量。
(6)异丙醇浓度对吸附性能的影响
准确称取0.0100g的多孔氧化石墨烯复合材料分别加入到25.00mL pH=8的含有0mol·L-1、0.52mol·L-1、1.05mol·L-1、1.56mol·L-1、2.09mol·L-1、2.62mol·L-1异丙醇的浓度为40mg·g-1的吖啶橙溶液中,吸附8h后测定溶液在λ=488nm处的吸光度,并根据公式(1)计算吸附剂对染料的吸附容量。
(7)重复利用实验
准确称取0.0100g的多孔氧化石墨烯复合材料加入到25.00mL pH=8的浓度为40mg·g-1的吖啶橙溶液中,吸附8h后测定溶液在λ=488nm处的吸光度,并根据公式(1)计算吸附剂对染料的吸附容量。之后分离出上层染料溶液,准确量取10.00mL无水乙醇洗脱吸附剂4h后,在50℃下烘干后再加入到25.00mL pH=8的浓度为40mg·g-1的吖啶橙溶液中,吸附8h后测定其在λ=488nm处的吸光度,并根据公式(1)计算吸附剂对染料的吸附容量。重复上述实验步骤8次。
将制备好的复合材料进行实验检测:实验结果如图1-图8所示。
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。

Claims (4)

1.一种多孔氧化石墨烯/CaO/葡萄糖复合吸附剂的制备方法,其特征在于,包括以下步骤:
步骤1、氧化石墨烯的制备
采用修正的Hummer’s实验方法制备氧化石墨;
在冰水浴中装配好500mL的三颈烧瓶,加入的浓硫酸,加入石墨粉,再分次加入高锰酸钾,在冰水浴下缓慢搅拌,反应一段时间后升温到35℃,继续搅拌30min,缓慢加入蒸馏水,继续升温,保持混合物温度在98℃,反应40min后;向所得到的悬浮液中继续加入蒸馏水至280mL;最后加入的双氧水溶液,悬浮液由棕色变为亮黄色;使用离心机对悬浮液离心,将氧化石墨从中分离,自然风干备用;取0.2000g制得的氧化石墨分散于100mL蒸馏水中,超声处理,得到氧化石墨烯分散液;
步骤2、多孔的氧化石墨烯/CaO/葡萄糖复合材料的制备
称取CaCl2和葡萄糖,溶于蒸馏水,向氧化石墨烯分散液中加入含这两种物质的混合溶液,超声处理后,加入NaOH水溶液,使用电动搅拌器搅拌后将混合物转移至圆底烧瓶,在120℃条件下油浴冷凝回流4h;抽滤并用大量蒸馏水洗涤,将黑色氧化石墨烯复合材料从溶液中分离;最后,用无水乙醇洗涤并真空干燥得到粉末状的氧化石墨烯复合材料;
称取氧化石墨烯复合材料粉末在超声波辅助下分散于硝酸水溶液中,在50℃混合搅拌;抽滤并用大量蒸馏水洗涤,将获得的复合材料从溶液中分离;最后,用无水乙醇洗涤并真空干燥得到粉末状的多孔氧化石墨烯复合材料。
2.根据权利要求1所述的多孔氧化石墨烯/CaO/葡萄糖复合吸附剂的制备方法,其特征在于,步骤1中,加入46mL的浓硫酸,加入2.0g石墨粉,再分次加入6.0g高锰酸钾,缓慢加入92mL蒸馏水,最后加入6mL 30%的双氧水溶液,超声处理的时间为1h。
3.根据权利要求1所述的多孔氧化石墨烯/CaO/葡萄糖复合吸附剂的制备方法,其特征在于,步骤2中,准确称取0.5550gCaCl2和1.8000g葡萄糖,溶于60mL蒸馏水,超声处理的时间为10min后,加入40mL NaOH水溶液,使用电动搅拌器搅拌20min后将混合物转移至250mL圆底烧瓶。
4.根据权利要求1所述的多孔氧化石墨烯/CaO/葡萄糖复合吸附剂的制备方法,其特征在于,步骤2中,称取0.25g氧化石墨烯复合材料粉末在超声波辅助下分散于20mL 2mol·L-1硝酸水溶液中,在50℃混合搅拌2h。
CN201811592803.5A 2018-12-25 2018-12-25 一种多孔氧化石墨烯/CaO/葡萄糖复合吸附剂的制备方法 Withdrawn CN109569549A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811592803.5A CN109569549A (zh) 2018-12-25 2018-12-25 一种多孔氧化石墨烯/CaO/葡萄糖复合吸附剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811592803.5A CN109569549A (zh) 2018-12-25 2018-12-25 一种多孔氧化石墨烯/CaO/葡萄糖复合吸附剂的制备方法

Publications (1)

Publication Number Publication Date
CN109569549A true CN109569549A (zh) 2019-04-05

Family

ID=65932518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811592803.5A Withdrawn CN109569549A (zh) 2018-12-25 2018-12-25 一种多孔氧化石墨烯/CaO/葡萄糖复合吸附剂的制备方法

Country Status (1)

