CN109534316A - 一种超细氮掺杂碳空心纳米管的制备方法及其产品和应用 - Google Patents

一种超细氮掺杂碳空心纳米管的制备方法及其产品和应用 Download PDF

Info

Publication number
CN109534316A
CN109534316A CN201811394389.7A CN201811394389A CN109534316A CN 109534316 A CN109534316 A CN 109534316A CN 201811394389 A CN201811394389 A CN 201811394389A CN 109534316 A CN109534316 A CN 109534316A
Authority
CN
China
Prior art keywords
ultra
nanotube
doped carbon
nitrogen
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811394389.7A
Other languages
English (en)
Other versions
CN109534316B (zh
Inventor
易清风
杨孝昆
陈瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Science and Technology
Original Assignee
Hunan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Science and Technology filed Critical Hunan University of Science and Technology
Priority to CN201811394389.7A priority Critical patent/CN109534316B/zh
Publication of CN109534316A publication Critical patent/CN109534316A/zh
Application granted granted Critical
Publication of CN109534316B publication Critical patent/CN109534316B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种超细氮掺杂碳空心纳米管的制备方法,其主要步骤:以乙醇作为溶剂,将镍钴盐均匀分散在分散剂表面,同时加入双氰胺和大米淀粉,混合均匀后将乙醇蒸发,形成固体混合物;然后将该固体混合物高温热解即得到超细氮掺杂碳空心纳米管。本发明通过将具有催化作用的金属盐均匀分散,使碳纳米管生长的催化核心均匀、且尺寸小,保证了形成的碳纳米管均匀分布,而且管径小。本发明的碳纳米管含有丰富的氮元素,可以作为氧还原反应的高活性电催化剂。本发明不仅原料成本低,而且简单,易于操作,可实现碳纳米管的大规模实际生产。

