CN109562450A - 用于借助于增材制造来生产金属部件的方法 - Google Patents

用于借助于增材制造来生产金属部件的方法 Download PDF

Info

Publication number
CN109562450A
CN109562450A CN201780031570.9A CN201780031570A CN109562450A CN 109562450 A CN109562450 A CN 109562450A CN 201780031570 A CN201780031570 A CN 201780031570A CN 109562450 A CN109562450 A CN 109562450A
Authority
CN
China
Prior art keywords
gas
helium
cooling gas
hydrogen
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780031570.9A
Other languages
English (en)
Inventor
B·希尔德布兰特
迪尔克·坎普弗迈耶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Griesheim GmbH
Messer Group GmbH
Original Assignee
Messer Griesheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim GmbH filed Critical Messer Griesheim GmbH
Publication of CN109562450A publication Critical patent/CN109562450A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/20Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

在用于借助于增材制造来生产金属部件的方法中通过在抽真空的照射室中施加能量束来选择性熔融或烧结金属粉末层。在随后用冷却气体填充照射室的情况下,该经熔融或烧结的部分固化成固态轮廓。根据本发明提出,替代于此前通常使用的、昂贵且不能可靠获得的氦气,使用含氢的气体作为冷却气体。氢气具有比氦气更高的热导率并且不影响或仅在可忽略的程度上影响工件表面。

Description

用于借助于增材制造来生产金属部件的方法
本发明涉及一种用于借助于增材制造来生产金属部件的方法,其中在抽真空的照射室中产生金属粉末层,通过施加能量束进行选择性熔融或烧结并且随后用冷却气体填充照射室,其中该金属粉末的经熔融的或经烧结的部分固化成固态的工件轮廓。
在当今的生产中出现了越来越强倾向于增材制造方法(也称为“增量型制造方法”)的趋势。该方法在此一般是指如下制造方法:其中由金属或塑料形成的材料逐层制造三维工件。其应用至今为止主要局限在原型制造,但越来越多地被看作对于在序列制造中的应用具有巨大潜力,尤其用于较小工件数量的序列和/或用于制造复杂的三维部件(例如应用于航空航天技术、汽车工业或医学技术)。
在基于粉末的增材制造方法中,粉末状材料以薄层施加到工作面上。借助于能量束、尤其激光束或电子束,在计算机辅助的模板敷设之后精准到点地熔融或烧结该材料。经熔融或烧结的材料在再次固化时形成固态的轮廓(在此也称为“工件轮廓”),该轮廓与先前和/或随后以相同方式制造的轮廓组装成工件。以此方式尤其可以构造成型体,该成型体具有部分高复杂度的三维结构。基于粉末的增材制造方法例如是电子束熔融(EBM)、选择性激光束熔融(SLM)或选择性激光烧结(SLS)。
为了保护工件免于环境气氛的不利影响,大多数情况下在保护气体或真空下进行基于粉末的增材制造方法。在制造结束之后,工件或工件轮廓必须在进一步加工之前被冷却。只要使用保护气体,保护气体就可以支持冷却过程;在真空下执行的增量型制造方法中,制成的工件轮廓必须被冷却并且先前抽真空的照射室必须用气体填充到环境压力。在此尤其提供了用同时负责冷却工件或工件轮廓的惰性气体来填充照射室的可能性。基于其良好的导热特性,目前为此主要使用氦气。
在EP 3 006 139 A1中提出了一种用于通过增量型制造来逐层生产金属工件的方法,在该方法中提供粉末状金属材料的彼此相继的层并且施加激光束,其中分别输送过程气体。过程气体用于针对性地影响每个层的熔融的金属的化学或物理特性;因此,不同层施加有组成不同的过程气体。例如,在此使用不同的包含氩和氦的过程气体,其中变化的氦气比例反映在所制造的材料轮廓的分别不同的冷却速度、结构变化和材料延迟中。除了惰性气体之外还以0.01体积%与50体积%之间的量包含氢气的过程气体在激光束处理期间通过结合存在于金属粉末中的氧来保护金属熔体。然而在此主题下没有提出对制成的工件轮廓施加冷却气体。另外,与此类过程气体相关的经验不能毫无困难地应用于在真空中运行的制造方法。
WO 2015/155745 A1描述了一种用于借助于增量型制造来生产工件的方法,在抽真空的照射室中提供了粉末状原料的层。将该层预热并且通过在真空中施加能量束使其经受选择性熔融过程,由此产生工件轮廓,该工件轮廓必须通过冷却而固化。为了加速冷却过程,用惰性冷却气体流填充照射室。例如采用氦或氩作为冷却气体。
由于稀有气体的惰性特性,使用氦或氩作为冷却气体迄今为止被认为是必需的。氦气具有相当高的热导率,这使得能够实现快速冷却,但是非常昂贵并且在市场上并非总是可以获得的。氩气成本更低廉,但是具有低得多的热导率,由此使用氩气替代氦气要么导致减缓的冷却过程,要么要求必需的冷却气体流的显著增大。因此在实践中使用纯氦或至少主要由氦组成的气体混合物作为冷却气体是强制的,然而与所述的缺点相关联。
本发明的基本目的在于,给出一种用于借助于增材制造来生产金属部件的方法,相对于根据现有技术的方法,该方法在相同的品质下成本更加低廉并且伴随有更高的加工速度。
本发明的目的通过具有专利权利要求1的特征的方法来实现。在从属权利要求中要求保护本发明的有利的构型。
根据本发明,在由工件轮廓组装成金属工件的用于增材制造的过程中、尤其在电子束或激光束熔融方法中(该工件轮廓在抽真空的照射室中彼此相继地逐层制造并且通过在制造之后进行的用冷却气体填充照射室时被冷却)如下进行,即采用含氢的气体或气体混合物作为冷却气体。
即,本发明涉及如下增量型制造方法:该制造方法在真空下的照射室中执行,并且在该制造方法中在制造每一个工件轮廓之后通过同时用于冷却工件轮廓的冷却气体来填充照射室。
出人意料地已经显示出,存在于冷却气体中的氢气对制成的工件轮廓的表面没有或者仅具有可忽略地的负面影响。此外,氢气的热导率仍然超过氦气的热导率,使得含氢的冷却气体相对于使用纯氦气而言造成工件轮廓的加速冷却。“含氢的冷却气体”在此是指气体或气体混合物,该气体或气体混合物由氢气(H2)组成或者除了氢气之外还具有其他气体的混合成分,尤其是如氦气(He)、氩气(Ar)和/或氮气(N2)的惰性气体。在制造工件轮廓之后优选通过冷却气体填充照射室到环境压力(1bar)。在此时间点,工件轮廓的经熔融的材料至少在其表面处已经可开放地固化到如下程度,使得含氢的冷却气体对工件的冶金特性不再具有显著影响。在已经将工件轮廓冷却到预定的目标温度之后,提供新的金属粉末层并且为了制造下一个轮廓的目的将照射室重新抽真空。
冷却气体除了氢气之外优选还包含氦气、氩气和/或氮气。在此,该冷却气体可以为二组分、三组分或四组分混合物,其中除了氢气之外还包含氦气、氩气或氮气中的一种或多种。特别优选的是,氢气和氦气的混合物以及除了氢气和氦气之外还包含氩气和/或氮气的混合物,其中氩气和/或氮气在混合物中的比例优选不应超过He或H2中存在较少的成分的比例。
优选的冷却气体组成是具有97体积%至100体积%的氢气比例的混合物。余量由氦气和/或氩气和/或氮气组成,尤其由具有一定氩气和/或氮气比例的氦气组成。在此,根据本发明,二组分混合物(氢气和氦气,氢气和氩气,氢气和氮气)是与三组分混合物(具有一定氩气或氮气成分的氢气和氦气)或四组分混合物(氢气、氦气、氩气和氮气)一样可设想的。优选的冷却气体例如包含97体积%与99.5体积%之间的H2、0.5体积%与3体积%之间的He,余量为Ar和/或N2。由于氢气的高热导率,高氢气含量造成特别高效的冷却。
由于氢气的高热导率,冷却气体中占主导的氢气含量改进了冷却效率。然而,尤其在存在冷却气体与环境空气接触的一定可能性的情况下,主要(即具有70体积%至99.5%的比例)由氦气、氩气、氮气或这些气体中两种或三种的混合物形成并且具有0.5体积%至30体积%的相对较小的氢气比例的冷却气体组成是有利的。任何的余量由氩气和/或氮气组成。一方面相对较小的氢气比例明显提高了冷却气体的热导率,另一方面避免了在将冷却气体与环境空气混合时超过氢气的爆炸极限。
根据本发明的冷却气体优选在真空下进行的射束熔融方法之后使用,其中使用激光束或电子束作为能量束。射束熔融方法尤其为选择性电子束熔融(EBM)、选择性激光束熔融(SLM)或选择性激光束烧结(SLS)。
根据本发明方法的优点尤其在于,在增材制造时由于从相应制成的工件轮廓中快速排出过程热量而缩短了次要过程时间(Prozessnebenzeiten),其中同时可靠地抵抗了工件被来自环境的氧气氧化的危险。另外,氢气比迄今为止主要采用的氦气明显更加成本低廉并且可以更可靠地获得。

