CN109520950A - 一种对光谱偏移不敏感的化学成分光谱检测方法 - Google Patents

一种对光谱偏移不敏感的化学成分光谱检测方法 Download PDF

Info

Publication number
CN109520950A
CN109520950A CN201811568691.XA CN201811568691A CN109520950A CN 109520950 A CN109520950 A CN 109520950A CN 201811568691 A CN201811568691 A CN 201811568691A CN 109520950 A CN109520950 A CN 109520950A
Authority
CN
China
Prior art keywords
spectral
data
carried out
spectrum
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811568691.XA
Other languages
English (en)
Inventor
卞海溢
陈瑞强
王晓燕
朱铁柱
于银山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN201811568691.XA priority Critical patent/CN109520950A/zh
Publication of CN109520950A publication Critical patent/CN109520950A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种对光谱偏移不敏感的化学成分光谱检测方法,包括:(1)采集标准样品物质光谱信号数据;(2)建模:a、对光谱信号数据进行平滑、去基线和归一化预处理,得到相应的光谱数据;b、对预处理后的光谱数据进行傅里叶变换,从而对信号进行时频转换,将时域中的光谱平移转换成频域中的相位;c、对傅里叶变换后的数据进行求模,从而去除信号中的相位因子,移除光谱偏移项;d、对频域的模值进行偏最小二乘法建模并通过交叉验证优化模型;(3)采集待测样品光谱信号数据,并按照步骤(2)进行光谱处理,将处理后的数据代入建好的模型中进行预测,即得到待测样品的化学成分浓度数据。该检测方法高效、准确。

Description

一种对光谱偏移不敏感的化学成分光谱检测方法
技术领域
本发明涉及化学计量检测方法,特别涉及一种对光谱偏移不敏感的化学成分光谱检测方法。
背景技术
物质的化学成分浓度检测具有很重要的实际应用,被广泛应用于实验室的食品安全检测、法医刑侦学、公共安全和毒品检测等各个领域。
目前,物质的化学成分浓度检测的方法较多,其中偏最小二乘法结合光谱检测法是目前化学分析检测领域的一种常用的化学成分检测方法,包括定性分析的物质种属识别和定量分析的成分浓度分析。但是在推向市场的过程中,由于光谱仪受测量环境和激光光源波长漂移等因素的影响,导致仪器的准确率以及模型的稳定性有所欠缺,难以在这些领域实现真正意义上的应用。目前,世界上不同的研究小组已经意识到光谱偏移对模型的影响,进行了偏最小二乘法中光谱偏移补偿上算法的研究。Brown and Stoyanova等人提出了利用主成分分析方法来判断频谱偏移量,从而对光谱进行偏移补偿;Westad等人利用迭代算法来平移光谱,通过评价预测值的RMS值来确定最佳的光谱校正位置;Bian等人通过推到光谱偏移量与预测值误差的关系,得到不同偏移量下的预测误差,从而实现对预测值的补偿。然而这些算法只有建模集中的光谱不存在偏移的情况下,才能实现降低光谱偏移的影响,另外这些算法的效果在光谱偏移量比较大的情况下就失效了,进而硬性了检测结果的准确性。
发明内容
发明目的:本发明目的是提供一种对光谱偏移不敏感的化学成分光谱检测方法,该方法的检测效果好,准确,高效。
技术方案:本发明提供一种对光谱偏移不敏感的化学成分光谱检测方法,包括如下步骤:
(1)用光谱仪对物质的若干个标准样品进行光谱扫描并采集光谱信号数据;
(2)对步骤(1)采集到的每个样品的光谱信号数据进行处理构建模型,包括如下步骤:
a、对光谱信号数据进行平滑、去基线和归一化预处理,得到相应的光谱数据;
b、对预处理后的光谱数据进行傅里叶变换、小波变换或余弦变换,从而对信号进行时频转换,将时域中的光谱平移转换成频域中的相位;
c、对傅里叶变换后的数据进行求模,从而去除信号中的相位因子,移除光谱偏移项;
d、对频域的模值进行偏最小二乘法建模并通过交叉验证优化模型;
(3)用光谱仪对物质的若干个待测样品进行光谱扫描并采集光谱信号数据,并按照步骤(2)进行光谱处理,将处理后的数据代入步骤(2)建好的模型中进行预测,即得到待测样品的化学成分浓度数据。
进一步地,所述步骤(1)中的光谱信号为近红外光谱、拉曼光谱、红外光谱、磁共振谱、荧光光谱、X射线谱或吸收光谱信号中的一种。
进一步地,所述步骤(2)中采用airPLS方法去基线。
进一步地,所述步骤(3)之后采用“剔一”交叉验证法对模型进行验证。
进一步地,所述步骤(1)中的物质为人血或动物血。
PLS(偏最小二乘法)结合光谱学法中光谱偏移直接影响了该方法的准确性与稳定性。本发明提出一种新的对光谱偏移不敏感的化学检测方法(FPLS),从根本上直接移除光谱中的光谱偏移项,避免光谱偏移对化学分析准确性与稳定性的影响,提高了检测的准确性。
本发明首先对光谱进行傅里叶变换,接着对傅里叶变换后的光谱频率成分进行求模,彻底去除了光谱偏移项,避免了传统补偿算法需要利用迭代算法补偿光谱的繁琐,实现快速、正确地分析,有助于达到实时在线监测。
有益效果:本发明的检测方法提高了化学成分浓度的检测效率,准确,高效;进行了人血与动物血的种属识别,实现了实时、快速、无损、非侵入式的血液种属识别;解决了不同时间段不同测试条件下测得的光谱识别的模型的稳定性问题,提高了模型的泛化能力。
附图说明
图1为本发明的对光谱偏移不敏感的化学成分光谱检测方法的流程示意图;
图2为人血和动物血的PLS识别分析图;
图3为人血和动物血FPLS识别分析图。
具体实施方式
如图1和3所示,本实施例选取人血和动物血液作为实验样品,具体的选取39个人血液(EDTA抗凝剂)样品,66个动物血液(EDTA抗凝剂)样品,其中31个人血与41个动物血的拉曼光谱作为建模集进行建模,另外8个人血与25个动物血的拉曼光谱作为验证集进行验证,这些建模集的样品分别测得了无波数偏移与2.82个波数,6.36个波数,9.18个波数和19.77个波数偏移下的拉曼光谱。
用532nm的激发光进行激发,用Andor的光谱仪采集人血和动物血的拉曼光谱图;血液放置于真空采血管中,检测拉曼位移范围为300~1700cm-1,间隔2cm-1,曝光时间为1s,每次扫描10次取平均值,通过相连的计算机记录吸收强度Intensity。
由于动物血和人血的血液的粘稠程度不一样,而两者的差异在光谱上仅仅表现为一些主要成分上的微小差异,比如血红蛋白等。在进行建模前需要将光谱的荧光背景去除,采用airPLS方法进行基线去除,之后对光谱进行平滑和归一化,以避免聚焦位置和样品量等因素对拉曼光强的影响。
经过上述步骤后,对预处理后的光谱进行傅里叶变换,求得拉曼光谱的频率成分,将波数域的平移转换成频率域的相位,然后对频率域的数据进行取模操作,将相位因子去除,从而移除光谱偏移项。
经过上述步骤后,将频率域的人血数据的参考值设置为1,频率域的动物血的参考值设置为2,利用偏最小二乘法建模,选取主成分量为6,设置阈值为1.5,预测值小于1.5为人血,预测值大于1.5位动物血;
将8个动物血样和25个人血样,每个光谱偏移量有33个样品组成,合计5个光谱偏移量,165个血液光谱代入模型进行验证,其中预测值处于0.5-1.5之间为人血,1.5-2.5之间为动物血,验证结果发现无光谱偏移情况下PLS和FPLS模型的识别率都为100%,而随着光谱偏移量的增大,PLS模型不再对有偏移的拉曼光谱适用,预测值远大于参考值,模型已不再具有任何意义,而FPLS模型的预测值仍然有效,分布于参考值1和2附近,模型识别率虽有所下降,但仍大于95%。
图2和图3中是PLS和FPLS结果的对比图,从图中可以看出,FPLS对于光谱偏移不敏感,即使偏移量达到20个波数,结果仍然有意义,模型识别率依然高于95%,而PLS对于光谱偏移很敏感,光谱偏移量对于预测值的影响比较大,随着偏移量的增大,预测值越来越大,远大于参考值1和2,使得模型不再适用于这类光谱,模型的稳定性大大降低;很明显,相比于PLS算法,FPLS能够有效的避免光谱偏移量的影响,实现了很好的识别效果。
上述技术方案中,采集血液样品光谱前,每次将样品摇匀,以保证每次测得样品在组成成分上没有明显区别。
同时运用“剔一”交叉验证法对PLS和FPLS模型进行验证,“剔一”交叉验证法是指对代表待测的多组分系统仅有一组样品用于建模和检验该系统;开始建模之前要从这组样品中除去一个样品;这个样品被用作检验模型;其余样品用作系统的建模。

Claims (5)

1.一种对光谱偏移不敏感的化学成分光谱检测方法,其特征在于:包括如下步骤:
(1)用光谱仪对物质的若干个标准样品进行光谱扫描并采集光谱信号数据;
(2)对步骤(1)采集到的每个样品的光谱信号数据进行处理构建模型,包括如下步骤:
a、对光谱信号数据进行平滑、去基线和归一化预处理,得到相应的光谱数据;
b、对预处理后的光谱数据进行傅里叶变换、小波变换或余弦变换,从而对信号进行时频转换,将时域中的光谱平移转换成频域中的相位;
c、对傅里叶变换后的数据进行求模,从而去除信号中的相位因子,移除光谱偏移项;
d、对频域的模值进行偏最小二乘法建模并通过交叉验证优化模型;
(3)用光谱仪对物质的若干个待测样品进行光谱扫描并采集光谱信号数据,并按照步骤(2)进行光谱处理,将处理后的数据代入步骤(2)建好的模型中进行预测,即得到待测样品的化学成分浓度数据。
2.根据权利要求1所述的对光谱偏移不敏感的化学成分光谱检测方法,其特征在于:所述步骤(1)中的光谱信号为近红外光谱、拉曼光谱、红外光谱、磁共振谱、荧光光谱、X射线谱或吸收光谱信号中的一种。
3.根据权利要求1所述的对光谱偏移不敏感的化学成分光谱检测方法,其特征在于:所述步骤(2)中采用airPLS方法去基线。
4.根据权利要求1所述的对光谱偏移不敏感的化学成分光谱检测方法,其特征在于:所述步骤(3)之后采用“剔一”交叉验证法对模型进行验证。
5.根据权利要求1所述的对光谱偏移不敏感的化学成分光谱检测方法,其特征在于:所述步骤(1)中的物质为人血或动物血。
CN201811568691.XA 2018-12-20 2018-12-20 一种对光谱偏移不敏感的化学成分光谱检测方法 Pending CN109520950A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811568691.XA CN109520950A (zh) 2018-12-20 2018-12-20 一种对光谱偏移不敏感的化学成分光谱检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811568691.XA CN109520950A (zh) 2018-12-20 2018-12-20 一种对光谱偏移不敏感的化学成分光谱检测方法

Publications (1)

Publication Number Publication Date
CN109520950A true CN109520950A (zh) 2019-03-26

Family

ID=65795581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811568691.XA Pending CN109520950A (zh) 2018-12-20 2018-12-20 一种对光谱偏移不敏感的化学成分光谱检测方法

Country Status (1)

Country Link
CN (1) CN109520950A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111912823A (zh) * 2020-06-30 2020-11-10 淮阴工学院 一种多成分农药残留荧光检测分析方法
CN111982838A (zh) * 2020-08-25 2020-11-24 吉林大学 一种基于高光谱的煤岩识别检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100314545A1 (en) * 2008-05-19 2010-12-16 Emcore Corporation Terahertz Frequency Domain Spectrometer with Frequency Shifting of Source Laser Beam
CN102297845A (zh) * 2011-05-25 2011-12-28 杨季冬 一种采用近红外光谱法快速检测涪陵榨菜中食盐含量的方法
CN104330384A (zh) * 2014-11-14 2015-02-04 首都师范大学 应用太赫兹频域光谱技术检测粮食中氨基酸含量的方法
CN104683280A (zh) * 2014-12-02 2015-06-03 北京星河亮点技术股份有限公司 DFT-s-OFDM系统大频偏的精确估计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100314545A1 (en) * 2008-05-19 2010-12-16 Emcore Corporation Terahertz Frequency Domain Spectrometer with Frequency Shifting of Source Laser Beam
CN102297845A (zh) * 2011-05-25 2011-12-28 杨季冬 一种采用近红外光谱法快速检测涪陵榨菜中食盐含量的方法
CN104330384A (zh) * 2014-11-14 2015-02-04 首都师范大学 应用太赫兹频域光谱技术检测粮食中氨基酸含量的方法
CN104683280A (zh) * 2014-12-02 2015-06-03 北京星河亮点技术股份有限公司 DFT-s-OFDM系统大频偏的精确估计方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
吴杰: "《光电信号检测》", 31 December 1990 *
周杨 等: "时分数据调制偏移载波信号的多参数盲估计", 《电子与信息学报》 *
李志刚: "《光谱数据处理与定量分析技术》", 31 July 2017 *
王宁 等: "应用Hilbert变换提取拉曼光谱相位信息进行血液识别分类方法的研究", 《光谱学与光谱分析》 *
陈华才 等: "傅里叶变换近红外光谱法快速检测人血清生化成分", 《分析实验室》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111912823A (zh) * 2020-06-30 2020-11-10 淮阴工学院 一种多成分农药残留荧光检测分析方法
CN111982838A (zh) * 2020-08-25 2020-11-24 吉林大学 一种基于高光谱的煤岩识别检测方法

Similar Documents

Publication Publication Date Title
CN101915744B (zh) 物质成分含量的近红外光谱无损检测方法及装置
US7620674B2 (en) Method and apparatus for enhanced estimation of an analyte property through multiple region transformation
US6341257B1 (en) Hybrid least squares multivariate spectral analysis methods
EP2853885B1 (en) Raman spectrum measuring method for drug inspection
Reddy et al. Accurate histopathology from low signal-to-noise ratio spectroscopic imaging data
WO2012156667A1 (en) Spectroscopic apparatus and methods for determining components present in a sample
JP2004325135A (ja) 残留農薬分析法
US10914678B2 (en) Method for quantitative detection of blood lipid content in blood based on terahertz spectroscopy
EP3290908A1 (en) Unknown sample determining method, unknown sample determining instrument, and unknown sample determining program
Kuzmiakova et al. An automated baseline correction protocol for infrared spectra of atmospheric aerosols collected on polytetrafluoroethylene (Teflon) filters
EP2480874A2 (en) Serum infrared spectroscopy for non invasive assessment of hepatic fibrosis in patients with chronic liver disease
CN116399850B (zh) 一种用于光信号处理的光谱探测识别系统及其探测方法
WO2023123329A1 (zh) 近红外光谱的净信号提取方法及其系统
CN109520950A (zh) 一种对光谱偏移不敏感的化学成分光谱检测方法
CN106404743A (zh) 一种结合拉曼光谱和近红外光谱的探测方法及探测装置
WO2020130942A1 (en) A non-destructive system and method for determining the quality of chinese herb using terahertz time-domain spectroscopy
CN109100315B (zh) 一种基于噪信比的波长选择方法
CN105259136B (zh) 近红外校正模型的无测点温度修正方法
CN109001182A (zh) 封闭容器中酒精含量的拉曼光谱无损测定方法
JP2007285922A (ja) 近赤外光を用いた臨床血液検査方法
EP3183571B1 (en) Determination of a constituent related property of a multi-constituent sample
Khristoforova et al. Combination of Raman spectroscopy and chemometrics: A review of recent studies published in the Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy Journal
WO2007066589A1 (ja) 近赤外分光を用いた生活習慣病に関する検査・診断法および装置
CN114324294A (zh) 多探头气体拉曼光谱系统及混合气体定量分析方法
JP6518171B2 (ja) 殻付卵の判定方法及び判定装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190326