CN109554343B - 一种适于神经元粘附与存活的涂层材料及制备方法 - Google Patents

一种适于神经元粘附与存活的涂层材料及制备方法 Download PDF

Info

Publication number
CN109554343B
CN109554343B CN201811636564.9A CN201811636564A CN109554343B CN 109554343 B CN109554343 B CN 109554343B CN 201811636564 A CN201811636564 A CN 201811636564A CN 109554343 B CN109554343 B CN 109554343B
Authority
CN
China
Prior art keywords
graphene oxide
coating material
survival
neuron
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811636564.9A
Other languages
English (en)
Other versions
CN109554343A (zh
Inventor
王欣
王苹
鞠婷婷
刘洋
王赞
周余来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201811636564.9A priority Critical patent/CN109554343B/zh
Publication of CN109554343A publication Critical patent/CN109554343A/zh
Application granted granted Critical
Publication of CN109554343B publication Critical patent/CN109554343B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/20Small organic molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2537/00Supports and/or coatings for cell culture characterised by physical or chemical treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Materials Engineering (AREA)
  • Neurology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Neurosurgery (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种适于神经元粘附与存活的涂层材料及制备方法。概括地讲,本发明是利用石墨烯基材料具有组织诱导性、可应用于生物医用组织工程领域的特点,通过改进的Hummers方法制备氧化石墨烯胶体,再将稀释的氧化石墨烯溶液与阿糖胞苷溶液均匀混合,最后经过真空干燥处理制备的一种石墨烯基载药复合涂层的方法。本发明所制备的产物能显著促进神经元细胞的粘附与存活。本发明提出的方法简单易操作、成本低、一致性好,易于转化。制备出来的石墨烯基薄膜在组织工程领域拥有广大的应用前景和实用价值。

Description

一种适于神经元粘附与存活的涂层材料及制备方法
技术领域:
本发明涉及一种适于神经元粘附与存活的涂层材料及制备方法,概括地讲,本发明是利用石墨烯基材料具有组织诱导性、可应用于生物医用组织工程领域的特点,涉及通过改进的Hummers方法制备氧化石墨烯胶体,再将稀释的氧化石墨烯溶液与阿糖胞苷溶液均匀混合,最后经过真空干燥处理制备的一种石墨烯基载药复合涂层的方法。
背景技术:
生命和再生工程,包括人类在未来实现操纵神经系统、生物细胞和组织器官等能力被认为是科学和工业界第六次科技革命所涉及的学科之一。而作为第四次产业革命重要技术的再生技术也就成为了各国超前布局、抢占科学战略制高点,进而掌握核心专利的目标。
神经元属终末分化细胞,具有感受外界刺激和传导生物电信号功能。通过神经元培养建立体外细胞模型用于研究药物的神经毒性和神经退行性病变机理是目前神经生物学领域的重要手段,但是体外分离的神经元培养存在诸多难点,包括神经元纯化及确保神经元长期存活。早期一些实验室采用低剂量的阿胞糖苷添加到培养基中,旨在抑制分裂增殖细胞的生长,其弊病是阿胞糖苷也能引起一定的神经毒性,影响神经元存活;此外,神经元存活需要各种神经生长因子和神经营养因子,去除了神经组织中的非神经元细胞,神经元缺乏刺激生长的营养因子发生退行性死亡。目前解决办法是改良细胞培养基,添加各种神经生长因子和活性物质维持神经元存活,这种培养基价格昂贵。
近年来,石墨烯作为一种新型纳米材料在生物医用组织工程领域崭露头角,石墨烯基材料因具有高生物兼容性,低毒性,高比表面积.对各类小分子物质有较强的吸附能力等物理化学性质,在组织工程领域有着良好的应用前景。目前体内体外的实验均证实其能促进组织的修复和与重建,且有大量研究表明石墨烯基材料能显著促进细胞粘附、增殖及分化。基于石墨烯及其衍生物良好的生物相容性,以及优良的光学、电学、力学等性能,可进一步应用于生物芯片、神经修复与再生移植物等领域。氧化石墨烯的二维平面结构使其具有超大的比表面积,芳香环平面使其具有芳香族化合物的能力,二维平面上的含氧亲水基团,拥有良好的水溶性和化学可调性,能在溶液状态下实现与其它物质分子包括药物分子实现键合,从而制备性能优异的复合材料。
石墨烯基材料独特的结构、高比表面积、以及强大的吸附能力,使大量生长因子、蛋白质等营养物质能聚集、浓缩在其表面,影响细胞信号通路的表达,从而可以实现对多种细胞的培养。本发明在于采用溶剂蒸发自组装成膜方法,制备化学修饰的石墨烯与阿糖胞苷复合涂层。ZL201610034514.8公开了一种简单易操作的集掺杂和成膜为一体的制备方法,即通过溶液共混结合低温阶梯加热过程,制备石墨烯基复合膜。但未涉及医用。本发明提出的涂层材料制备方法简单、成本低、一致性好,易于转化。尽管石墨烯在医学方面的研究仍处于早期阶段,但凭借其优异的物理化学特性和良好的生物相容性,有望在组织工程领域拥有更大的应用前景和实用价值。
发明内容:
本发明提出了一种适于神经元粘附与存活的涂层材料及制备方法,该方法从以上背景出发,将阿糖胞苷和氧化石墨烯进行了有效的结合,复合膜适于神经元细胞粘附,有助于神经元细胞存活,表现出了优异的细胞培养功能。
一种适于神经元粘附与存活的涂层材料制备的具体步骤如下:
1)利用改进的Hummers方法,制备氧化石墨烯胶体;
2)离心洗涤至氧化石墨烯上层清液pH值约为3~7,收集离心洗涤后下层的氧化石墨烯沉淀;
3)将氧化石墨烯沉淀放进容器,按照1:1的比例加入去离子水,机械搅拌,离心,去除底层沉淀得到氧化石墨烯水溶胶;
4)在氧化石墨烯水溶胶里加入去离子水,机械搅拌,稀释至适当浓度,加入酸或碱调节其pH值至7,得到氧化石墨烯水溶液;
5)取浓度为0.1-10mg/ml的氧化石墨烯溶液,在超声波清洗机中超声分散;
6)将阿糖胞苷用少量溶剂稀释;
7)将氧化石墨烯溶液和阿糖胞苷溶液按一定比例混合并进行超声处理;
8)将配置好的氧化石墨烯与阿糖胞苷溶液滴涂至表面经亲水处理的玻璃片上,低真空干燥,得到氧化石墨烯基复合薄膜涂层;
9)氧化石墨烯及复合薄膜涂层在高真空条件下,采用热还原法得到还原氧化石墨烯基复合薄膜涂层。
本发明中,步骤1)中的氧化石墨烯胶体制备,取样干燥后计算氧化石墨烯胶体浓度。
本发明中,步骤2)中的离心洗涤,离心机转速为3000~4000rpm,在所述的第三步离心时离心机的转速为500~1000rpm。
本发明中,步骤3)中机械搅拌时间为30分钟,在所述的第四步机械搅拌的时间也为30分钟。
本发明中,步骤4)中所述的氧化石墨烯水溶液的配制方法,加入的酸为HCL或H2SO4,所述碱为KOH或NaOH。
本发明中,步骤5)中所述的超声时间为10-30分钟。
本发明中,步骤6)中所述的溶剂为乙醇、水、氯仿中的一种,配置的浓度为0.01mg/ml,0.025mg/ml,0.05mg/ml,0.1mg/ml,0.2mg/ml,0.5mg/ml,1.0mg/ml,1.25mg/ml。
本发明中,步骤7)中所述的氧化石墨烯与阿糖胞苷的比例为5:1-1:5。
本发明中,步骤8)中所述的玻璃片尺寸为直径15mm的圆片,表面经氨基化处理,滴涂量为0.05-1.5ml,在60℃下真空干燥24小时,真空度为0.06MPa。
本发明中,步骤9)中所述的真空度为0.02MPa,持续升温至120℃,保温12小时;而后继续升温至160℃恒温12小时。箱内随炉冷却至室温,得到还原氧化石墨烯基涂层。
综述所述,一种适于神经元粘附与存活的涂层材料及制备方法,其特征在于,结合拉曼光谱(Raman)、傅立叶变换红外光谱(FTIR)、原子力显微镜(AFM)测量发现,涂层为多层结构,表面均比较光滑;采用三叉神经元培养,发现复合膜对对神经元细胞表现出良好的粘附增强效果。神经元密度大,神经元突起形成快,与介质相容性好,神经纤维延伸平滑,长时间培养未见神经元脱离复合膜表面现象。
附图说明:
图1是实施实例中氧化石墨烯、还原氧化石墨烯、氧化石墨烯-药物、还原氧化石墨烯-药物复合膜的Raman谱图。
图2.1是实施实例中氧化石墨烯的FTIR谱图。
图2.2是实施实例中氧化石墨烯-药物的FTIR谱图。
图2.3是实施实例中还原氧化石墨烯的FTIR谱图。
图2.4是实施实例中还原氧化石墨烯-药物的FTIR谱图。
图3.1是实施实例中氧化石墨烯膜表面的AFM图像。
图3.2是实施实例中还原氧化石墨烯膜表面的AFM图像。
图3.3是实施实例中氧化石墨烯-药物膜表面的AFM图像。
图3.4是实施实例中还原氧化石墨烯-药物膜表面的AFM图像。
图4.1是实施实例中玻璃衬底表面培养的细胞的激光扫描共聚焦显微图。
图4.2是实施实例中氧化石墨烯-药物膜表面培养的细胞的激光扫描共聚焦显微图。
图4.3是实施实例中还原氧化石墨烯-药物膜表面培养的细胞的激光扫描共聚焦显微图。
具体实施方式:
实施实例:
制备一种适于神经元粘附与存活的涂层的实验条件及参数如下:
1)采用改良的Humners方法制备氧化石墨烯胶体。原料为1.5g硝酸钠、2g天然鳞片石墨烯、9g高锰酸钾、69ml浓硫酸;分别用10%盐酸和去离子水为洗涤液,离心清洗,直到上清液的pH值接近中性,得到氧化石墨烯胶体;
2)取一定量的氧化石墨烯胶体加水稀释到浓度为0.5mg/ml,将再稀释液进行超声分散处理,超声时间为20分钟;
3)将阿糖胞苷用少量去离子水稀释,配置的浓度为0.1mg/ml;
4)将氧化石墨烯与阿糖胞苷的比例为4:1的混合溶液滴涂在直径为15mm的氨基化处理的玻璃片上,滴涂量为0.15ml,在真空度为0.02MPa、温度为60℃下干燥12小时,得到氧化石墨烯-药物薄膜涂层;
5)将步骤4)中的一部分样品继续升温至160℃,并恒温12小时。箱内随炉冷却至室温,得到还原氧化石墨烯-药物薄膜涂层;
根据上述发明所列举的方法,可以制备出石墨烯基复合薄膜涂层,其特征如下:
1)对所制备的样品进行激光Raman光谱分析(波长514.5nm),结果表明,氧化石墨烯、载药氧化石墨、还原氧化石墨烯,载药还原氧化石墨烯的Raman谱图上均存在两个强度较高的典型特征峰,分别为D1(1391cm-1)和G1峰(1643m-1)、D2(1347cm-1)和G2峰(1596cm-1)、D2和G2、D1和G1。其中G带代表的是sp2碳原子在2D晶格面内的振动,D带则与石墨的无序结构有关,对应于晶格中存在的sp3碳原子的振动。通过对比可以发现,氧化石墨烯经过还原处理及载药后,D峰和G峰峰强均增强,说明膜样品中的sp2碳的缺陷密度增大,同时sp3向sp2转化的石墨烯化程度增强,而且D峰和G峰均向低波数位移,说明还原及载药后样品的微观结构有序化程度得到增强。此外,样品的Raman谱图中均出现了2D峰(2680cm-1)和D+G峰(2926cm-1),说明所制备的石墨烯基涂层及载药的石墨烯基涂层为中存在单层或少层结构。
2)采用傅里叶变换红外光谱(FTIR)进一步获得样品的成分与结构信息。结果表明,红外光谱中,3627cm-1为OH-的特征吸收峰,1718cm-1处属于羧酸中的C=O键的伸缩振动峰,1518cm-1处属于吡咯环振动特征峰,1210cm-1与1060cm-1处对应于环氧基C-O-C中碳氧键的对称与非对称伸缩振动吸收峰。从键合情况可以看出,天然石墨已经被氧化,加热氧化石墨烯,处于1000-1500cm-1范围内的特征含氧基团及OH-特征峰得到有效去除;相比之下,连接药物分子的同时,氧化石墨烯也得到了原位还原,药物分子与氧化石墨烯以共价键或静电相互作用复合;处于2000-3000cm-1范围的特征峰则可能源于经亲水处理的玻璃基片上的含氧基团。
3)采用原子力显微镜(AFM)分析了样品的表面形貌和光滑程度。结果表明,所制备的膜材料样品均比较光滑,氧化石墨烯、氧化石墨烯-药物、还原氧化石墨烯、还原氧化石墨烯-药物膜表面的粗糙度分别为4.67nm、2.5nm、11.0nm、3.5nm。载药后,膜表面微观上趋于光滑,而加热处理有降低膜表面光滑度的倾向。
4)采用激光扫描共聚焦显微镜分析了样品表面神经元细胞生长状态,结果表明,还原氧化石墨烯载药组样品多数细胞表达神经元特异表达蛋白-Tublin IIIβ,神经元密度较氧化石墨烯载药组和玻璃片对照组的大,神经纤维长,且与相邻的神经元的神经纤维交织成网。说明由阿糖胞苷功能化的还原氧化石墨烯涂层是一种适宜神经元培养的新型的载体材料。

Claims (8)

1.一种适于神经元粘附与存活的涂层材料,其特征在于,所述涂层材料是将阿糖胞苷和氧化石墨烯结合而成,所述涂层材料的制备方法如下:
1)采用改良的Hummers方法制备氧化石墨烯胶体,具体原料为1.5g硝酸钠、2g天然鳞片石墨烯、9g高锰酸钾、69mL浓硫酸;分别用10%盐酸和去离子水为洗涤液,离心清洗,直到上清液的pH值为中性,得到氧化石墨烯胶体;
2)将步骤1)的氧化石墨烯胶体进行离心洗涤至上清液pH值为3~7,收集离心洗涤后下层的氧化石墨烯沉淀;
3)将步骤2)的氧化石墨烯沉淀放进容器,按照1:1的比例加入去离子水,机械搅拌,离心,去除底层沉淀得到氧化石墨烯水溶胶;
4)在步骤3)的氧化石墨烯水溶胶里加入去离子水,机械搅拌,稀释,加入酸或碱使pH值至7,得到氧化石墨烯水溶液;
5)取步骤4)的氧化石墨烯溶液浓度为0.1-10mg/mL,在超声波清洗机中超声分散;
6)将阿糖胞苷用溶剂稀释至浓度0.01mg/mL、0.025mg/mL、0.05mg/mL、0.1mg/mL、0.2mg/mL、0.5mg/mL,1.0mg/mL或1.25mg/mL,将步骤5)中的氧化石墨烯溶液和稀释后的阿糖胞苷溶液按5:1-1:5混合并进行超声处理;
7)对步骤6)的配置好的混合溶液滴涂至表面经亲水处理的玻璃片上,在0.06MPa下真空干燥,得到氧化石墨烯基复合薄膜涂层;
8)对步骤7)的复合涂层在0.02MPa真空条件下,升温至120℃,保温12小时;而后继续升温至160℃恒温12小时;箱内随炉冷却至室温,得到还原氧化石墨烯基复合薄膜涂层。
2.如权利要求1所述的适于神经元粘附与存活的涂层材料,其特征在于,步骤1)中的氧化石墨烯胶体制备,取样干燥后计算氧化石墨烯胶体浓度。
3.如权利要求1所述的适于神经元粘附与存活的涂层材料,其特征在于,步骤2)中的离心洗涤,离心机转速为3000~4000rpm,在所述步骤3)离心时离心机的转速为500~1000rpm。
4.如权利要求1所述的适于神经元粘附与存活的涂层材料,其特征在于,步骤3)中的机械搅拌时间为30分钟,在所述步骤4)机械搅拌的时间也为30分钟。
5.如权利要求1所述的适于神经元粘附与存活的涂层材料,其特征在于,步骤4)中加入的酸为HCl或H2SO4,碱为KOH或NaOH。
6.如权利要求1所述的适于神经元粘附与存活的涂层材料,其特征在于,步骤5)中的超声时间为10-30分钟。
7.如权利要求1所述的适于神经元粘附与存活的涂层材料,其特征在于,步骤6)中所述的溶剂为乙醇、水、氯仿中的一种。
8.如权利要求1所述的适于神经元粘附与存活的涂层材料,其特征在于,步骤7)所述的玻璃片尺寸为直径15mm的圆片,表面经氨基化处理,滴涂量为0.05-1.5mL,在60℃下真空干燥24小时,得到氧化石墨烯基复合涂层。
CN201811636564.9A 2018-12-29 2018-12-29 一种适于神经元粘附与存活的涂层材料及制备方法 Expired - Fee Related CN109554343B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811636564.9A CN109554343B (zh) 2018-12-29 2018-12-29 一种适于神经元粘附与存活的涂层材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811636564.9A CN109554343B (zh) 2018-12-29 2018-12-29 一种适于神经元粘附与存活的涂层材料及制备方法

Publications (2)

Publication Number Publication Date
CN109554343A CN109554343A (zh) 2019-04-02
CN109554343B true CN109554343B (zh) 2022-04-19

Family

ID=65871908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811636564.9A Expired - Fee Related CN109554343B (zh) 2018-12-29 2018-12-29 一种适于神经元粘附与存活的涂层材料及制备方法

Country Status (1)

Country Link
CN (1) CN109554343B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110974809B (zh) * 2019-12-12 2022-03-15 天新福(北京)医疗器材股份有限公司 一种图案化空心结构的石墨烯薄膜药物载体及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012149493A2 (en) * 2011-04-28 2012-11-01 Sloan-Kettering Institute For Cancer Research Hsp90 combination therapy
CN106388807A (zh) * 2016-08-30 2017-02-15 中国科学院深圳先进技术研究院 一种表面帖附电极阵列制备方法
CN108136566A (zh) * 2015-09-28 2018-06-08 安比奥有限公司 表面的磨料喷砂改性

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10335519B2 (en) * 2011-04-20 2019-07-02 Trustees Of Tufts College Dynamic silk coatings for implantable devices
US10376600B2 (en) * 2016-03-03 2019-08-13 Gholam A. Peyman Early disease detection and therapy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012149493A2 (en) * 2011-04-28 2012-11-01 Sloan-Kettering Institute For Cancer Research Hsp90 combination therapy
CN108136566A (zh) * 2015-09-28 2018-06-08 安比奥有限公司 表面的磨料喷砂改性
CN106388807A (zh) * 2016-08-30 2017-02-15 中国科学院深圳先进技术研究院 一种表面帖附电极阵列制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Applications and Risks of Nanomaterials Used in Regenerative Medicine, Delivery Systems, Theranostics, and Therapy;Medina-Reyes et al;《CRITICAL REVIEWS IN THERAPEUTIC DRUG CARRIER SYSTEMS》;20171231;第34卷(第1期);全文 *
Cytocompatibility and in vivo biodegradation of graphene-modified chitosan 3D porous scaffold;Wang YQ et al;《MATERIALS LETTERS》;20180601;第220卷;全文 *
新生SD大鼠皮质神经元的体外培养和鉴定;芦美玲等;《生物技术通讯》;20130720;第24卷(第3期);全文 *

Also Published As

Publication number Publication date
CN109554343A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
Liu et al. One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis
Sarkar et al. Carbon quantum dot tailored calcium alginate hydrogel for pH responsive controlled delivery of vancomycin
Shao et al. Anti-bacterial performances and biocompatibility of bacterial cellulose/graphene oxide composites
Yan et al. Electroactive and biocompatible hydroxyl-functionalized graphene by ball milling
Wang et al. Photoluminescent carbon quantum dot grafted silica nanoparticles directly synthesized from rice husk biomass
Qi et al. Hydroxyapatite nanosheet-assembled porous hollow microspheres: DNA-templated hydrothermal synthesis, drug delivery and protein adsorption
Khan et al. Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT: PSS films for biology-device interface applications
Wicklein et al. Functional hybrids based on biogenic nanofibrils and inorganic nanomaterials
Angelova et al. Antibacterial activity of SiO2/hydroxypropyl cellulose hybrid materials containing silver nanoparticles
Jiang et al. Purification of biosilica from living diatoms by a two-step acid cleaning and baking method
Massoumi et al. Surface functionalization of graphene oxide with poly (2-hydroxyethyl methacrylate)-graft-poly (ε-caprolactone) and its electrospun nanofibers with gelatin
Serrano-Aroca et al. Synthesis of irregular graphene oxide tubes using green chemistry and their potential use as reinforcement materials for biomedical applications
Jafarkhani et al. Preparation and characterization of chitosan/graphene oxide composite hydrogels for nerve tissue Engineering
Okada et al. Low-temperature synthesis of nanoparticle-assembled, transparent, and low-crystallized hydroxyapatite blocks
Wang et al. Antibacterial activities and mechanisms of fluorinated graphene and guanidine-modified graphene
Gupta et al. Synthesis and characterization of graphene oxide nanoparticles and their antibacterial activity
Tian et al. Electrochemical synthesis of three-dimensional porous reduced graphene oxide film: preparation and in vitro osteogenic activity evaluation
CN109554343B (zh) 一种适于神经元粘附与存活的涂层材料及制备方法
CN107840319A (zh) 一种含氮碳点及其合成方法和其在细胞标记成像方面的应用
Zhang et al. Ag/TiO 2 and Ag/SiO 2 composite spheres: synthesis, characterization and antibacterial properties
Zhang et al. Hydrothermal synthesis of halloysite nanotubes@ carbon nanocomposites with good biocompatibility
JP7023997B2 (ja) 複合シェル粒子、生物学的材料、及び複合シェル粒子を製造する方法
Chouhan et al. Nanomaterial resistant microorganism mediated reduction of graphene oxide
Peng et al. Small-sized deformable hollow mesoporous organosilica nanocapsules with improved cellular uptake
Wang et al. Reduced Graphene Oxide Paper: Fabrication by a Green Thermal Reduction Method and Preliminary Study of its In Vitro Cytotoxicity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220419