Claims (5)

1.一种用于借助于增材制造来生产金属部件的方法,其中在抽真空的照射室中产生金属粉末层,通过施加能量束进行选择性熔融或烧结并且随后用冷却气体填充该照射室,其中该金属粉末的经熔融的或经烧结的部分固化成固态的工件轮廓,其特征在于,使用含氢的气体或气体混合物作为冷却气体。
2.根据权利要求1所述的方法,其特征在于,该冷却气体是气体混合物,该气体混合物除了氢气以外还包含氦气、氩气和/或氮气。
3.根据权利要求1或2所述的方法,其特征在于,该冷却气体包含0.5体积%至30体积%的氢气比例,余量为氦气和/或氩气和/或氮气。
4.根据权利要求1或2所述的方法,其特征在于,该冷却气体包含97体积%至100体积%的氢气比例,余量为氦气和/或氩气和/或氮气。
5.根据以上权利要求之一所述的方法,其特征在于,使用激光束或电子束作为能量束。
CN201780031570.9A 2016-05-24 2017-03-22 用于借助于增材制造来生产金属部件的方法 Pending CN109562450A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016006383.1A DE102016006383A1 (de) 2016-05-24 2016-05-24 Verfahren zum Herstellen metallischer Bauteile mittels generativer Fertigung
DE102016006383.1 2016-05-24
PCT/EP2017/056841 WO2017202520A1 (de) 2016-05-24 2017-03-22 Verfahren zum herstellen metallischer bauteile mittels generativer fertigung

Publications (1)

Publication Number Publication Date
CN109562450A true CN109562450A (zh) 2019-04-02

Family

ID=58401569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780031570.9A Pending CN109562450A (zh) 2016-05-24 2017-03-22 用于借助于增材制造来生产金属部件的方法

Country Status (15)

Country Link
US (1) US20190291183A1 (zh)
EP (1) EP3463719B1 (zh)
CN (1) CN109562450A (zh)
CA (1) CA3025379A1 (zh)
DE (1) DE102016006383A1 (zh)
ES (1) ES2810899T3 (zh)
HR (1) HRP20201437T1 (zh)
HU (1) HUE050379T2 (zh)
LT (1) LT3463719T (zh)
MA (1) MA45083A (zh)
PL (1) PL3463719T3 (zh)
PT (1) PT3463719T (zh)
RS (1) RS60579B1 (zh)
SI (1) SI3463719T1 (zh)
WO (1) WO2017202520A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072935A1 (en) * 2007-12-06 2009-06-11 Arcam Ab Apparatus and method for producing a three-dimensional object.
WO2013098050A1 (en) * 2011-12-28 2013-07-04 Arcam Ab Method and apparatus for increasing the resolution in additively manufactured three-dimensional articles
US20150367415A1 (en) * 2014-06-20 2015-12-24 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
CN105268973A (zh) * 2015-10-29 2016-01-27 沈阳海纳鑫科技有限公司 一种基于TiNi记忆合金丝材的功能材料部件增材制造方法
CN105312573A (zh) * 2015-11-17 2016-02-10 北京科技大学 一种利用液态金属直接进行3d打印制造的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6533996B2 (en) * 2001-02-02 2003-03-18 The Boc Group, Inc. Method and apparatus for metal processing
WO2015155745A1 (en) 2014-04-10 2015-10-15 Ge Avio S.R.L. Process for forming a component by means of additive manufacturing, and powder dispensing device for carrying out such a process
US10161025B2 (en) * 2014-04-30 2018-12-25 Apple Inc. Methods for constructing parts with improved properties using metallic glass alloys
EP3006138A1 (de) 2014-10-09 2016-04-13 Linde Aktiengesellschaft Verfahren zum schichtweisen Herstellen eines metallischen Werkstücks durch laserunterstützte additive Fertigung
US20170304894A1 (en) * 2014-11-10 2017-10-26 Velo3D, Inc. Printing three-dimensional objects using beam array

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072935A1 (en) * 2007-12-06 2009-06-11 Arcam Ab Apparatus and method for producing a three-dimensional object.
WO2013098050A1 (en) * 2011-12-28 2013-07-04 Arcam Ab Method and apparatus for increasing the resolution in additively manufactured three-dimensional articles
US20150367415A1 (en) * 2014-06-20 2015-12-24 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
CN105268973A (zh) * 2015-10-29 2016-01-27 沈阳海纳鑫科技有限公司 一种基于TiNi记忆合金丝材的功能材料部件增材制造方法
CN105312573A (zh) * 2015-11-17 2016-02-10 北京科技大学 一种利用液态金属直接进行3d打印制造的方法和装置

Also Published As

Publication number Publication date
PL3463719T3 (pl) 2020-11-16
PT3463719T (pt) 2020-08-05
SI3463719T1 (sl) 2020-09-30
CA3025379A1 (en) 2017-11-30
MA45083A (fr) 2019-04-10
HRP20201437T1 (hr) 2020-11-27
ES2810899T3 (es) 2021-03-09
RS60579B1 (sr) 2020-08-31
US20190291183A1 (en) 2019-09-26
HUE050379T2 (hu) 2020-11-30
DE102016006383A1 (de) 2017-11-30
EP3463719A1 (de) 2019-04-10
WO2017202520A1 (de) 2017-11-30
EP3463719B1 (de) 2020-07-15
LT3463719T (lt) 2020-10-26

Similar Documents

Publication Publication Date Title
JP3841301B2 (ja) 溶浸アルミニウムプリフォーム
US9156058B2 (en) Method for producing a component
JP4351096B2 (ja) 溶浸アルミニウムプリフォーム
CN107812941B (zh) 一种激光増材制造铝合金的原位制备方法及其产品
JP6378688B2 (ja) 付加製造方法および装置
CN100540185C (zh) 粉末冶金快速成型制造方法
US20170266759A1 (en) Method and device for the generative production of a three-dimensional component
US11773471B2 (en) Aluminum alloy articles
US6997232B2 (en) Infiltrated aluminum preforms
CN1958196A (zh) 钼铜复合材料高温构件的快速制作方法
KR20200096657A (ko) 적층 조형을 위한 알루미늄 함유 합금의 용도
US9315904B2 (en) Material deposition using powder and foil
JP2015105201A (ja) 窒化物焼結体の製造方法、窒化物焼結体を含む積層体の製造方法、および積層体
CN109562450A (zh) 用于借助于增材制造来生产金属部件的方法
JP2008050671A (ja) 金属光造形用金属粉末
US6848494B2 (en) Wetting agent for infiltrated aluminum preforms
CN103722172A (zh) 用于制造手表部件的工艺
US20240033819A1 (en) Aluminum powder mixture and method for producing aluminum sintered body
JP2022500554A (ja) 衛生器具の部品の製造方法
TW202333875A (zh) 鋁粉末混合物、金屬積層造形用粉末及金屬積層造形物
US20210362267A1 (en) Method of manufacturing metal articles
US20210291275A1 (en) Use of powders of highly reflective metals for additive manufacture
Sciancalepore et al. DREAM: Driving up reliability and efficiency of additive manufacturing
WO2018235062A1 (ja) 粉末積層造形用粉体
JP3257694B2 (ja) 複合部材の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190402

RJ01 Rejection of invention patent application after publication