Country Link
CN (1) CN109569549A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111185136A (zh) * 2020-01-18 2020-05-22 中国人民解放军火箭军工程大学 四氧化二氮吸收剂及制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663427A (zh) * 2012-09-24 2014-03-26 海洋王照明科技股份有限公司 一种石墨烯的制备方法
CN103910355A (zh) * 2014-04-28 2014-07-09 南京新月材料科技有限公司 一种多孔三维石墨烯的制备方法
CN105903458A (zh) * 2016-05-30 2016-08-31 昆明理工大学 一种钙基吸附剂的制备方法及应用
CN106653388A (zh) * 2016-10-08 2017-05-10 南京师范大学 高导电率的三维纯粹石墨烯水凝胶材料及其制备方法
CN107442062A (zh) * 2017-09-08 2017-12-08 安徽玄同工业设计有限公司 一种亚甲基蓝吸附剂的制备方法
US20170369333A1 (en) * 2016-06-23 2017-12-28 Southern Methodist University Graphene Oxide/Magnesium Oxide Nanocomposites as Superior Sorbents for Methylene Blue Removal from Aqueous Solutions
MX2017017087A (es) * 2017-12-20 2018-07-12 Sandra Salome Casillas Bolanos Proceso de obtención de biopolimero plata-magnesio-oxido de grafeno.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663427A (zh) * 2012-09-24 2014-03-26 海洋王照明科技股份有限公司 一种石墨烯的制备方法
CN103910355A (zh) * 2014-04-28 2014-07-09 南京新月材料科技有限公司 一种多孔三维石墨烯的制备方法
CN105903458A (zh) * 2016-05-30 2016-08-31 昆明理工大学 一种钙基吸附剂的制备方法及应用
US20170369333A1 (en) * 2016-06-23 2017-12-28 Southern Methodist University Graphene Oxide/Magnesium Oxide Nanocomposites as Superior Sorbents for Methylene Blue Removal from Aqueous Solutions
CN106653388A (zh) * 2016-10-08 2017-05-10 南京师范大学 高导电率的三维纯粹石墨烯水凝胶材料及其制备方法
CN107442062A (zh) * 2017-09-08 2017-12-08 安徽玄同工业设计有限公司 一种亚甲基蓝吸附剂的制备方法
MX2017017087A (es) * 2017-12-20 2018-07-12 Sandra Salome Casillas Bolanos Proceso de obtención de biopolimero plata-magnesio-oxido de grafeno.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱洪法等: "《催化剂手册》", 31 August 2008, 金盾出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111185136A (zh) * 2020-01-18 2020-05-22 中国人民解放军火箭军工程大学 四氧化二氮吸收剂及制备方法和应用

Similar Documents

Publication Publication Date Title
Opienska-Blauth et al. A new, rapid method of determining tryptophan
Chen et al. A new resorufin-based spectroscopic probe for simple and sensitive detection of benzoyl peroxide via deboronation
Guo et al. Developing a unique metal-organic framework-{[Cd (abtz) 2 (NCS)]·(ClO4)} n (abtz= 1-(4-aminobenzyl)-1, 2, 4-triazole) as fluorescent probe for highly selective and sensitive detection of ascorbic acid in biological liquid
Yang et al. Graphene oxide as an efficient adsorbent of solid-phase extraction for online preconcentration of inorganic and organic mercurials in freshwater followed by HPLC-ICP-MS determination
Zou et al. Vertically-ordered mesoporous silica films grown on boron nitride-graphene composite modified electrodes for rapid and sensitive detection of carbendazim in real samples
Takaoka et al. Mechanisms of chemical protein 19 F-labeling and NMR-based biosensor construction in vitro and in cells using self-assembling ligand-directed tosylate compounds
Charewicz et al. Competitive transport of alkali metal ions from aqueous solutions into toluene by highly lipophilic crown ether carboxylic acids
Ohta et al. Preconcentration of trace copper with yeast for river water analysis
CN107290311A (zh) 一种荧光传感器“关‑开”检测维生素c的方法
JPS63294799A (ja) グルコ−ス及び1,5−アンヒドログルシト−ルの同時測定法
CN102033063A (zh) 一种水质氨氮比色检测片的制备及使用方法
CN107033177B (zh) 一种以硼酸频哪醇酯为识别受体的超灵敏高选择过氧化亚硝酸盐比色比率荧光探针
CN109569549A (zh) 一种多孔氧化石墨烯/CaO/葡萄糖复合吸附剂的制备方法
Zhang et al. Floral and lamellar europium (iii)-based metal–organic frameworks as high sensitivity luminescence sensors for acetone
Xing et al. A turn-on fluorescent probe for sensitive detection of ascorbic acid based on SiNP–MnO 2 nanocomposites
CN109932449A (zh) 一种磁性多孔石墨烯的制备及其应用于水中低浓度三氯生的快速检测方法
Hu et al. A novel pillar [5] arene-based emission enhanced supramolecular sensor for dual-channel selective detection and separation of Hg 2+
Silva et al. Determination of copper in airborne particulate matter using slurry sampling and chemical vapor generation atomic absorption spectrometry
Li et al. Sensitive and selective turn-on fluorescent switch based on europium-functionalized fluorescent covalent for rapid monitoring of an anthrax biomarker
Grant Colorimetric micromethod for determination of formic acid
Wan et al. In-situ induced ethanol-water phase separation extraction of phthalate esters in alcoholic liquid sample using potassium triphosphate and analysis by gas chromatography-mass spectrometry
Saedi et al. An effervescence‐assisted dispersive liquid–liquid micro‐extraction of captopril based on hydrophobic deep eutectic solvent
Suvardhan et al. Determination of rhodium in water samples using cloud point extraction (CPE) coupled with flame atomic absorption spectrometry (FAAS)
CN108614059A (zh) 疏水性低共熔溶剂涡旋辅助分散液液微萃取-高效液相色谱法检测亚硝酸根的方法
He et al. Molecular imprinting-chemiluminescence determination of trimethoprim using trimethoprim-imprinted polymer as recognition material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190405