CN109534825A - 一种原位合成惰性玻璃相包覆的ZrB2及其制备方法 - Google Patents

一种原位合成惰性玻璃相包覆的ZrB2及其制备方法 Download PDF

Info

Publication number
CN109534825A
CN109534825A CN201910039952.7A CN201910039952A CN109534825A CN 109534825 A CN109534825 A CN 109534825A CN 201910039952 A CN201910039952 A CN 201910039952A CN 109534825 A CN109534825 A CN 109534825A
Authority
CN
China
Prior art keywords
zrb
temperature
fabricated
situ
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910039952.7A
Other languages
English (en)
Other versions
CN109534825B (zh
Inventor
张丽
尹良君
张胜辉
王昕�
简贤
邓龙江
张敏
冯萧强
陈海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910039952.7A priority Critical patent/CN109534825B/zh
Publication of CN109534825A publication Critical patent/CN109534825A/zh
Application granted granted Critical
Publication of CN109534825B publication Critical patent/CN109534825B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于超高温材料领域,具体涉及一种原位合成惰性玻璃相包覆的ZrB2及其制备方法。本发明通过在起始粉末中添加低于ZrB2合成温度的高稳定氟化物MFx,使得在高温烧结原位合成ZrB2同时,抑制B2O3挥发,提高了ZrB2粉体纯度;利用MFx这一化学惰性物质的稳定性,及其熔点低于该反应合成温度且不易于反应物发生反应的特性,在高温条件下合成ZrB2的同时使MFx产生的液态玻璃相包覆在生成物ZrB2的表面,以隔绝氧气与ZrB2颗粒的直接接触,提高其高温抗氧化性,使得在各温度段均可实现抗氧化。本发明提供的ZrB2@MFx材料,在各温度段均可实现抗氧化,使得ZrB2超高温陶瓷在航空航天领域有更加广阔的应用前景。

Description

一种原位合成惰性玻璃相包覆的ZrB2及其制备方法
技术领域
本发明属于超高温材料领域,具体涉及一种原位合成惰性玻璃相包覆的ZrB2及其制备方法。
背景技术
超高温陶瓷(UHTCs)在航空航天领域应用广泛,因其良好的耐高温抗氧化性能,可用作超高速飞行器表面的热防护材料,同时对这些材料提出了更高的要求,例如用作超高速飞行器的鼻锥、发动机叶片、必须具有耐高温、高强度、抗氧化、低密度等特点,当飞行器飞行速度超过10马赫时,这些部位的温度达到2500℃以上。特别是近些年来通过对超高温陶瓷材料进行了一些技术的改进以提高在超高温条件下的抗氧化性能。
目前这种有望在1500℃以上甚至2000℃以上的高温环境中工作的热防护材料称为超高温材料,其中包括一些高温金属与合金,金属间化合物和超高温陶瓷。这几类材料已经成为国内外的科学家们在超高温陶瓷领域的重点研究对象。超高温陶瓷材料在2000℃以上苛刻环境中是最有前途的材料,ZrB2作为硼化物的一种,因其具有高熔点、高硬度、高热导率和电导率,适合作为飞行器的热防护材料,因此成为超高温陶瓷领域最具有潜力的候选材料,在航空航天领域有着广泛的应用前景。
为了提高ZrB2的抗氧化性能,目前研究较多且较为成熟的方法是通过添加一定的烧结助剂来改善ZrB2的抗氧化性,如添加SiC、MoSi2、WC等。如Ning L I,等[Effects ofoxygen partial pressure and atomic oxygen on the microstructure of oxidescale of ZrB2-SiC composites at 1500℃[J].Corrosion Science,2013,73(73):44-53.]报道的以SiC为原料通过添加20vol%的SiC。在高温环境中,ZrB2涂层开始逐渐发生氧化,在1200℃的高温条件下ZrB2开始与掺入的SiC发生化学反应,其表面生成一层致密的SiO2玻璃相包覆在ZrB2表面以隔绝空气中的氧扩散进入其内部阻止其进一步氧化,从而达到提升抗氧化性能的目的。但是SiC掺杂只在1200℃以上起作用,在温度低于1200℃时难以起到抗氧化的作用;因此急需探索出一条有效的合成途径,使ZrB2在温度低于在1200℃的条件下不易于被氧化,以满足ZrB2超高温陶瓷在不同温度段的使用需求。
发明内容
针对上述存在问题或不足,为解决现有ZrB2不能满足在各温度段使用需求的技术问题。本发明提供了一种原位合成惰性玻璃相包覆的ZrB2及其制备方法。该方法工艺简单,容易控制,利用碳热还原法在高温合成ZrB2的过程中,将MFx在熔融状态下产生的惰性液态玻璃相直接包覆在生成物ZrB2表面,以隔绝空气中的氧扩散进入其内部从而提升生成物的抗氧化性能,提高其热稳定性。
该原位合成惰性玻璃相包覆的ZrB2其结构为ZrB2@MFx,组成基于合成ZrB2的化学式:ZrO2(s)+B2O3(l)+5C(s)=ZrB2(s)+5CO(g),(ΔG(kJ)=1431-0.803T,T=1509℃),选用ZrO2、B2O3、C作为原料,根据生成的ZrB2量,添加占ZrB2体积比2-20vol%的MFx,然后通过碳热还原法制得,烧结温度为1500℃~1900℃,反应气氛为氩气,保温时间1~4h。
所述MFx为SrF2,CeF3,YF3,LaF3,CaF2,BaF2,MgF2或YbF3
其制备方法包括以下步骤:
步骤1、选用ZrO2、B2O3、C作为原料,按化学式:ZrO2(s)+B2O3(l)+5C(s)=ZrB2(s)+5CO(g),(ΔG(kJ)=1431-0.803T,T=1509℃)备料;MFx占ZrB2体积比2-20vol%;
步骤2、将步骤1所备原料混合均匀后,在1500℃~1900℃高温烧结,在烧结过程中保持氩气气氛,并保温1~4h后,自然冷却至室温,即可得到ZrB2@MFx
本发明通过在起始粉体中添加低于ZrB2合成温度的高稳定氟化物MFx,使得在高温烧结原位合成ZrB2同时,抑制B2O3挥发,提高了ZrB2粉体纯度;利用MFx这一化学惰性物质的稳定性,及其熔点低于该反应合成温度且不易于反应物发生反应的特性,在高温条件下合成ZrB2的同时使MFx产生的液态玻璃相包覆在生成物ZrB2的表面,以隔绝氧气与ZrB2颗粒的直接接触,提高其高温抗氧化性,使得在各温度段均可实现抗氧化。
综上所述,本发明提供的ZrB2@MFx材料,在各温度段均可实现抗氧化,使得ZrB2超高温陶瓷在航空航天领域有更加广阔的应用前景。
附图说明
图1是实施例1-5的XRD图;
图2是实施例5的STEM(a)and HRTEM(b)图;
图3是实施例5的EDS mapping图;
图4a/b是实例5的TG/DSC图。
具体实施方式
下面结合附图和实施例对本发明做进一步的详细说明。
实施例1:
按照化学反应方程式:ZrO2(s)+B2O3(l)+5C(s)=ZrB2(s)+5CO(g),根据化学计量比,称取ZrO2,B2O3和C。把生成物ZrB2的量,设定为100vol%保持不变,添加LaF3为2vol%。
将混合好的粉末放在研钵中研磨30min,研磨均匀后装入BN坩埚中,放入真空烧结炉中进行高温烧结合成,真空烧结炉从室温以10℃/min的升温速率升温至1000℃,再以5℃/min的升温速率升温至1550℃,在此温度下保温2h,实验开始到结束一直保持通入氩气。烧结反应后,将BN坩埚中的产物取出并进行充分的研磨,即可得到ZrB2@LaF3粉体。
利用X射线衍射仪(XRD)对所得到的产物进行表征。图1是掺入不同体积比的LaF3所得产物的XRD图谱,在无掺杂LaF3的条件下,产物有杂质相ZrB生成,添加LaF3之后,生成物变为纯相ZrB2,所有衍射峰均对应于ZrB2的特征峰。
实施例2:
按照化学反应方程式:ZrO2(s)+B2O3(l)+5C(s)=ZrB2(s)+5CO(g),根据化学计量比,称取ZrO2、B2O3和C。把生成物ZrB2的量,设定为100vol%保持不变,添加LaF3为6vol%。
将混合好的粉末放在研钵中研磨30min,研磨均匀后装入BN坩埚中,放入真空烧结炉中进行高温烧结合成,真空烧结炉从室温以10℃/min的升温速率升温至1000℃,再以5℃/min的升温速率升温至1550℃,在此温度下保温2h,实验开始到结束一直保持通入氩气。烧结反应后,将BN坩埚中的产物取出并进行充分的研磨,即可得到ZrB2@LaF3粉体。
实施例3:
按照化学反应方程式:ZrO2(s)+B2O3(l)+5C(s)=ZrB2(s)+5CO(g),根据化学计量比,称取ZrO2、B2O3和C。把生成物ZrB2的量,设定为100vol%保持不变,添加LaF3为10vol%。
将混合好的粉末放在研钵中研磨30min,研磨均匀后装入BN坩埚中,放入真空烧结炉中进行高温烧结合成,真空烧结炉从室温以10℃/min的升温速率升温至1000℃,再以5℃/min的升温速率升温至1550℃,在此温度下保温2h,实验开始到结束一直保持通入氩气。烧结反应后,将BN坩埚中的产物取出并进行充分的研磨,即可得到ZrB2@LaF3粉体。
实施例4:
按照化学反应方程式:ZrO2(s)+B2O3(l)+5C(s)=ZrB2(s)+5CO(g),根据化学计量比,称取ZrO2、B2O3和C。把生成物ZrB2的量,设定为100vol%保持不变,添加LaF3为14vol%。
将混合好的粉末放在研钵中研磨30min,研磨均匀后装入BN坩埚中,放入真空烧结炉中进行高温烧结合成,真空烧结炉从室温以10℃/min的升温速率升温至1000℃,再以5℃/min的升温速率升温至1550℃,在此温度下保温2h,实验开始到结束一直保持通入氩气。烧结反应后,将BN坩埚中的产物取出并进行充分的研磨,即可得到ZrB2@LaF3粉体。
实施例5:
按照化学反应方程式:ZrO2(s)+B2O3(l)+5C(s)=ZrB2(s)+5CO(g),根据化学计量比,称取ZrO2、B2O3和C。把生成物ZrB2的量,设定为100vol%保持不变,添加LaF3为20vol%。
将混合好的粉末放在研钵中研磨30min,研磨均匀后装入BN坩埚中,放入真空烧结炉中进行高温烧结合成,真空烧结炉从室温以10℃/min的升温速率升温至1000℃,再以5℃/min的升温速率升温至1550℃,在此温度下保温2h,实验开始到结束一直保持通入氩气。烧结反应后,将BN坩埚中的产物取出并进行充分的研磨,即可得到ZrB2@LaF3粉体。
图1是实施例1-5的XRD图,表明成功制备出了纯ZrB2@LaF3相。
图2是实施例5的STEM(a)and HRTEM(b)图,从图中可以明显看出LaF3包覆在生成物ZrB2的表面,而且ZrB2颗粒间也可以看到LaF3的存在,包覆均匀、其厚度大约在3nm左右。
图3是实施例5的EDS mapping图,从图中可以明显看到Zr、B、O、La、F元素的均匀分布,可见氟化物并没有参与化学反应。
图4是实例5的TG/DSC图,从图中可以明显看到添加LaF3后,ZrB2和ZrB2@LaF3的高温氧化增重明显下降。
采用实施例1相同方法制备ZrB2@LaF3粉体,其组分、合成条件和产物性质见表一。
表一 ZrB2@LaF3粉体合成条件和产物的性质。
从表中可以得到实施例1-5验证了添加LaF3之后,在合成ZrB2的过程中,LaF3确实在ZrB2表面生成一层致密的惰性玻璃相,与未添加的LaF3组分相比,添加LaF3的组分在高温氧化过程中氧化增重明显下降,证明了掺入LaF3之后,ZrB2高温抗氧化性确实得到了提高。
综上可见,本发明提供的ZrB2@MFx材料,在各温度段均可实现抗氧化,使得ZrB2超高温陶瓷在航空航天领域有更加广阔的应用前景。

Claims (3)

1.一种原位合成惰性玻璃相包覆的ZrB2,其特征在于:
其结构为ZrB2@MFx,组成基于合成ZrB2的化学式:ZrO2(s)+B2O3(l)+5C(s)=ZrB2(s)+5CO(g),ΔG(kJ)=1431-0.803T,T=1509℃;选用ZrO2、B2O3、C作为原料,根据生成的ZrB2量,添加占ZrB2体积比2-20vol%的MFx,然后通过碳热还原法制得,烧结温度为1500℃~1900℃,反应气氛为氩气,保温时间1~4h。
2.如权利要求1所述原位合成惰性玻璃相包覆的ZrB2,其特征在于:所述MFx为SrF2,CeF3,YF3,LaF3,CaF2,BaF2,MgF2或YbF3
3.如权利要求1所述原位合成惰性玻璃相包覆的ZrB2的制备方法,包括以下步骤:
步骤1、选用ZrO2、B2O3、C作为原料,按化学式:ZrO2(s)+B2O3(l)+5C(s)=ZrB2(s)+5CO(g),ΔG(kJ)=1431-0.803T,T=1509℃备料;MFx占ZrB2体积比2-20vol%;
步骤2、将步骤1所备原料混合均匀后,在1500℃~1900℃高温烧结,在烧结过程中保持氩气气氛,并保温1~4h后,自然冷却至室温,即可得到ZrB2@MFx
CN201910039952.7A 2019-01-16 2019-01-16 一种原位合成惰性玻璃相包覆的ZrB2及其制备方法 Active CN109534825B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910039952.7A CN109534825B (zh) 2019-01-16 2019-01-16 一种原位合成惰性玻璃相包覆的ZrB2及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910039952.7A CN109534825B (zh) 2019-01-16 2019-01-16 一种原位合成惰性玻璃相包覆的ZrB2及其制备方法

Publications (2)

Publication Number Publication Date
CN109534825A true CN109534825A (zh) 2019-03-29
CN109534825B CN109534825B (zh) 2021-06-01

Family

ID=65835402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910039952.7A Active CN109534825B (zh) 2019-01-16 2019-01-16 一种原位合成惰性玻璃相包覆的ZrB2及其制备方法

Country Status (1)

Country Link
CN (1) CN109534825B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10019600A1 (de) * 2000-04-20 2001-10-31 Kempten Elektroschmelz Gmbh Feuerfester Werkstoff mit verbessertem Widerstand gegen Schlackenangriff
JP2002160973A (ja) * 2000-11-22 2002-06-04 Asahi Glass Co Ltd ホウ化ジルコニウム質複合焼結体
CN102115331A (zh) * 2011-03-14 2011-07-06 大连博恩坦科技有限公司 一种10b二硼化锆及其制备方法
CN102126861A (zh) * 2010-01-14 2011-07-20 中国科学院上海硅酸盐研究所 原位自增韧ZrB2基复相陶瓷材料及其制备方法
CN102249688A (zh) * 2011-05-25 2011-11-23 山东理工大学 硼化锆粉体的制备方法
CN106478110A (zh) * 2016-10-12 2017-03-08 黑龙江科技大学 一种ZrB2‑SiC复合陶瓷的制备方法
CN106478111A (zh) * 2016-10-12 2017-03-08 黑龙江科技大学 一种ZrB2陶瓷的制备方法
CN106747462A (zh) * 2016-12-05 2017-05-31 西北有色金属研究院 过渡金属硼化物‑玻璃超高温抗氧化复合材料及其制备方法
CN107746281A (zh) * 2017-11-10 2018-03-02 中国矿业大学 一种超高温陶瓷硼化物固溶体粉体的制备方法
CN108349820A (zh) * 2016-01-27 2018-07-31 第稀元素化学工业株式会社 硼化锆及其制备方法
CN108997016A (zh) * 2018-06-25 2018-12-14 广东工业大学 一种高热导率硼化锆陶瓷及其制备方法和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10019600A1 (de) * 2000-04-20 2001-10-31 Kempten Elektroschmelz Gmbh Feuerfester Werkstoff mit verbessertem Widerstand gegen Schlackenangriff
JP2002160973A (ja) * 2000-11-22 2002-06-04 Asahi Glass Co Ltd ホウ化ジルコニウム質複合焼結体
CN102126861A (zh) * 2010-01-14 2011-07-20 中国科学院上海硅酸盐研究所 原位自增韧ZrB2基复相陶瓷材料及其制备方法
CN102115331A (zh) * 2011-03-14 2011-07-06 大连博恩坦科技有限公司 一种10b二硼化锆及其制备方法
CN102249688A (zh) * 2011-05-25 2011-11-23 山东理工大学 硼化锆粉体的制备方法
CN108349820A (zh) * 2016-01-27 2018-07-31 第稀元素化学工业株式会社 硼化锆及其制备方法
CN106478110A (zh) * 2016-10-12 2017-03-08 黑龙江科技大学 一种ZrB2‑SiC复合陶瓷的制备方法
CN106478111A (zh) * 2016-10-12 2017-03-08 黑龙江科技大学 一种ZrB2陶瓷的制备方法
CN106747462A (zh) * 2016-12-05 2017-05-31 西北有色金属研究院 过渡金属硼化物‑玻璃超高温抗氧化复合材料及其制备方法
CN107746281A (zh) * 2017-11-10 2018-03-02 中国矿业大学 一种超高温陶瓷硼化物固溶体粉体的制备方法
CN108997016A (zh) * 2018-06-25 2018-12-14 广东工业大学 一种高热导率硼化锆陶瓷及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈建宝: "反应烧结二硼化锆超高温陶瓷材料的工艺和性能研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Also Published As

Publication number Publication date
CN109534825B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
Eakins et al. Toward oxidation-resistant ZrB 2-SiC ultra high temperature ceramics
Feng et al. Oxidation and ablation resistance of the ZrB2–CrSi2–Si/SiC coating for C/C composites at high temperature
Feng et al. Two‐step synthesis process for high‐entropy diboride powders
Pourasad et al. In-situ synthesis of SiC-ZrB2 coating by a novel pack cementation technique to protect graphite against oxidation
Wu et al. Synthesis and microstructural features of ZrB2–SiC-based composites by reactive spark plasma sintering and reactive hot pressing
Zhang et al. Understanding the oxidation behavior of Ta–Hf–C ternary ceramics at high temperature
Zhong et al. Microstructure and thermal properties of atmospheric plasma-sprayed Yb 2 Si 2 O 7 Coating
Zhang et al. Oxidation protection of C/SiC coated carbon/carbon composites with Si–Mo coating at high temperature
Simonenko et al. ZrB 2/HfB 2–SiC Ceramics Modified by Refractory Carbides: An Overview
Li et al. A dense and fine-grained SiC/Ti3Si (Al) C2 composite and its high-temperature oxidation behavior
Talmy et al. Properties of ceramics in the system ZrB 2–Ta 5 Si 3
Li et al. Effects of in situ amorphous graphite coating on ablation resistance of SiC fiber reinforced SiBCN ceramics in an oxyacetylene flame
Li et al. Oxidation behavior and microstructure evolution of SiC-ZrB2-ZrC coating for C/C composites at 1673 K
Perepezko et al. Extended functionality of environmentally-resistant Mo-Si-B-based coatings
Hossein-Zadeh et al. Microstructure investigation of V2AlC MAX phase synthesized through spark plasma sintering using two various sources V and V2O5 as the starting materials
Lv et al. Microstructure evolution of HfB2-SiC/SiC coating for C/C composites during long-term oxidation at 1700° C
MI et al. Non-isothermal oxidation and ignition prediction of Ti-Cr alloys
Tan et al. Microstructures, thermophysical properties and corrosion behaviours of equiatomic five-component rare-earth monosilicates
Chanadee et al. Synthesis of WSi2 and W2B intermetallic compound by in-situ self propagating high-temperature synthesis reaction
Wang et al. Oxidation behavior and interfacial microstructure evolution of MoSi2/MoB coatings on Mo1 substrate at 600 and 1400° C
CN104016681A (zh) 一种硼化物及其复相陶瓷粉体的固相制备方法
Yang et al. Preparation and antioxidant mechanism of TiSi2–Si–SiC/SiC bilayer coating on matrix graphite
Titov et al. Influence of WSi 2 content and additions of magnesium alumosilicates on oxidation and strength properties of MoSi 2-WSi 2 composites
CN109534825A (zh) 一种原位合成惰性玻璃相包覆的ZrB2及其制备方法
Kong et al. Oxidation behavior of high-purity nonstoichiometric Ti2AlC powders in flowing air

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant