CN109557943B - 一种基于边缘云的无人机避障系统和方法 - Google Patents

一种基于边缘云的无人机避障系统和方法 Download PDF

Info

Publication number
CN109557943B
CN109557943B CN201910053984.2A CN201910053984A CN109557943B CN 109557943 B CN109557943 B CN 109557943B CN 201910053984 A CN201910053984 A CN 201910053984A CN 109557943 B CN109557943 B CN 109557943B
Authority
CN
China
Prior art keywords
obstacle avoidance
aerial vehicle
unmanned aerial
flight control
avoidance flight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910053984.2A
Other languages
English (en)
Other versions
CN109557943A (zh
Inventor
王智明
徐雷
毋涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China United Network Communications Group Co Ltd
Original Assignee
China United Network Communications Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China United Network Communications Group Co Ltd filed Critical China United Network Communications Group Co Ltd
Priority to CN201910053984.2A priority Critical patent/CN109557943B/zh
Publication of CN109557943A publication Critical patent/CN109557943A/zh
Application granted granted Critical
Publication of CN109557943B publication Critical patent/CN109557943B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/043Architecture, e.g. interconnection topology based on fuzzy logic, fuzzy membership or fuzzy inference, e.g. adaptive neuro-fuzzy inference systems [ANFIS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
    • H04L67/025Protocols based on web technology, e.g. hypertext transfer protocol [HTTP] for remote control or remote monitoring of applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Fuzzy Systems (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Astronomy & Astrophysics (AREA)
  • Computer Security & Cryptography (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明实施例涉及一种基于边缘云的无人机避障系统和方法。其中,该系统包括:通信卫星网络传输层用于:将无人机避障飞控请求传输至无人机避障飞控边缘网关接入层;无人机避障飞控边缘网关接入层用于:将无人机避障飞控请求传输至无人机避障飞控边缘数据中心层;无人机避障飞控边缘数据中心层用于:将第一避障飞控服务传输至无人机避障飞控边缘网关接入层;无人机避障飞控边缘网关接入层还用于:将第一避障飞控服务传输至通信卫星网络传输层。避免现有技术中通过集中式数据处理方式对无人机数据进行处理时,效率低,资源耗费大的技术弊端,实现了高效且精准的对数据进行处理的技术效果,且实现了无人机安全且可靠的避障飞行的技术效果。

Description

一种基于边缘云的无人机避障系统和方法
技术领域
本发明实施例涉及无人机技术领域,尤其涉及一种基于边缘云的无人机避障系统和方法。
背景技术
随着物联网迅猛发展,无人机相关技术得到了广泛的应用。
在现有技术中,是通过集中式数据处理的方式对无人机数据进行处理的。
然而,发明人在实现本发明的过程中,发现通过集中式数据处理方式对无人机数据进行处理,至少存在:数据处理时间长,且精度不高的技术弊端。
发明内容
本发明所要解决的技术问题是针对现有技术中所存在的上述缺陷,提供一种基于边缘云的无人机避障系统和方法,用以解决现有技术中存在:通过集中式数据处理方式对无人机数据进行处理时,数据处理时间长,且精度不高的问题。
根据本发明实施例的一个方面,本发明实施例提供了,一种基于边缘云的无人机避障系统,所述系统包括:通信卫星网络传输层、无人机避障飞控边缘网关接入层和无人机避障飞控边缘数据中心层,其中,
所述通信卫星网络传输层用于:获取无人机发送的无人机避障飞控请求,并将所述无人机避障飞控请求传输至所述无人机避障飞控边缘网关接入层;
所述无人机避障飞控边缘网关接入层用于:将所述无人机避障飞控请求传输至所述无人机避障飞控边缘数据中心层;
所述无人机避障飞控边缘数据中心层用于:调用其存储的与第一无人机避障飞控请求对应的第一避障飞控服务,并将所述第一避障飞控服务传输至所述无人机避障飞控边缘网关接入层,其中,所述无人机避障飞控请求包括所述第一无人机避障飞控请求;
所述无人机避障飞控边缘网关接入层还用于:将所述第一避障飞控服务传输至所述通信卫星网络传输层;
所述通信卫星网络传输层还用于:将所述第一避障飞控服务传输至所述无人机。
通过本实施例提供的:由无人避障飞控同边缘网关接入层分别于通信卫星网络传输层和无人机避障飞控边缘数据中心层进行交互的技术方案,避免现有技术中通过集中式数据处理方式对无人机数据进行处理时,效率低,资源耗费大的技术弊端,实现了高效且精准的对数据进行处理的技术效果,且实现了无人机安全且可靠的避障飞行的技术效果。
进一步地,所述系统还包括:无人机避障飞控中心分析层,其中,
所述无人机避障飞控边缘网关接入层还用于:将第二无人机避障飞控请求传输至所述无人机避障飞控中心分析层,其中,所述无人机避障飞控请求还包括所述第二无人机避障飞控请求;
所述无人机避障飞控中心分析层用于:调用其存储的与所述第二无人机避障飞控请求对应的第二避障飞控服务,并将所述第二避障飞控服务传输至所述无人机避障飞控边缘网关接入层;
所述无人机避障飞控边缘网关接入层还用于:将所述第二避障飞控服务传输至所述通信卫星网络传输层;
所述通信卫星网络传输层还用于:将所述第二避障飞控服务传输至所述无人机。
通过本实施例提供的:无人机避障飞控边缘网关接入层还与无人机避障飞控中心分析层进行通信的技术方案,实现了由无人机避障飞控中心分析层对第二无人机避障飞控请求进行处理,并将与第二无人机避障飞控请求对应的第二避障飞控服务反馈至无人机避障飞控边缘网关接入层,从而实现了数据的分别处理,加快了处理效率,减小了处理负载。
进一步地,所述无人机避障飞控中心分析层还用于:
根据预设的第一迭代分析规则对所述第二无人机避障飞控请求进行迭代分析处理,得到多个子请求信息,其中,所述第二无人机避障飞控请求包括多个子请求,一个所述子请求对应一个所述子请求信息;
对多个所述子请求信息进行汇总处理,得到请求信息;
根据预设的第二迭代分析规则对所述请求信息进行迭代分析处理,得到所述第二避障飞控服务。
通过本实施例提供的:根据第一迭代分析规则对第二无人机避障飞控请求进行迭代分析处理,根据第二迭代分析规则对请求信息进行迭代分析处理的技术方案,实现了高效且精准的得到第二避障飞控服务的效果。
进一步地,所述无人机避障飞控中心分析层具体用于:
根据预设的多层循环卡尔曼滤波模糊神经元网络估计策略对在前子请求进行分析,得到与所述在前子请求对应的在前请求信息;
根据预设的迭代参数确定在后子请求;
根据所述多层循环卡尔曼滤波模糊神经元网络估计策略对所述在后子请求进行分析,得到与所述在后子请求对应的在后请求信息;
其中,所述子请求包括所述在前子请求和所述在后子请求,所述子请求信息包括所述在前请求信息和所述在后请求信息。
通过本实施例提供的:根据多层循环卡尔曼滤波模糊神经元网络估计策略对在前子请求(或者在后子请求)进行分析的技术方案,实现了精准的对在前子请求(或者在后子请求)进行分析,得到其对应的在前请求信息(或者在后请求信息)的技术效果。
所述无人机避障飞控中心分析层还具体用于:
判断所述在前请求信息是否满足预设的深度分析评价条件,得到判断结果;
当所述判断结果为否时,则根据所述迭代参数确定所述在后请求信息;
根据所述多层循环卡尔曼滤波模糊神经元网络估计策略对所述在后请求信息进行分析,得到与所述在后请求信息对应的在后飞行信息;
其中,所述第二避障飞控服务包括所述在后飞行信息。
通过本实施例提供的:根据判断结果和迭代参数确定在后请求信息,并根据多层循环卡尔曼滤波模糊神经元网络估计策略对在后请求信息进行分析的技术方案,实现了精准的得到在后飞行信息的技术效果。
进一步地,当所述当前请求信息为第k请求信息时,则所述无人机协同中心分析层还具体用于:
根据式1判断所述第k请求信息是否满足预设的深度分析评价条件,式1:
Figure BDA0001951811220000041
i=1,2,L m;j=1,2,L n;t=1,2,L,q;ε∈(0,1)
其中,
Figure BDA0001951811220000042
为所述第k请求信息对应的处理时延,
Figure BDA0001951811220000043
为所述第k请求信息对应的功耗成本,
Figure BDA0001951811220000044
为所述第k请求信息对应的处理准确率。
进一步地,当所述在后请求信息为第k+1请求信息,所述在后飞行信息为第k+1飞行信息时,则所述无人机协同中心分析层还具体用于:
根据式2确定所述第k+1飞行信息
Figure BDA0001951811220000045
式2:
Figure BDA0001951811220000046
其中,
Figure BDA0001951811220000047
其中,
Figure BDA0001951811220000048
其中,
Figure BDA0001951811220000049
为所述第k+1请求信息对应的处理时延,
Figure BDA00019518112200000410
为所述第k+1请求信息对应的功耗成本,
Figure BDA00019518112200000411
为所述第k+1请求信息对应的处理准确率,Lmink为所述第k请求信息对应的最小处理时延,Wmaxk为所述第k请求信息对应的最大处理准确率,Cmink为所述第k请求信息对应的最小功耗成本,LminG为历史最小处理时延,CminG为历史最小功耗成本,WmaxG为历史最大处理准确率。
根据本发明实施例的另一个方面,本发明实施例还提供了一种基于边缘云的无人机避障方法,所述方法基于上述任一项所述的系统,所述方法包括:
通信卫星网络传输层获取无人机发送的无人机避障飞控请求,并将所述无人机避障飞控请求传输至无人机避障飞控边缘网关接入层;
所述无人机避障飞控边缘网关接入层将所述无人机避障飞控请求传输至无人机避障飞控边缘数据中心层;
无人机避障飞控边缘数据中心层调用其存储的与第一无人机避障飞控请求对应的第一避障飞控服务,并将所述第一避障飞控服务传输至所述无人机避障飞控边缘网关接入层,其中,所述无人机避障飞控请求包括所述第一无人机避障飞控请求;
所述无人机避障飞控边缘网关接入层将所述第一避障飞控服务传输至所述通信卫星网络传输层;
所述通信卫星网络传输层将所述第一避障飞控服务传输至所述无人机。
进一步地,所述方法还包括:
所述无人机避障飞控边缘网关接入层将第二无人机避障飞控请求传输至无人机避障飞控中心分析层,其中,所述无人机避障飞控请求还包括所述第二无人机避障飞控请求;
所述无人机避障飞控中心分析层调用其存储的与所述第二无人机避障飞控请求对应的第二避障飞控服务,并将所述第二避障飞控服务传输至所述无人机避障飞控边缘网关接入层;
所述无人机避障飞控边缘网关接入层将所述第二避障飞控服务传输至所述通信卫星网络传输层;
所述通信卫星网络传输层将所述第二避障飞控服务传输至所述无人机。
进一步地,所述方法还包括:
所述无人机避障飞控中心分析层根据预设的第一迭代分析规则对所述第二无人机避障飞控请求进行迭代分析处理,得到多个子请求信息,其中,所述第二无人机避障飞控请求包括多个子请求,一个所述子请求对应一个所述子请求信息,对多个所述子请求信息进行汇总处理,得到请求信息,根据预设的第二迭代分析规则对所述请求信息进行迭代分析处理,得到所述第二避障飞控服务。
进一步地,所述无人机避障飞控中心分析层根据预设的第一迭代分析规则对所述第二无人机避障飞控请求进行迭代分析处理,具体包括:
根据预设的多层循环卡尔曼滤波模糊神经元网络估计策略对在前子请求进行分析,得到与所述在前子请求对应的在前请求信息;
根据预设的迭代参数确定在后子请求;
根据所述多层循环卡尔曼滤波模糊神经元网络估计策略对所述在后子请求进行分析,得到与所述在后子请求对应的在后请求信息;
其中,所述子请求包括所述在前子请求和所述在后子请求,所述子请求信息包括所述在前请求信息和所述在后请求信息。
进一步地,所述根据预设的第二迭代分析规则对所述请求信息进行迭代分析处理,具体包括:
判断所述在前请求信息是否满足预设的深度分析评价条件,得到判断结果;
当所述判断结果为否时,则根据所述迭代参数确定所述在后请求信息;
根据所述多层循环卡尔曼滤波模糊神经元网络估计策略对所述在后请求信息进行分析,得到与所述在后请求信息对应的在后飞行信息;
其中,所述第二避障飞控服务包括所述在后飞行信息。
进一步地,所述判断所述在前请求信息是否满足预设的深度分析评价条件,具体包括:
根据式1判断所述第k请求信息是否满足预设的深度分析评价条件,式1:
Figure BDA0001951811220000061
i=1,2,L m;j=1,2,L n;t=1,2,L,q;ε∈(0,1)
其中,
Figure BDA0001951811220000062
为所述第k请求信息对应的处理时延,
Figure BDA0001951811220000063
为所述第k请求信息对应的功耗成本,
Figure BDA0001951811220000064
为所述第k请求信息对应的处理准确率。
进一步地,当所述在后请求信息为第k+1请求信息,所述在后飞行信息为第k+1飞行信息时,则所述根据所述多层循环卡尔曼滤波模糊神经元网络估计策略对所述在后请求信息进行分析,具体包括:
根据式2确定所述第k+1飞行信息
Figure BDA0001951811220000065
式2:
Figure BDA0001951811220000066
其中,
Figure BDA0001951811220000071
δ∈(0,1)
其中,
Figure BDA0001951811220000072
其中,
Figure BDA0001951811220000073
为所述第k+1请求信息对应的处理时延,
Figure BDA0001951811220000074
为所述第k+1请求信息对应的功耗成本,
Figure BDA0001951811220000075
为所述第k+1请求信息对应的处理准确率,Lmink为所述第k请求信息对应的最小处理时延,Wmaxk为所述第k请求信息对应的最大处理准确率,Cmink为所述第k请求信息对应的最小功耗成本,LminG为历史最小处理时延,CminG为历史最小功耗成本,WmaxG为历史最大处理准确率。
本发明实施例的有益效果在于,由于采用了包括通信卫星网络传输层、无人机避障飞控边缘网关接入层和无人机避障飞控边缘数据中心层的无人机避障系统的技术方案,避免了现有技术中数据处理时间长,且精确度不高的技术问题,实现了高效且精准的对数据进行处理,实现无飞机避障飞行的技术效果。
附图说明
图1为本发明实施例提供的一种基于边缘云的无人机避障系统的结构示意图;
图2为本发明实施例提供的一种避障飞控分析处理器的功能架构图;
图3为本发明实施例提供的一种基于边缘云的无人机避障方法的流程示意图;
图4为本发明实施例提供的一种无人避障飞控同中心分析层根据第二无人机避障飞控请求确定第二避障飞控服务的流程示意图;
图5为本发明实施例提供的一种深度分析模型的结构示意图;
图6为本发明实施例提供的一种深度分析原理图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本发明。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
本发明实施例提供了一种基于边缘云的无人机避障系统和方法。
根据本发明实施例的一个方面,本发明实施例提供了一种基于边缘云的无人机避障系统。
第一实施例:
请参阅图1,图1为本发明实施例提供的一种基于边缘云的无人机避障系统的结构示意图。
如图1所示,该系统包括:通信卫星网络传输层、无人机避障飞控边缘网关接入层和无人机避障飞控边缘数据中心层,其中,
通信卫星网络传输层用于:获取无人机发送的无人机避障飞控请求,并将无人机避障飞控请求传输至无人机避障飞控边缘网关接入层。
结合图1可知,无人机位于无人机避障层,且无人机包括无人直升机,固定翼无人机,旋翼无人机等。无人机在山地飞行过程中,需要对山地进行避障,即山地避障区,同理,还包括内陆城市避障区、沿海城市避障区等。
其中,通信卫星网络传输层包括至少一个通信卫星。即,具体地,无人机向通信卫星网络传输层中的通信卫星发送无人机避障飞控请求。
优选地,无人机通过预设的加密信道向通信卫星发送无人机避障飞控请求。以确保无人机避障飞控请求发送过程中的安全性和可靠性。
无人机避障飞控边缘网关接入层用于:将无人机避障飞控请求传输至无人机避障飞控边缘数据中心层。
结合图1可知,无人机避障飞控边缘网关接入层包括至少一个避障飞控边缘网关。即,具体地,通信卫星网络传输层中的通信卫星将无人机避障飞控请求传输至无人机避障飞控边缘网关接入层中的避障飞控边缘网关。
优选地,通信卫星通过预设的加密信道将无人机避障飞控请求传输至避障飞控边缘网关。
无人机避障飞控边缘数据中心层用于:调用其存储的与第一无人机避障飞控请求对应的第一避障飞控服务,并将第一避障飞控服务传输至无人机避障飞控边缘网关接入层,其中,无人机避障飞控请求包括第一无人机避障飞控请求。
结合图1可知,无人机避障飞控边缘数据中心层包括至少一个避障飞控边缘服务器,由避障飞控边缘服务器对第一无人机避障飞控请求进行处理。具体地:
避障飞控边缘服务器在获取到第一无人机避障飞控请求后,从其自身(即避障飞控边缘服务器)存储的多种避障飞控服务中,调取与第一避障飞控请求对应的第一避障飞控服务。并将第一避障飞控服务传输至避障飞控边缘网关。
无人机避障飞控边缘数据中心层存储为部分区域的避障飞控服务。即,边缘无人机对应的避障飞控服务。以避免集中式对处理进行处理时,效率低等技术弊端。
在一种可能实现的方案中,避障飞控边缘服务器在获取到无人机避障飞控请求后,从无人机避障飞控请求中获取与其对应的边缘避障飞控请求,即第一无人机避障飞控请求,然后从其本身(即系统避障飞控边缘服务器)中存储器中搜索与第一无人机避障飞控请求对应的第一避障飞控服务。具体地,可通过关键字搜索的方式获取第一避障飞控服务,也可通过设置请求与服务对应表的方式获取第一避障飞控服务。
当然,在另一种可能实现的方案中,避障飞控边缘网关在获取到无人机避障飞控请求后,先对无人机避障飞控请求进行筛选,以便确定无人机避障飞控请求中的第一无人机避障飞控请求。同样的,避障飞控边缘网关也可通过设置关键字或者请求与服务对应表的方式从无人机避障飞控请求中将第一无人机避障飞控请求进行分离。并将第一无人机避障飞控请求传输至避障飞控边缘服务器。
无人机避障飞控边缘网关接入层还用于:将第一避障飞控服务传输至通信卫星网络传输层。
通信卫星网络传输层还用于:将第一避障飞控服务传输至无人机。
第二实施例:
本实施例以第一实施例为基础。在本实施例中,结合图1可知,该系统还包括:无人机避障飞控中心分析层,其中,
无人机避障飞控边缘网关接入层还用于:将第二无人机避障飞控请求传输至无人机避障飞控中心分析层,其中,无人机避障飞控请求还包括第二无人机避障飞控请求。
无人机避障飞控中心分析层用于:调用其存储的与第二无人机避障飞控请求对应的第二避障飞控服务,并将第二避障飞控服务传输至无人机避障飞控边缘网关接入层。
结合图1可知,无人机避障飞控中心分析层包括至少一个避障飞控分析处理器和至少一个避障飞控分析数据库。当避障飞控分析处理器的数量为多个时,即无人机避障飞控中心分析层包括多个避障飞控分析处理器和避障飞控分析数据库集群。
在一种可能实现的方案,如第一实施例中所述,由避障飞控边缘网关从无人机避障飞控请求中分离出第二无人机避障飞控请求。
在另一种可能实现的方案中,避障飞控边缘网关将无人机避障飞控请求传输至避障飞控分析处理器,由避障飞控分析处理器从无人机避障飞控请求中分离出于其对应的第二无人机避障飞控请求。同理,避障飞控分析处理器也可通过关键字或者请求与服务对应表的方式从无人机避障飞控请求中将第二无人机避障飞控请求进行分离。
在一种可能实现的方案中,由避障飞控分析处理器对第二无人机避障飞控请求进行分析,然后从避障飞控分析数据库集群中调取与第二无人机避障飞控请求对应的第二无人机避障飞控信息。同理,避障飞控分析处理器也可通过关键字或者请求与服务对应表的方式从避障飞控分析数据库集群中调取第二无人机避障飞控信息。
图2为本发明实施例提供的一种避障飞控分析处理器的功能架构图。结合图2可知,当避障飞控分析处理器获取到避障飞控请求1、避障飞控请求2、……避障飞控请求m时,则分别对该m个避障飞控请求进行分析处理,得到n个避障飞控请求分析结果。其中,各避障飞控请求独立互不干扰。
无人机避障飞控边缘网关接入层还用于:将第二避障飞控服务传输至通信卫星网络传输层。
通信卫星网络传输层还用于:将第二避障飞控服务传输至无人机。
第三实施例:
本实施例以第二实施例为基础。在本实施例中,无人机避障飞控中心分析层还用于:
根据预设的第一迭代分析规则对第二无人机避障飞控请求进行迭代分析处理,得到多个子请求信息,其中,第二无人机避障飞控请求包括多个子请求,一个子请求对应一个子请求信息;
对多个子请求信息进行汇总处理,得到请求信息;
根据预设的第二迭代分析规则对请求信息进行迭代分析处理,得到第二避障飞控服务。
第四实施例:
本实施例以第三实施例为基础。在本实施例中,无人机避障飞控中心分析层具体用于:
根据预设的多层循环卡尔曼滤波模糊神经元网络估计策略对在前子请求进行分析,得到与在前子请求对应的在前请求信息;
根据预设的迭代参数确定在后子请求;
根据多层循环卡尔曼滤波模糊神经元网络估计策略对在后子请求进行分析,得到与在后子请求对应的在后请求信息;
其中,子请求包括在前子请求和在后子请求,子请求信息包括在前请求信息和在后请求信息。
第五实施例:
本实施例以第四实施例为基础。在本实施例中,无人机避障飞控中心分析层还具体用于:
判断在前请求信息是否满足预设的深度分析评价条件,得到判断结果;
当判断结果为否时,则根据迭代参数确定在后请求信息;
根据多层循环卡尔曼滤波模糊神经元网络估计策略对在后请求信息进行分析,得到与在后请求信息对应的在后飞行信息;
其中,第二避障飞控服务包括在后飞行信息。
第六实施例:
本实施例以第五实施例为基础。在本实施例中,当当前请求信息为第k请求信息时,则无人机协同中心分析层还具体用于:
根据式1判断第k请求信息是否满足预设的深度分析评价条件,式1:
Figure BDA0001951811220000111
i=1,2,L m;j=1,2,L n;t=1,2,L,q;ε∈(0,1)
其中,
Figure BDA0001951811220000112
为第k请求信息对应的处理时延,
Figure BDA0001951811220000113
为第k请求信息对应的功耗成本,
Figure BDA0001951811220000114
为第k请求信息对应的处理准确率。
第七实施例:
本实施例以第六实施例为基础。在本实施例中,当在后请求信息为第k+1请求信息,在后飞行信息为第k+1飞行信息时,则无人机协同中心分析层还具体用于:
根据式2确定第k+1飞行信息
Figure BDA0001951811220000121
式2:
Figure BDA0001951811220000122
其中,
Figure BDA0001951811220000123
δ∈(0,1)
其中,
Figure BDA0001951811220000124
其中,
Figure BDA0001951811220000125
为第k+1请求信息对应的处理时延,
Figure BDA0001951811220000126
为第k+1请求信息对应的功耗成本,
Figure BDA0001951811220000127
为第k+1请求信息对应的处理准确率,Lmink为第k请求信息对应的最小处理时延,Wmaxk为第k请求信息对应的最大处理准确率,Cmink为第k请求信息对应的最小功耗成本,LminG为历史最小处理时延,CminG为历史最小功耗成本,WmaxG为历史最大处理准确率。
根据本发明实施例的另一个方面,本发明实施例还提供了一种基于边缘云的无人机避障方法,该方法基于上述第一至第七实施例中的任一实施例所述的系统。
请参阅图3,图3为本发明实施例提供的一种基于边缘云的无人机避障方法的流程示意图。
如图3所示,该方法包括:
S100:通信卫星网络传输层获取无人机发送的无人机避障飞控请求,并将无人机避障飞控请求传输至无人机避障飞控边缘网关接入层;
S200:无人机避障飞控边缘网关接入层将无人机避障飞控请求传输至无人机避障飞控边缘数据中心层;
S300:无人机避障飞控边缘数据中心层调用其存储的与第一无人机避障飞控请求对应的第一避障飞控服务,并将第一避障飞控服务传输至无人机避障飞控边缘网关接入层,其中,无人机避障飞控请求包括第一无人机避障飞控请求;
S400:无人机避障飞控边缘网关接入层将第一避障飞控服务传输至通信卫星网络传输层;
S500:通信卫星网络传输层将第一避障飞控服务传输至无人机。
结合图3可知,在一种可能实现的方案中,该方法还包括:
S600:无人机避障飞控边缘网关接入层将第二无人机避障飞控请求传输至无人机避障飞控中心分析层,其中,无人机避障飞控请求还包括第二无人机避障飞控请求;
S700:无人机避障飞控中心分析层调用其存储的与第二无人机避障飞控请求对应的第二避障飞控服务,并将第二避障飞控服务传输至无人机避障飞控边缘网关接入层;
S800:无人机避障飞控边缘网关接入层将第二避障飞控服务传输至通信卫星网络传输层;
S900:通信卫星网络传输层将所述第二避障飞控服务传输至无人机。
结合图3和图4(图4为本发明实施例提供的一种无人避障飞控同中心分析层根据第二无人机避障飞控请求确定第二避障飞控服务的流程示意图)可知,在一种可能实现的方案中,在S700之前,该方法还包括:
S1:无人机避障飞控中心分析层根据预设的第一迭代分析规则对第二无人机避障飞控请求进行迭代分析处理,得到多个子请求信息,其中,第二无人机避障飞控请求包括多个子请求,一个子请求对应一个子请求信息。
其中,S1具体包括:
S11:根据预设的多层循环卡尔曼滤波模糊神经元网络估计策略对在前子请求进行分析,得到与在前子请求对应的在前请求信息。
S12:根据预设的迭代参数确定在后子请求,其中,子请求包括在前子请求和在后子请求,子请求信息包括在前请求信息和在后请求信息。
S13:根据多层循环卡尔曼滤波模糊神经元网络估计策略对在后子请求进行分析,得到与在后子请求对应的在后请求信息。
如:迭代参数包括:迭代最大次数,迭代增加次数。具体地:
初始迭代次数为0,即对首个字请求进行分析。然后再迭代次数上加1,即为第一次迭代,对次个子请求进行分析。
S2:无人机避障飞控中心分析层对多个子请求信息进行汇总处理,得到请求信息。
S3:无人机避障飞控中心分析层根据预设的第二迭代分析规则对请求信息进行迭代分析处理,得到第二避障飞控服务。
其中,S3具体包括:
S31:判断在前请求信息是否满足预设的深度分析评价条件,得到判断结果。
具体地,当当前请求信息为第k请求信息时,则S31具体包括:根据式1判断第k请求信息是否满足预设的深度分析评价条件,式1:
Figure BDA0001951811220000141
i=1,2,L m;j=1,2,L n;t=1,2,L,q;ε∈(0,1)
其中,
Figure BDA0001951811220000142
为第k请求信息对应的处理时延,
Figure BDA0001951811220000143
为第k请求信息对应的功耗成本,
Figure BDA0001951811220000144
为第k请求信息对应的处理准确率。i、j、t分别为预存的深度分析模型(请参阅图5,图5为本发明实施例提供的一种深度分析模型的结构示意图)的方向向量上的取值。
结合图6对深度分析原理进行详细的阐述。其中,图6为本发明实施例提供的一种深度分析原理图。每次迭代中的多层循环卡尔曼滤波模糊神经元网络估计策略思想为:在多维空间(如1,2,L h多维空间)中,多个深度分析方案根据多层循环卡尔曼滤波模糊神经元网络估计策略方式向最优优化避障方案确定的方向迁移,也即图6中实线圆球所在位置。图6中间部分为多层循环卡尔曼滤波模糊神经元网络估计原理,请求在输入后经过多层模糊神经元网络、卡尔曼滤波分类估计策略分析后输出相应分析结果。图6右边部分的多层循环卡尔曼滤波模糊神经元网络估计自学习原理:多层模糊神经元网络通过基于超声波方位传感器、激光测距雷达感知的方位距离输入量(前方、左方、右方、后方、上方、下方),多层包含:处理时延L、功耗成本C、处理准确率W(处理准确率=正确避障处理的飞行动作数量/避障处理的飞行动作总数量)。其中,最优自然似然估计优化函数:
Figure BDA0001951811220000145
输出量包含:无人机避障飞行动
Figure BDA0001951811220000146
作的方向和速度,并进行预处理(连接无人机飞行动力装置),如图6中右边部分。
S32:当判断结果为否时,则根据迭代参数确定在后请求信息。
如:迭代参数包括:迭代最大次数,迭代增加次数。具体地:
初始迭代次数为0,即对首个请求信息进行分析。然后再迭代次数上加1,即为第一次迭代,对次个请求信息进行分析。
在一种可能实现的方案中,对当前迭代次数与最大迭代次数进行比较,当当前迭代次数大于最大迭代次数时,则结束流程。当当前迭代次数小于或等于最大迭代次数时,则跳转至S31。
S33:根据多层循环卡尔曼滤波模糊神经元网络估计策略对在后请求信息进行分析,得到与在后请求信息对应的在后飞行信息。其中,第二避障飞控服务包括在后飞行信息。
其中,当在后请求信息为第k+1请求信息,在后飞行信息为第k+1飞行信息时,则S33具体包括:
根据式2确定第k+1飞行信息
Figure BDA0001951811220000151
式2:
Figure BDA0001951811220000152
其中,
Figure BDA0001951811220000153
δ∈(0,1)
其中,
Figure BDA0001951811220000154
其中,
Figure BDA0001951811220000155
为第k+1请求信息对应的处理时延,
Figure BDA0001951811220000156
为所述第k+1请求信息对应的功耗成本,
Figure BDA0001951811220000157
为第k+1请求信息对应的处理准确率,Lmink为第k请求信息对应的最小处理时延,Wmaxk为第k请求信息对应的最大处理准确率,Cmink为第k请求信息对应的最小功耗成本,LminG为历史最小处理时延,CminG为历史最小功耗成本,WmaxG为历史最大处理准确率。
读者应理解,在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
还应理解,在本发明各实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (9)

1.一种基于边缘云的无人机避障系统,其特征在于,所述系统包括:通信卫星网络传输层、无人机避障飞控边缘网关接入层和无人机避障飞控边缘数据中心层,其中,
所述通信卫星网络传输层用于:获取无人机发送的无人机避障飞控请求,并将所述无人机避障飞控请求传输至所述无人机避障飞控边缘网关接入层;
所述无人机避障飞控边缘网关接入层用于:将所述无人机避障飞控请求传输至所述无人机避障飞控边缘数据中心层;
所述无人机避障飞控边缘数据中心层用于:调用其存储的与第一无人机避障飞控请求对应的第一避障飞控服务,并将所述第一避障飞控服务传输至所述无人机避障飞控边缘网关接入层,其中,所述无人机避障飞控请求包括所述第一无人机避障飞控请求;
所述无人机避障飞控边缘网关接入层还用于:将所述第一避障飞控服务传输至所述通信卫星网络传输层;
所述通信卫星网络传输层还用于:将所述第一避障飞控服务传输至所述无人机;其中,所述系统还包括:无人机避障飞控中心分析层,其中,
所述无人机避障飞控边缘网关接入层还用于:将第二无人机避障飞控请求传输至所述无人机避障飞控中心分析层,其中,所述无人机避障飞控请求还包括所述第二无人机避障飞控请求;
所述无人机避障飞控中心分析层用于:调用其存储的与所述第二无人机避障飞控请求对应的第二避障飞控服务,并将所述第二避障飞控服务传输至所述无人机避障飞控边缘网关接入层;
所述无人机避障飞控边缘网关接入层还用于:将所述第二避障飞控服务传输至所述通信卫星网络传输层;
所述通信卫星网络传输层还用于:将所述第二避障飞控服务传输至所述无人机。
2.根据权利要求1所述的基于边缘云的无人机避障系统,其特征在于,所述无人机避障飞控中心分析层还用于:
根据预设的第一迭代分析规则对所述第二无人机避障飞控请求进行迭代分析处理,得到多个子请求信息,其中,所述第二无人机避障飞控请求包括多个子请求,一个所述子请求对应一个所述子请求信息;
对多个所述子请求信息进行汇总处理,得到请求信息;
根据预设的第二迭代分析规则对所述请求信息进行迭代分析处理,得到所述第二避障飞控服务。
3.根据权利要求2所述的基于边缘云的无人机避障系统,其特征在于,所述无人机避障飞控中心分析层具体用于:
根据预设的多层循环卡尔曼滤波模糊神经元网络估计策略对在前子请求进行分析,得到与所述在前子请求对应的在前请求信息;
根据预设的迭代参数确定在后子请求;
根据所述多层循环卡尔曼滤波模糊神经元网络估计策略对所述在后子请求进行分析,得到与所述在后子请求对应的在后请求信息;
其中,所述子请求包括所述在前子请求和所述在后子请求,所述子请求信息包括所述在前请求信息和所述在后请求信息。
4.根据权利要求3所述的基于边缘云的无人机避障系统,其特征在于,所述无人机避障飞控中心分析层还具体用于:
判断所述在前请求信息是否满足预设的深度分析评价条件,得到判断结果;
当所述判断结果为否时,则根据所述迭代参数确定所述在后请求信息;
根据所述多层循环卡尔曼滤波模糊神经元网络估计策略对所述在后请求信息进行分析,得到与所述在后请求信息对应的在后飞行信息;
其中,所述第二避障飞控服务包括所述在后飞行信息。
5.根据权利要求4所述的基于边缘云的无人机避障系统,其特征在于,当当前请求信息为第k请求信息时,则所述无人机协同中心分析层还具体用于:
根据式1判断所述第k请求信息是否满足预设的深度分析评价条件,式1:
Figure FDA0003073527350000021
i=1,2,L m;j=1,2,L n;t=1,2,L,q;ε∈(0,1)
其中,
Figure FDA0003073527350000022
为所述第k请求信息对应的处理时延,
Figure FDA0003073527350000023
为所述第k请求信息对应的功耗成本,
Figure FDA0003073527350000031
为所述第k请求信息对应的处理准确率。
6.根据权利要求5所述的基于边缘云的无人机避障系统,其特征在于,当所述在后请求信息为第k+1请求信息,所述在后飞行信息为第k+1飞行信息时,则所述无人机协同中心分析层还具体用于:
根据式2确定所述第k+1飞行信息
Figure FDA0003073527350000032
式2:
Figure FDA0003073527350000033
其中,
Figure FDA0003073527350000034
其中,
Figure FDA0003073527350000035
其中,
Figure FDA0003073527350000036
为所述第k+1请求信息对应的处理时延,
Figure FDA0003073527350000037
为所述第k+1请求信息对应的功耗成本,
Figure FDA0003073527350000038
为所述第k+1请求信息对应的处理准确率,Lmink为所述第k请求信息对应的最小处理时延,Wmaxk为所述第k请求信息对应的最大处理准确率,Cmink为所述第k请求信息对应的最小功耗成本,LminG为历史最小处理时延,CminG为历史最小功耗成本,WmaxG为历史最大处理准确率。
7.一种基于边缘云的无人机避障方法,其特征在于,所述方法基于权利要求1至6任一项所述的系统,所述方法包括:
通信卫星网络传输层获取无人机发送的无人机避障飞控请求,并将所述无人机避障飞控请求传输至无人机避障飞控边缘网关接入层;
所述无人机避障飞控边缘网关接入层将所述无人机避障飞控请求传输至无人机避障飞控边缘数据中心层;
无人机避障飞控边缘数据中心层调用其存储的与第一无人机避障飞控请求对应的第一避障飞控服务,并将所述第一避障飞控服务传输至所述无人机避障飞控边缘网关接入层,其中,所述无人机避障飞控请求包括所述第一无人机避障飞控请求;
所述无人机避障飞控边缘网关接入层将所述第一避障飞控服务传输至所述通信卫星网络传输层;
所述通信卫星网络传输层将所述第一避障飞控服务传输至所述无人机。
8.根据权利要求7所述的基于边缘云的无人机避障方法,其特征在于,所述方法还包括:
所述无人机避障飞控边缘网关接入层将第二无人机避障飞控请求传输至无人机避障飞控中心分析层,其中,所述无人机避障飞控请求还包括所述第二无人机避障飞控请求;
所述无人机避障飞控中心分析层调用其存储的与所述第二无人机避障飞控请求对应的第二避障飞控服务,并将所述第二避障飞控服务传输至所述无人机避障飞控边缘网关接入层;
所述无人机避障飞控边缘网关接入层将所述第二避障飞控服务传输至所述通信卫星网络传输层;
所述通信卫星网络传输层将所述第二避障飞控服务传输至所述无人机。
9.根据权利要求8所述的基于边缘云的无人机避障方法,其特征在于,所述方法还包括:
所述无人机避障飞控中心分析层根据预设的第一迭代分析规则对所述第二无人机避障飞控请求进行迭代分析处理,得到多个子请求信息,其中,所述第二无人机避障飞控请求包括多个子请求,一个所述子请求对应一个所述子请求信息,对多个所述子请求信息进行汇总处理,得到请求信息,根据预设的第二迭代分析规则对所述请求信息进行迭代分析处理,得到所述第二避障飞控服务。
CN201910053984.2A 2019-01-21 2019-01-21 一种基于边缘云的无人机避障系统和方法 Active CN109557943B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910053984.2A CN109557943B (zh) 2019-01-21 2019-01-21 一种基于边缘云的无人机避障系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910053984.2A CN109557943B (zh) 2019-01-21 2019-01-21 一种基于边缘云的无人机避障系统和方法

Publications (2)

Publication Number Publication Date
CN109557943A CN109557943A (zh) 2019-04-02
CN109557943B true CN109557943B (zh) 2021-07-20

Family

ID=65873323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910053984.2A Active CN109557943B (zh) 2019-01-21 2019-01-21 一种基于边缘云的无人机避障系统和方法

Country Status (1)

Country Link
CN (1) CN109557943B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112068597B (zh) * 2020-09-25 2022-09-13 中国直升机设计研究所 一种基于前驱无人机的直升机避障系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106056298A (zh) * 2016-06-08 2016-10-26 宁波赛夫科技有限公司 工厂智能车间实时调度系统
CN107305383A (zh) * 2016-04-22 2017-10-31 上海慧流云计算科技有限公司 一种自动避障的方法及使用该方法的机器人
WO2018130274A1 (en) * 2017-01-11 2018-07-19 Nokia Solutions And Networks Oy Security architecture for machine type communications
CN108684047A (zh) * 2018-07-11 2018-10-19 北京邮电大学 一种无人机承载小基站通信系统与方法
CN108833577A (zh) * 2018-06-29 2018-11-16 中国联合网络通信集团有限公司 基于边缘计算的数据通信优化系统及方法
CN108871409A (zh) * 2018-05-02 2018-11-23 北京畅东科技有限公司 一种故障检测方法和系统
CN109117856A (zh) * 2018-08-23 2019-01-01 中国联合网络通信集团有限公司 基于智能边缘云的人及物追踪方法、装置及系统
CN109213161A (zh) * 2018-08-31 2019-01-15 北京航空航天大学 基于边缘计算的agv控制系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10200410B2 (en) * 2016-09-30 2019-02-05 Intel Corporation Networked peer device round-robin security controller

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107305383A (zh) * 2016-04-22 2017-10-31 上海慧流云计算科技有限公司 一种自动避障的方法及使用该方法的机器人
CN106056298A (zh) * 2016-06-08 2016-10-26 宁波赛夫科技有限公司 工厂智能车间实时调度系统
WO2018130274A1 (en) * 2017-01-11 2018-07-19 Nokia Solutions And Networks Oy Security architecture for machine type communications
CN108871409A (zh) * 2018-05-02 2018-11-23 北京畅东科技有限公司 一种故障检测方法和系统
CN108833577A (zh) * 2018-06-29 2018-11-16 中国联合网络通信集团有限公司 基于边缘计算的数据通信优化系统及方法
CN108684047A (zh) * 2018-07-11 2018-10-19 北京邮电大学 一种无人机承载小基站通信系统与方法
CN109117856A (zh) * 2018-08-23 2019-01-01 中国联合网络通信集团有限公司 基于智能边缘云的人及物追踪方法、装置及系统
CN109213161A (zh) * 2018-08-31 2019-01-15 北京航空航天大学 基于边缘计算的agv控制系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于无服务器架构的边缘AI计算平台;刘畅等;《系统与方案》;20181015;第45-49页 *
面向云服务CPS架构下的无人机通地站智能总装车间设计;李杰林等;《测控技术》;20180918;第80-88页 *

Also Published As

Publication number Publication date
CN109557943A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
US20190095780A1 (en) Method and apparatus for generating neural network structure, electronic device, and storage medium
US20180157638A1 (en) Joint language understanding and dialogue management
WO2020173044A1 (zh) 无人机路径规划方法、装置、存储介质及计算机设备
Guo et al. CoFF: Cooperative spatial feature fusion for 3-D object detection on autonomous vehicles
CN109557943B (zh) 一种基于边缘云的无人机避障系统和方法
Rabiee et al. IV-SLAM: Introspective vision for simultaneous localization and mapping
CN109656270B (zh) 基于边缘云的无人机编队协同飞行的控制系统和方法
CN114863226A (zh) 一种网络物理系统入侵检测方法
CN112650300A (zh) 一种无人机避障方法和装置
CN112818399B (zh) 大数据访问权限动态调整方法及大数据访问控制设备
Fang et al. Piecewise-potential-field-based path planning method for fixed-wing UAV formation
CN107273914B (zh) 基于信源自适应动态选择的高效融合识别方法
CN109782798A (zh) 一种基于Boid模型的无人机群编队方法
CN116088586A (zh) 一种无人机作战过程中的临机任务规划的方法
CN109782917B (zh) 一种基于脑机接口的意识工业控制系统及方法
WO2021237727A1 (en) Method and apparatus of image processing
CN112732591A (zh) 一种缓存深度学习的边缘计算架构
US10326595B1 (en) Load balancing probabilistic robot detection
CN112154433A (zh) 响应内容请求的计算资源的有效使用
JP7425954B2 (ja) データ処理システム
Shiranthika et al. SplitFed resilience to packet loss: Where to split, that is the question
US11475720B2 (en) Methods and systems for collecting sensor data according to a data collection configuration based on an estimated information gain
US20230401734A1 (en) Method and apparatus for estimating depth of image
CN113591539B (zh) 一种目标识别方法、装置及可读存储介质
Bing et al. A Spectrum Sensing Method for UAV Swarms Under Byzantine Attack

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant