CN112732591A - 一种缓存深度学习的边缘计算架构 - Google Patents
一种缓存深度学习的边缘计算架构 Download PDFInfo
- Publication number
- CN112732591A CN112732591A CN202110053894.0A CN202110053894A CN112732591A CN 112732591 A CN112732591 A CN 112732591A CN 202110053894 A CN202110053894 A CN 202110053894A CN 112732591 A CN112732591 A CN 112732591A
- Authority
- CN
- China
- Prior art keywords
- cache
- deep learning
- data
- unit
- edge computing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013135 deep learning Methods 0.000 title claims abstract description 95
- 238000013136 deep learning model Methods 0.000 claims abstract description 31
- 238000004364 calculation method Methods 0.000 claims abstract description 28
- 230000005540 biological transmission Effects 0.000 claims abstract description 21
- 238000013528 artificial neural network Methods 0.000 claims description 12
- 230000003993 interaction Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 44
- 238000010586 diagram Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 13
- 238000001514 detection method Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 8
- 238000004590 computer program Methods 0.000 description 5
- 230000001537 neural effect Effects 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- 238000013473 artificial intelligence Methods 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013524 data verification Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000013138 pruning Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0806—Multiuser, multiprocessor or multiprocessing cache systems
- G06F12/0811—Multiuser, multiprocessor or multiprocessing cache systems with multilevel cache hierarchies
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0806—Multiuser, multiprocessor or multiprocessing cache systems
- G06F12/084—Multiuser, multiprocessor or multiprocessing cache systems with a shared cache
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0806—Multiuser, multiprocessor or multiprocessing cache systems
- G06F12/0842—Multiuser, multiprocessor or multiprocessing cache systems for multiprocessing or multitasking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/10—Interfaces, programming languages or software development kits, e.g. for simulating neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/94—Hardware or software architectures specially adapted for image or video understanding
- G06V10/95—Hardware or software architectures specially adapted for image or video understanding structured as a network, e.g. client-server architectures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/94—Hardware or software architectures specially adapted for image or video understanding
- G06V10/955—Hardware or software architectures specially adapted for image or video understanding using specific electronic processors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/07—Target detection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110053894.0A CN112732591B (zh) | 2021-01-15 | 2021-01-15 | 一种缓存深度学习的边缘计算架构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110053894.0A CN112732591B (zh) | 2021-01-15 | 2021-01-15 | 一种缓存深度学习的边缘计算架构 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112732591A true CN112732591A (zh) | 2021-04-30 |
CN112732591B CN112732591B (zh) | 2023-04-07 |
Family
ID=75591581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110053894.0A Active CN112732591B (zh) | 2021-01-15 | 2021-01-15 | 一种缓存深度学习的边缘计算架构 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112732591B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023134360A1 (zh) * | 2022-01-14 | 2023-07-20 | 哲库科技(上海)有限公司 | 一种数据处理方法及装置、存储介质 |
US20230238156A1 (en) * | 2022-01-26 | 2023-07-27 | North China Electric Power University | Method and system for detecting typical object of transmission line based on unmanned aerial vehicle (uav) federated learning |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8131931B1 (en) * | 2008-10-22 | 2012-03-06 | Nvidia Corporation | Configurable cache occupancy policy |
US20140122809A1 (en) * | 2012-10-30 | 2014-05-01 | Nvidia Corporation | Control mechanism for fine-tuned cache to backing-store synchronization |
US20140289481A1 (en) * | 2013-03-25 | 2014-09-25 | Fujitsu Limited | Operation processing apparatus, information processing apparatus and method of controlling information processing apparatus |
CN107085730A (zh) * | 2017-03-24 | 2017-08-22 | 深圳爱拼信息科技有限公司 | 一种字符验证码识别的深度学习方法及装置 |
CN107480725A (zh) * | 2017-08-23 | 2017-12-15 | 京东方科技集团股份有限公司 | 基于深度学习的图像识别方法、装置和计算机设备 |
CN109213641A (zh) * | 2017-06-29 | 2019-01-15 | 展讯通信(上海)有限公司 | 缓存一致性检测系统及方法 |
CN109657804A (zh) * | 2018-11-29 | 2019-04-19 | 湖南视比特机器人有限公司 | 云平台下的模型动态训练、校验、更新维护和利用方法 |
CN110032449A (zh) * | 2019-04-16 | 2019-07-19 | 苏州浪潮智能科技有限公司 | 一种优化gpu服务器的性能的方法及装置 |
CN110414373A (zh) * | 2019-07-08 | 2019-11-05 | 武汉大学 | 一种基于云边端协同计算的深度学习掌静脉识别系统及方法 |
CN110610208A (zh) * | 2019-09-11 | 2019-12-24 | 湖南大学 | 一种主动安全增量数据训练方法 |
CN110795482A (zh) * | 2019-10-16 | 2020-02-14 | 浙江大华技术股份有限公司 | 数据对标方法、装置、及存储装置 |
CN111585925A (zh) * | 2020-04-18 | 2020-08-25 | 西北工业大学 | 一种基于深度学习的稳健实时射频信号调制识别方法 |
CN111597955A (zh) * | 2020-05-12 | 2020-08-28 | 博康云信科技有限公司 | 基于深度学习的表情情绪识别的智能家居控制方法及装置 |
CN111915025A (zh) * | 2017-05-05 | 2020-11-10 | 英特尔公司 | 用于自主机器的机器学习中的即时深度学习 |
-
2021
- 2021-01-15 CN CN202110053894.0A patent/CN112732591B/zh active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8131931B1 (en) * | 2008-10-22 | 2012-03-06 | Nvidia Corporation | Configurable cache occupancy policy |
US20140122809A1 (en) * | 2012-10-30 | 2014-05-01 | Nvidia Corporation | Control mechanism for fine-tuned cache to backing-store synchronization |
US20140289481A1 (en) * | 2013-03-25 | 2014-09-25 | Fujitsu Limited | Operation processing apparatus, information processing apparatus and method of controlling information processing apparatus |
CN107085730A (zh) * | 2017-03-24 | 2017-08-22 | 深圳爱拼信息科技有限公司 | 一种字符验证码识别的深度学习方法及装置 |
CN111915025A (zh) * | 2017-05-05 | 2020-11-10 | 英特尔公司 | 用于自主机器的机器学习中的即时深度学习 |
CN109213641A (zh) * | 2017-06-29 | 2019-01-15 | 展讯通信(上海)有限公司 | 缓存一致性检测系统及方法 |
CN107480725A (zh) * | 2017-08-23 | 2017-12-15 | 京东方科技集团股份有限公司 | 基于深度学习的图像识别方法、装置和计算机设备 |
CN109657804A (zh) * | 2018-11-29 | 2019-04-19 | 湖南视比特机器人有限公司 | 云平台下的模型动态训练、校验、更新维护和利用方法 |
CN110032449A (zh) * | 2019-04-16 | 2019-07-19 | 苏州浪潮智能科技有限公司 | 一种优化gpu服务器的性能的方法及装置 |
CN110414373A (zh) * | 2019-07-08 | 2019-11-05 | 武汉大学 | 一种基于云边端协同计算的深度学习掌静脉识别系统及方法 |
CN110610208A (zh) * | 2019-09-11 | 2019-12-24 | 湖南大学 | 一种主动安全增量数据训练方法 |
CN110795482A (zh) * | 2019-10-16 | 2020-02-14 | 浙江大华技术股份有限公司 | 数据对标方法、装置、及存储装置 |
CN111585925A (zh) * | 2020-04-18 | 2020-08-25 | 西北工业大学 | 一种基于深度学习的稳健实时射频信号调制识别方法 |
CN111597955A (zh) * | 2020-05-12 | 2020-08-28 | 博康云信科技有限公司 | 基于深度学习的表情情绪识别的智能家居控制方法及装置 |
Non-Patent Citations (1)
Title |
---|
曾凡太: "针对边缘计算的使能技术提出了多种解决方案", 《物联网之雾 基于雾计算的智能硬件快速反应与安全控制》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023134360A1 (zh) * | 2022-01-14 | 2023-07-20 | 哲库科技(上海)有限公司 | 一种数据处理方法及装置、存储介质 |
US20230238156A1 (en) * | 2022-01-26 | 2023-07-27 | North China Electric Power University | Method and system for detecting typical object of transmission line based on unmanned aerial vehicle (uav) federated learning |
Also Published As
Publication number | Publication date |
---|---|
CN112732591B (zh) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111819580A (zh) | 用于密集图像预测任务的神经架构搜索 | |
CN112732591B (zh) | 一种缓存深度学习的边缘计算架构 | |
CN111666714B (zh) | 自动驾驶仿真场景识别的方法及装置 | |
CN113326786B (zh) | 数据处理方法、装置、设备、车辆和存储介质 | |
US20220237521A1 (en) | Method, device, and computer program product for updating machine learning model | |
CN112419722A (zh) | 交通异常事件检测方法、交通管控方法、设备和介质 | |
US20210004022A1 (en) | Method, apparatus and control system for controlling mobile robot | |
CN113392793A (zh) | 用于识别车道线的方法、装置、设备、存储介质以及无人车 | |
CN111627241A (zh) | 用于生成车辆排队信息的方法和装置 | |
CN112622923B (zh) | 用于控制车辆的方法和装置 | |
CN113705515A (zh) | 语义分割模型的训练和高精地图车道线的生成方法和设备 | |
CN111027195B (zh) | 仿真场景的生成方法、装置及设备 | |
CN116164770A (zh) | 路径规划方法、装置、电子设备和计算机可读介质 | |
CN113391627A (zh) | 无人车驾驶模式切换方法、设备、车辆及云端服务器 | |
CN110532033B (zh) | 一种数据处理系统和数据处理方法 | |
CN115866229B (zh) | 多视角图像的视角转换方法、装置、设备和介质 | |
CN109471437B (zh) | 用于控制移动机器人的方法、装置和控制系统 | |
CN114549961B (zh) | 目标对象的检测方法、装置、设备以及存储介质 | |
CN115861755A (zh) | 特征融合方法、装置、电子设备及自动驾驶车辆 | |
US20220227374A1 (en) | Data processing | |
Martinez-Alpiste et al. | NetApps approach for accelerating vertical adoption of 5G networks: a uav case | |
CN114841338A (zh) | 训练模型参数的方法、决策确定方法、装置及电子设备 | |
CN113920273B (zh) | 图像处理方法、装置、电子设备和存储介质 | |
CN116974735A (zh) | 模型训练的方法、电子设备和计算机程序产品 | |
CN111427037B (zh) | 障碍物的检测方法和装置、电子设备和车端设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 310018 Room 501, Building 9, No. 20, Kejiyuan Road, Baiyang Street, Hangzhou Economic and Technological Development Zone, Zhejiang Province Patentee after: Hangzhou Zhongke advanced technology development Co.,Ltd. Country or region after: China Address before: 310000 Room 501, building 9, No. 20, Science Park Road, Baiyang street, economic and Technological Development Zone, Jianggan District, Hangzhou City, Zhejiang Province Patentee before: HANGZHOU ZHONGKE ADVANCED TECHNOLOGY RESEARCH INSTITUTE Co.,Ltd. Country or region before: China |