Description

一种超细氮掺杂碳空心纳米管的制备方法及其产品和应用
技术领域
本发明属于能源电化学材料领域,具体涉及到一种超细氮掺杂碳空心纳米管的制备方法及其产品和应用
背景技术
碳纳米管又称之为巴基管,是一种径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口的一维量子材料。作为一维纳米材料,碳纳米管的重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能,尤其在电化学能源领域、电化学催化领域等方面应用非常广泛。从结果上看,碳纳米管可以看做是石墨烯片层卷曲而成,所以按照石墨烯片的层数可分为:单壁碳纳米管和多壁碳纳米管,单壁管典型直径在0.6-2nm,多壁管最内层可达0.4nm,最粗可达数百纳米,但典型管径为2-100nm。碳纳米管的结构特征可以分为三种类型:扶手椅形纳米管(armchair form),锯齿形纳米管(zigzag form)和手性纳米管(chiral form)。
碳纳米管的制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等:
(1)电弧放电法
将石墨电极置于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳米管。通过控制催化剂和容器中的氢气含量,可以调节几种产物的相对产量。使用这一方法制备碳纳米管技术上比较简单,但是生成的碳纳米管与C60等产物混杂在一起,很难得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层的碳纳米管。此外该方法反应消耗能量太大,无法大规模实际应用。
(2)激光烧蚀法
在一长条石英管中间放置一根金属催化剂/石墨混合的石墨靶,该管则置于一加热炉内。当炉温升至一定温度时,将惰性气体冲入管内,并将一束激光聚焦于石墨靶上。在激光照射下生成气态碳,这些气态碳和催化剂粒子被气流从高温区带向低温区时,在催化剂的作用下生长成CNTs。这一方法要用到激光照射,能耗大,产量小。
(3)固相热解法
将含碳亚稳固体在高温下热解生长碳纳米管,这种方法过程比较稳定,不需要催化剂,并且是原位生长。但这一方法的原料特殊,来源有限,生产不能规模化和连续化。
(4)离子或激光溅射法
离子或激光溅射法虽易于连续生产,但所用设备非常特殊,严重限制了它的规模化生产。
(5)聚合反应合成
聚合反应合成法指利用模板复制扩增的方法。科学家发现,在强酸、超声波作用下,碳纳米管可以先断裂为几段,再在一定纳米尺度催化剂颗粒作用下增殖延伸,而延伸后所得的碳纳米管与模板的卷曲方式相同。这种方法目前还处于探索阶段,还有许多问题需要解决。
(6)催化裂解法
在600~1000℃的温度及催化剂的作用下,使含碳气体原料(如一氧化碳、甲烷、乙烯、丙烯和苯等)分解来制备碳纳米管的一种方法。此方法在较高温度下使含碳化合物裂解为碳原子,碳原子在过渡金属-催化剂作用下,附着在催化剂微粒表面上形成为碳纳米管。催化裂解法中所使用的催化剂活性组分多为第八族过渡金属或其合金,少量加入Cu、Zn、Mg等可调节活性金属能量状态,改变其化学吸附与分解含碳气体的能力。催化剂前体对形成金属单质的活性有影响,金属氧化物、硫化物、碳化物及有机金属化合物也被使用过。
总的说来,目前制备碳纳米管的方法无论从成本、工艺路线和产品质量等方面都存在很多问题,从而导致高质量的碳纳米管的价格过高,不利于它的大规模实际应用。
发明内容
本发明的目的是提供一种超细氮掺杂碳空心纳米管,本发明的目的还提供了一种超细氮掺杂碳空心纳米管的制备方法及其产品和应用。
为达到上述目的,本发明的实施方案为:一种超细氮掺杂碳空心纳米管的制备方法,包括以下步骤:
(1)将Ni(NO3)2·6H2O和Co(NO3)2·6H2O与乙醇混合,充分搅拌形成均匀溶液,使镍和钴的总质量与乙醇的质量/体积比为1g:100mL;接着再加入分散剂,制成均匀的分散液;所述Ni(NO3)2·6H2O与Co(NO3)2·6H2O的质量比为3:2;分散剂的质量与镍和钴的总质量之比为10:2;
(2)将双氰胺加入到上述分散液中,超声后,继续加入大米淀粉,超声后将混合物球磨,然后将混合物在室温下蒸发乙醇,得到的固体混合物在40oC下真空干燥,得到前驱体;所述双氰胺的质量与镍和钴的总质量之比为10:1;所述大米淀粉的质量与双氰胺的质量之比为(0.5 ~2):10;
(3)将上述前驱体在氮气气氛下,先以4oC·min-1的升温速度升温到600oC,在此温度下保持2h;随后继续以同样的升温速度升温到800oC,在此温度下保持2h后,自然冷却至室温,得到的黑色粉末即为超细氮掺杂碳空心纳米管。
作为优选,步骤(1)中,所述分散剂为碳纳米管(直径约30 nm),或碳粉,或羧酸化的聚苯乙烯微球(直径约200nm)。
作为优选,所述分散剂为碳纳米管的直径为30 nm,羧酸化的聚苯乙烯微球的直径为200nm。
一种根据所述的方法制备的一种超细氮掺杂碳空心纳米管。
根据所述的方法制备的一种超细氮掺杂碳空心纳米管在氧还原反应电催化方面的应用。
本发明利用大米淀粉作为碳源,利用双氰胺作为氮源,利用镍钴盐作为催化剂,在高温下生氮掺杂的碳纳米管;通过加入分散剂,将作为催化剂的镍钴盐均匀地负载在分散剂表面;高温热解时,均匀分散的催化剂首先形成颗粒均匀分布、并且尺寸小的金属颗粒,从而有利于C-N复合物在催化剂颗粒表面上的生长,最终形成管径小的超细氮掺杂碳空心纳米管。这种超细氮掺杂碳空心纳米管在酸性、碱性或中性溶液中都对氧还原反应具有优异的电化学活性。本发明的方法简单,操作方便,原料来源广并且成本低,是制备新型氮掺杂碳空心纳米管的可行方法,在能源材料领域具有重要应用价值。
具体实施方式
实施例1
(1)将Ni(NO3)2·6H2O和Co(NO3)2·6H2O按质量比3:2与乙醇混合,充分搅拌形成均匀溶液,使镍和钴的总质量与乙醇的质量:体积为1g:100mL;接着再加入质量为镍和钴的总质量的5倍的碳纳米管(直径约30 nm),超声1h,形成均匀的分散液;
(2)将质量为镍和钴的总质量的10倍的双氰胺加入到上述分散液中,超声1h后,继续加入大米淀粉,使大米淀粉的质量与双氰胺的质量之比为0.5:10,超声2h,随后将混合物转入球磨机内继续球磨4h;最后将混合物取出,在室温下蒸发乙醇,得到的固体混合物在40oC下真空干燥5h,得到前驱体;
(3)将上述前驱体置于管式反应炉内,在氮气气氛下,先以4oC·min-1的升温速度升温到600oC,在此温度下保持2h;随后继续以同样的升温速度升温到800oC,在此温度下保持2h后,让管式炉自然冷却至室温,得到的黑色粉末即为超细氮掺杂碳空心纳米管,其平均管径为16 nm,平均管壁厚为5 nm。
(4)这种超细氮掺杂碳空心纳米管对氧还原反应电活性的应用在三电极体系中进行,电解质溶液为氧气饱和的NaOH溶液或H2SO4溶液,在旋转速度为2000 rpm的电极上的测试结果见表1。
实施例2
(1)将Ni(NO3)2·6H2O和Co(NO3)2·6H2O按质量比3:2与乙醇混合,充分搅拌形成均匀溶液,使镍和钴的总质量与乙醇的质量:体积为1g:100mL;接着再加入质量为镍和钴的总质量的5倍的碳纳米管(直径约30 nm),超声1h,形成均匀的分散液;
(2)将质量为镍和钴的总质量的10倍的双氰胺加入到上述分散液中,超声1h后,继续加入大米淀粉,使大米淀粉的质量与双氰胺的质量之比为1:10,超声2h,随后将混合物转入球磨机内继续球磨4h;最后将混合物取出,在室温下蒸发乙醇,得到的固体混合物在40oC下真空干燥5h,得到前驱体;
(3)将上述前驱体置于管式反应炉内,在氮气气氛下,先以4oC·min-1的升温速度升温到600oC,在此温度下保持2h;随后继续以同样的升温速度升温到800oC,在此温度下保持2h后,让管式炉自然冷却至室温,得到的黑色粉末即为超细氮掺杂碳空心纳米管,其平均管径为20 nm,平均管壁厚为7 nm。
(4)这种超细氮掺杂碳空心纳米管对氧还原反应电活性的应用在三电极体系中进行,电解质溶液为氧气饱和的NaOH溶液或H2SO4溶液,在旋转速度为2000 rpm的电极上的测试结果见表2。
实施例3
(1)将Ni(NO3)2·6H2O和Co(NO3)2·6H2O按质量比3:2与乙醇混合,充分搅拌形成均匀溶液,使镍和钴的总质量与乙醇的质量:体积为1g:100mL;接着再加入质量为镍和钴的总质量的5倍的碳纳米管(直径约30 nm),超声1h,形成均匀的分散液;
(2)将质量为镍和钴的总质量的10倍的双氰胺加入到上述分散液中,超声1h后,继续加入大米淀粉,使大米淀粉的质量与双氰胺的质量之比为2:10,超声2h,随后将混合物转入球磨机内继续球磨4h;最后将混合物取出,在室温下蒸发乙醇,得到的固体混合物在40oC下真空干燥5h,得到前驱体;
(3)将上述前驱体置于管式反应炉内,在氮气气氛下,先以4oC·min-1的升温速度升温到600oC,在此温度下保持2h;随后继续以同样的升温速度升温到800oC,在此温度下保持2h后,让管式炉自然冷却至室温,得到的黑色粉末即为超细氮掺杂碳空心纳米管,其平均管径为19 nm,平均管壁厚为7 nm。
(4)这种超细氮掺杂碳空心纳米管对氧还原反应电活性的应用在三电极体系中进行,电解质溶液为氧气饱和的NaOH溶液或H2SO4溶液,在旋转速度为2000 rpm的电极上的测试结果见表3。
实施例4
(1)将Ni(NO3)2·6H2O和Co(NO3)2·6H2O按质量比3:2与乙醇混合,充分搅拌形成均匀溶液,使镍和钴的总质量与乙醇的质量:体积为1g:100mL;接着再加入质量为镍和钴的总质量的5倍的碳粉,超声1h,形成均匀的分散液;
(2)将质量为镍和钴的总质量的10倍的双氰胺加入到上述分散液中,超声1h后,继续加入大米淀粉,使大米淀粉的质量与双氰胺的质量之比为1:10,超声2h,随后将混合物转入球磨机内继续球磨4h;最后将混合物取出,在室温下蒸发乙醇,得到的固体混合物在40oC下真空干燥5h,得到前驱体;
(3)将上述前驱体置于管式反应炉内,在氮气气氛下,先以4oC·min-1的升温速度升温到600oC,在此温度下保持2h;随后继续以同样的升温速度升温到800oC,在此温度下保持2h后,让管式炉自然冷却至室温,得到的黑色粉末即为超细氮掺杂碳空心纳米管,其平均管径为18 nm,平均管壁厚为6 nm。。
(4)这种超细氮掺杂碳空心纳米管对氧还原反应电活性的应用在三电极体系中进行,电解质溶液为氧气饱和的NaOH溶液或H2SO4溶液,在旋转速度为2000 rpm的电极上的测试结果见表4。
实施例5
(1)将Ni(NO3)2·6H2O和Co(NO3)2·6H2O按质量比3:2与乙醇混合,充分搅拌形成均匀溶液,使镍和钴的总质量与乙醇的质量:体积为1g:100mL;接着再加入质量为镍和钴的总质量的5倍的羧酸化的聚苯乙烯微球(直径约200nm),超声1h,形成均匀的分散液;
(2)将质量为镍和钴的总质量的10倍的双氰胺加入到上述分散液中,超声1h后,继续加入大米淀粉,使大米淀粉的质量与双氰胺的质量之比为1:10,超声2h,随后将混合物转入球磨机内继续球磨4h;最后将混合物取出,在室温下蒸发乙醇,得到的固体混合物在40oC下真空干燥5h,得到前驱体;
(3)将上述前驱体置于管式反应炉内,在氮气气氛下,先以4oC·min-1的升温速度升温到600oC,在此温度下保持2h;随后继续以同样的升温速度升温到800oC,在此温度下保持2h后,让管式炉自然冷却至室温,得到的黑色粉末即为超细氮掺杂碳空心纳米管,其平均管径为19 nm,平均管壁厚为7 nm。。
(4)这种超细氮掺杂碳空心纳米管对氧还原反应电活性的应用在三电极体系中进行,电解质溶液为氧气饱和的NaOH溶液或H2SO4溶液,在旋转速度为2000 rpm的电极上的测试结果见表5。

Claims (5)

1.一种超细氮掺杂碳空心纳米管的制备方法,其特征是,包括以下步骤:
(1)将Ni(NO3)2·6H2O和Co(NO3)2·6H2O与乙醇混合,充分搅拌形成均匀溶液,使镍和钴的总质量与乙醇的质量/体积比为1g:100mL;接着再加入分散剂,制成均匀的分散液;所述Ni(NO3)2·6H2O与Co(NO3)2·6H2O的质量比为3:2;分散剂的质量与镍和钴的总质量之比为10:2;
(2)将双氰胺加入到上述分散液中,超声后,继续加入大米淀粉,超声后将混合物球磨,然后将混合物在室温下蒸发乙醇,得到的固体混合物在40oC下真空干燥,得到前驱体;所述双氰胺的质量与镍和钴的总质量之比为10:1;所述大米淀粉的质量与双氰胺的质量之比为(0.5 ~2):10;
(3)将上述前驱体在氮气气氛下,先以4oC·min-1的升温速度升温到600oC,在此温度下保持2h;随后继续以同样的升温速度升温到800oC,在此温度下保持2h后,自然冷却至室温,得到的黑色粉末即为超细氮掺杂碳空心纳米管。
2.根据权利要求1所述的超细氮掺杂碳空心纳米管的制备方法,其特征是,步骤(1)中,所述分散剂为碳纳米管(直径约30 nm),或碳粉,或羧酸化的聚苯乙烯微球(直径约200nm)。
3.根据权利要求2所述的超细氮掺杂碳空心纳米管的制备方法,其特征是,所述分散剂为碳纳米管的直径为30 nm,羧酸化的聚苯乙烯微球的直径为200nm。
4.一种根据权利要求1所述的方法制备的一种超细氮掺杂碳空心纳米管。
5.根据权利要求1或2所述的方法制备的一种超细氮掺杂碳空心纳米管在氧还原反应电催化方面的应用。
CN201811394389.7A 2018-11-21 2018-11-21 一种超细氮掺杂碳空心纳米管的制备方法及其产品和应用 Active CN109534316B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811394389.7A CN109534316B (zh) 2018-11-21 2018-11-21 一种超细氮掺杂碳空心纳米管的制备方法及其产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811394389.7A CN109534316B (zh) 2018-11-21 2018-11-21 一种超细氮掺杂碳空心纳米管的制备方法及其产品和应用

Publications (2)

Publication Number Publication Date
CN109534316A true CN109534316A (zh) 2019-03-29
CN109534316B CN109534316B (zh) 2021-08-13

Family

ID=65848954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811394389.7A Active CN109534316B (zh) 2018-11-21 2018-11-21 一种超细氮掺杂碳空心纳米管的制备方法及其产品和应用

Country Status (1)

Country Link
CN (1) CN109534316B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012100354A1 (en) * 2011-01-28 2012-08-02 Zhongwei Chen Core-shell structured bifunctional catalysts for metal air battery/fuel cell
US20120258850A1 (en) * 2011-04-07 2012-10-11 National Cheng Kung University Methods of preparing carbinized nanotube composite and metal-nanotube composite catalyst
US20130048919A1 (en) * 2011-08-29 2013-02-28 Los Alamos National Security, Llc Preparation of nitrogen-doped carbon tubes
KR20150118624A (ko) * 2014-04-14 2015-10-23 한국세라믹기술원 탄소 비결합성 금속 나노입자가 함유된 잉크 기제 제조 방법 및 금속 나노입자가 분산된 잉크
JP2015220036A (ja) * 2014-05-15 2015-12-07 国立大学法人 名古屋工業大学 空気極、金属空気電池、並びに窒素がドープされたカーボンナノチューブ及び空気極の製造方法
CN105413730A (zh) * 2015-11-25 2016-03-23 青岛大学 一种氮掺杂碳纳米管包裹钴电催化氧还原材料的制备方法
CN107311150A (zh) * 2017-08-25 2017-11-03 安徽智博新材料科技有限公司 一种高效连续化流化床制备碳纳米管的方法
CN107331872A (zh) * 2017-07-02 2017-11-07 湖南科技大学 一种基于石墨烯/碳纳米管的二氧化锰/银复合纳米材料的制备方法及其应用
CN107628598A (zh) * 2017-09-26 2018-01-26 湖北宇电能源科技股份有限公司 一种氮掺杂单壁碳纳米管的制备方法
CN107934935A (zh) * 2017-11-22 2018-04-20 湖南科技大学 一种氮掺杂碳纳米纤维及其制备方法和应用
CN108430920A (zh) * 2016-03-30 2018-08-21 Lg化学株式会社 高导电性碳纳米管及制造其的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012100354A1 (en) * 2011-01-28 2012-08-02 Zhongwei Chen Core-shell structured bifunctional catalysts for metal air battery/fuel cell
US20120258850A1 (en) * 2011-04-07 2012-10-11 National Cheng Kung University Methods of preparing carbinized nanotube composite and metal-nanotube composite catalyst
US20130048919A1 (en) * 2011-08-29 2013-02-28 Los Alamos National Security, Llc Preparation of nitrogen-doped carbon tubes
KR20150118624A (ko) * 2014-04-14 2015-10-23 한국세라믹기술원 탄소 비결합성 금속 나노입자가 함유된 잉크 기제 제조 방법 및 금속 나노입자가 분산된 잉크
JP2015220036A (ja) * 2014-05-15 2015-12-07 国立大学法人 名古屋工業大学 空気極、金属空気電池、並びに窒素がドープされたカーボンナノチューブ及び空気極の製造方法
CN105413730A (zh) * 2015-11-25 2016-03-23 青岛大学 一种氮掺杂碳纳米管包裹钴电催化氧还原材料的制备方法
CN108430920A (zh) * 2016-03-30 2018-08-21 Lg化学株式会社 高导电性碳纳米管及制造其的方法
CN107331872A (zh) * 2017-07-02 2017-11-07 湖南科技大学 一种基于石墨烯/碳纳米管的二氧化锰/银复合纳米材料的制备方法及其应用
CN107311150A (zh) * 2017-08-25 2017-11-03 安徽智博新材料科技有限公司 一种高效连续化流化床制备碳纳米管的方法
CN107628598A (zh) * 2017-09-26 2018-01-26 湖北宇电能源科技股份有限公司 一种氮掺杂单壁碳纳米管的制备方法
CN107934935A (zh) * 2017-11-22 2018-04-20 湖南科技大学 一种氮掺杂碳纳米纤维及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHONGLIANG DENG ET AL.: "NiCo/C-N/CNT composite catalysts for electro-catalytic oxidation of methanol and ethanol", 《JOURNAL OF ELECTROANALYTICAL CHEMISTRY》 *
ZHONGLIANG DENG ET AL.: "NiCo-doped C-N nano-composites for cathodic catalysts of Zn-air batteries in neutral media", 《ELECTROCHIMICA ACTA》 *

Also Published As

Publication number Publication date
CN109534316B (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
Wang et al. Synthesis of carbon nanotubes by catalytic chemical vapor deposition
Wang et al. Strongly coupled molybdenum carbide on carbon sheets as a bifunctional electrocatalyst for overall water splitting
Zhang et al. Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage
Nieto-Márquez et al. Carbon nanospheres: synthesis, physicochemical properties and applications
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
Li et al. Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition
Ismagilov et al. Development of active catalysts for low Pt loading cathodes of PEMFC by surface tailoring of nanocarbon materials
Chen et al. Electrochemical hydrogen storage of carbon nanotubes and carbon nanofibers
Tian et al. In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor
US20100072430A1 (en) Compositions of carbon nanosheets and process to make the same
CN111170309B (zh) 一种超长少壁碳纳米管阵列的制备方法
JP2010522131A (ja) 電極を含むカーボンナノチューブの製造方法
Huang et al. Preparation of novel carbon-based nanomaterial of graphene and its applications electrochemistry
CN100369809C (zh) 一种碳绒球材料及其制备方法和用途
Xu et al. Synthesis of multiwall carbon nanotubes via an inert atmosphere absent autogenetic-pressure method for supercapacitor
Yang et al. Symmetrical growth of carbon nanotube arrays on FeSiAl micro-flake for enhancement of lithium-ion battery capacity
Lv et al. Formation of carbon nanofibers/nanotubes by chemical vapor deposition using Al2O3/KOH
Awadallah et al. Direct conversion of natural gas into COx-free hydrogen and MWCNTs over commercial Ni–Mo/Al2O3 catalyst: Effect of reaction parameters
Guo et al. Soft-chemistry synthesis, solubility and interlayer spacing of carbon nano-onions
Zhao et al. Catalysts for single-wall carbon nanotube synthesis—From surface growth to bulk preparation
US20070042903A1 (en) Lanthanum doping catalyst for preparing carbon nanotubes having uniform diameter and producing method thereof
Wang et al. Sustainable synthesis of Co NPs@ Graphited carbon microspheres as an efficient electrocatalyst for the oxygen-evolution reaction
Bhagabati et al. Synthesis/preparation of carbon materials
Peng et al. Electrolytic carbons from CO2 and their applications
Alexiadis et al. Influence of structural and preparation parameters of Fe2O3/Al2O3 catalysts on rate of production and quality of carbon nanotubes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant