CN109518463A - pH响应缓控释的聚合物纳米香料及其制备方法 - Google Patents

pH响应缓控释的聚合物纳米香料及其制备方法 Download PDF

Info

Publication number
CN109518463A
CN109518463A CN201811344388.1A CN201811344388A CN109518463A CN 109518463 A CN109518463 A CN 109518463A CN 201811344388 A CN201811344388 A CN 201811344388A CN 109518463 A CN109518463 A CN 109518463A
Authority
CN
China
Prior art keywords
fragrance
preparation
block copolymer
responds
amphiphilic block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811344388.1A
Other languages
English (en)
Other versions
CN109518463B (zh
Inventor
张欣
沈洁
张田露
卢治国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Process Engineering of CAS
Original Assignee
Institute of Process Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Process Engineering of CAS filed Critical Institute of Process Engineering of CAS
Priority to CN201811344388.1A priority Critical patent/CN109518463B/zh
Publication of CN109518463A publication Critical patent/CN109518463A/zh
Application granted granted Critical
Publication of CN109518463B publication Critical patent/CN109518463B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/267Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of unsaturated carboxylic esters having amino or quaternary ammonium groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • C08F220/365Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate containing further carboxylic moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/10Animal fibres
    • D06M2101/12Keratin fibres or silk

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fats And Perfumes (AREA)
  • Cosmetics (AREA)

Abstract

一种pH响应缓控释的聚合物纳米香料及其制备方法和应用,包括如下步骤:首先,通过可逆加成‑断裂链转移聚合(RAFT)反应制备了pH响应两亲嵌段共聚物;然后,通过和阳离子表面活性剂进行酸铵缩合反应,制备了阳离子pH响应两亲嵌段共聚物;最后,将阳离子两亲嵌段共聚物负载香料,得到pH响应缓控释的聚合物纳米香料。本发明不仅解决了香料的不稳定、易挥发、香料释放过程的不可控问题,而且香料的负载率高,香气释放均匀,缓慢,留香时间久,并且纳米香料使用方便、制备方法简单,可广泛应用于丝绸、皮革等表面带负点的基材附香。

Description

pH响应缓控释的聚合物纳米香料及其制备方法
技术领域
本发明涉及精细化工技术领域,尤其涉及一种纳米香料技术领域,具体涉及一种pH响应缓控释的聚合物纳米香料及其制备方法。
背景技术
随着社会文明的进步,人们生活品质的提高,芳香的气味逐渐被人们所推崇。香料已广泛地应用于化妆品蚕丝、皮革和墙纸等领域。但香料主要是挥发性小分子化合物,成分不稳定、易挥发。香料长效性差的重要原因是,香料释放过程的不可控,因此精确可控的释放香料是本发明拟解决的技术问题。为了解决香料易挥发、不稳定和香料长效性差的问题,本发明通过精准自组装,对香料进行纳米化,并赋予其pH响应的缓控释性能,发展纳米香料自组装体系的构建技术,对香料的挥发性进行改善。
发明内容
有鉴于此,本发明提供了一种pH响应缓控释的聚合物纳米香料及其制备方法,以期至少部分地解决上述提及的技术问题中的至少之一。
为实现上述目的,作为一个方面,本发明提供一种pH响应缓控释的聚合物纳米香料的制备方法,包括以下步骤:
(1)将羧基甜菜碱单体、甲基丙烯酸己酯单体和含末端羧基的链转移剂在引发剂作用下通过可逆加成-断裂链转移聚合反应制备pH响应两亲嵌段共聚物;
(2)将所述pH响应两亲嵌段共聚物中的所述末端羧基和阳离子表面活性剂通过酸铵缩合反应制备阳离子pH响应两亲嵌段共聚物,其中阳离子表面活性剂为氨基酸类表面活性剂;
(3)将所述阳离子pH响应两亲嵌段共聚物负载香料,得到pH响应缓控释的聚合物纳米香料。
作为另一个方面,本发明还提供了一种使用如上所述的制备方法所制得的pH响应缓控释的聚合物纳米香料,其平均粒径为50~300nm,载香量为35.21~40.55%。
与现有技术相比,本发明的有益效果是:
(1)本发明采用阳离子两亲嵌段共聚物对香料进行包载,制备了pH响应缓控释香料,解决了香料的不稳定、易挥发、香料释放过程的不可控问题;
(2)香料的负载率高,香气释放均匀,缓慢,留香时间久;
(3)纳米香料使用方便、制备方法简单,可广泛应用于日化、纺织、皮革、墙纸等各个领域。
附图说明
图1是本发明实施例1~3制备的不同亲疏水比例的pH响应缓控释的聚合物纳米香料的粒径;
图2是本发明实施例1~3制备的不同亲疏水比例的pH响应缓控释的聚合物纳米香料的表而电位;
图3(a)是本发明实施例1~3制备的不同亲疏水比例的pH响应缓控释的聚合物纳米香料在PH为5时的响应释放;
图3(b)是本发明实施例1~3制备的不同亲疏水比例的pH响应缓控释的聚合物纳米香料在PH为7时的响应释放;
图3(c)是本发明实施例1~3制备的不同亲疏水比例的pH响应缓控释的聚合物纳米香料在PH为7时的响应释放。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
本发明的原理是采用两亲性嵌段共聚物体系作为香料载体,通过两亲性嵌段共聚物和疏水性香料的亲疏水作用力,将香料包载在内核,自组装成纳米聚合物。含阳离子pH响应的两亲嵌段共聚物,在酸性条件下,高分子链膨胀,促进释放香料分子。在碱性条件下,高分子链收缩,抑制香料分子释放。
具体地,本发明提供了一种pH响应缓控释的聚合物纳米香料的制备方法,包括如下步骤:
(1)将羧基甜菜碱单体、甲基丙烯酸己酯单体和含末端羧基的链转移剂在引发剂作用下通过可逆加成-断裂链转移聚合反应制备pH响应两亲嵌段共聚物;
(2)将所述pH响应两亲嵌段共聚物中的所述末端羧基和阳离子表面活性剂通过酸铵缩合反应制备阳离子pH响应两亲嵌段共聚物,其中阳离子表面活性剂为氨基酸类表面活性剂;
(3)将所述阳离子pH响应两亲嵌段共聚物负载香料,得到pH响应缓控释的聚合物纳米香料。
其中步骤(1)中,所述羧基甜菜碱单体通过将甲基丙烯酸二甲氨基乙酯和β-丙内酯反应制备。
其中步骤(1)中,所述可逆加成-断裂链转移聚合反应的步骤具体包括以下子步骤:子步骤(11)将含末端羧基的链转移剂,羧基甜菜碱单体与引发剂溶于有机溶剂中,按照“冷冻-抽真空-通氮气-复融”步骤重复处理,然后进行加热反应后透析纯化得到不同分子量的pH响应高分子聚羧基甜菜碱;子步骤(12)将纯化后的所述pH响应高分子聚羧基甜菜碱与甲基丙烯酸己酯单体和引发剂溶于有机溶剂中,按照“冷冻-抽真空-通氮气-复融”步骤重复处理,然后在进行加热反应后透析纯化得到不同分子量的pH响应两亲嵌段共聚物。
其中所述含末端羧基的链转移剂为4-氰基-4-(十二烷基硫烷基硫代羰基)硫烷基戊酸;所述引发剂为偶氮二异丁腈;
所述羧基甜菜碱单体、甲基丙烯酸己酯单体和含末端羧基的链转移剂的质量比为10~20∶2.75∶1。
其中步骤(2)具体包括:将所述pH响应两亲嵌段共聚物、缩合剂,碱催化剂和阳离子表面活性剂溶于有机溶剂中进行加热反应后,通过透析纯化得到阳离子pH响应两亲嵌段共聚物。
其中所述缩合剂为六氟磷酸苯并三唑-1-基-氧基三吡咯烷基磷;所述碱催化剂为三乙胺;所述阳离子表面活性剂为L精氨酸或赖氨酸。
其中步骤(3)具体包括以下子步骤:子步骤(31)将所述阳离子pH响应两亲嵌段共聚物和香料溶于有机溶剂中,并在剧烈搅拌中逐滴加入到去离子水中;子步骤(32)进行超声沉淀;子步骤(33)通过透析除去有机溶剂及未包载的香料,得到pH响应缓控释的聚合物纳米香料。
其中子步骤(31)中:所述香料为疏水性香料,选自花香、木香或果香;所述pH响应两亲嵌段共聚物和香料的质量比为1~5∶1。
其中子步骤(33)中,所述透析使用截留分子量为7000的透析袋,透析液为去离子水。
本发明还提供了一种使用如上所述的制备方法所制得的pH响应缓控释的聚合物纳米香料,其平均粒径为50~300nm,载香率为35.21~40.55%。
下面列举几个具体的实施例,以便对本发明的实施和技术效果作更进一步的说明。下述实施例中,所用实验材料均可以从常规市售途径获得,或者通过本领域常规的生产厂家生产制备得到;其中,有关搅拌、透析、冷冻和真空干燥的操作均为本领域常规的实验方法。
实施例1
在本实施例中,通过以下步骤制备pH响应缓控释的聚合物纳米香料:
(1)、通过可逆加成-断裂链转移聚合(RAFT)反应制备pH响应两亲嵌段共聚物:
1、10.4g甲基丙烯酸二甲氨基乙酯与5.7gβ-丙内酯溶于无水二氯甲烷,冰浴并氮气保护下反应5h,用乙醚沉淀并抽滤,得羧基甜菜碱单体。2、403mg 4-氰基-4-(十二烷基硫烷基硫代羰基)硫烷基戊酸,5503mg羧基甜菜碱单体与67mg偶氮二异丁腈溶于甲醇中,重复“冷冻-抽真空-通氮气-复融”步骤三次后,65℃反应24h,透析,冻干,得pH响应高分子聚羧基甜菜碱。3、将纯化后的pH响应高分子聚羧基甜菜碱与1106mg甲基丙烯酸己酯和67mg偶氮二异丁腈溶于甲醇中重复“冷冻-抽真空-通氮气-复融”步骤三次后,65℃反应24h,透析,冻干,得到亲、疏链段聚合度比例为20∶5的pH响应两亲嵌段聚合物。
(2)、通过酸铵缩合反应制备阳离子pH响应两亲嵌段共聚物:
1、370mg pH响应两亲嵌段聚合物与40mg六氟磷酸苯并三唑-1-基-氧基三吡咯烷基磷,30mg三乙胺和20mg L-精氨酸溶于N,N-二甲基甲酰胺(DMF)溶液中,40℃反应24h。2、用DMF与水透析24h,冻干,得纯化后的阳离子两亲嵌段共聚物。
(3)、阳离子pH响应两亲嵌段共聚物负载香料:
1、100mg阳离pH响应子两亲嵌段共聚物和80mg芳樟醇香料溶于二甲基亚砜中,并在剧烈搅拌中逐滴加入到50ml去离子水中。2、超声0.5h,3、最后通过透析除去有机溶剂及未包载的香料。其中透析袋截留分子量为7000,透析液为去离子水。最终得到pH响应缓控释的聚合物纳米香料。
以上通过可逆加成-断裂链转移聚合反应与酸铵缩合反应,制备了阳离子两亲嵌段共聚物。利用纳米共沉淀法,将阳离子两亲嵌段共聚物与芳樟醇自组装成纳米香料。如图1所示,所得产物粒径在100nm左右。所得纳米香料的载香率达到了40.55%,且电位达到了25mV左右(如图2所示),适合应用于丝绸、皮革等表面带负点的基材附香。同时,如图3所示,所得纳米香料展现了优异的pH缓控释性能,12小时在pH 5,pH 7和pH 8条件下的香料释放率分别为11.84%,2.52%和1.64%。
实施例2
在本实施例中,通过以下方法制备pH响应缓控释的聚合物纳米香料:
(1)、通过可逆加成-断裂链转移聚合(RAFT)反应制备pH响应两亲嵌段共聚物:
1、10.4g甲基丙烯酸二甲氨基乙酯与5.7gβ-丙内酯溶于无水二氯甲烷,冰浴并氮气保护下反应5h,用乙醚沉淀并抽滤,得羧基甜菜碱单体。2、403mg 4-氰基-4-(十二烷基硫烷基硫代羰基)硫烷基戊酸,4127mg羧基甜菜碱单体与67mg偶氮二异丁腈溶于甲醇中,重复“冷冻-抽真空-通氮气-复融”步骤三次后,65℃反应24h,透析,冻干,得pH响应高分子聚羧基甜菜碱。3、将纯化后的pH响应高分子聚羧基甜菜碱与1106mg甲基丙烯酸己酯和67mg偶氮二异丁腈溶于甲醇中重复“冷冻-抽真空-通氮气-复融”步骤三次后,65℃反应24h,透析,冻干,得亲、疏链段聚合度比例为15∶5的pH响应两亲嵌段聚合物。
(2)、通过酸铵缩合反应制备阳离子pH响应两亲嵌段共聚物:
1、300mg pH响应两亲嵌段聚合物与40mg六氟磷酸苯并三唑-1-基-氧基三吡咯烷基磷,30mg三乙胺和20mg L-精氨酸溶于N,N-二甲基甲酰胺(DMF)溶液中,40℃反应24h。2、用DMF与水透析24h,冻干,得纯化后的阳离子两亲嵌段共聚物。
(3)、阳离子pH响应两亲嵌段共聚物负载香料:
1、100mg阳离pH响应子两亲嵌段共聚物和80mg芳樟醇香料溶于二甲基亚砜中,并在剧烈搅拌中逐滴加入到50ml去离子水中。2、超声0.5h,3、最后通过透析除去有机溶剂及未包载的香料。其中透析袋截留分子量为7000,透析液为去离子水。最终得到pH响应缓控释的聚合物纳米香料。
上述所得的pH响应缓控释的聚合物纳米香料所得产物粒径在200nm左右。所得纳米香料的载香率达到了35.55%。
实施例3
在本实施例中,通过以下方法制备pH响应缓控释的聚合物纳米香料,具体包括以下步骤:
(1)、通过可逆加成-断裂链转移聚合(RAFT)反应制备pH响应两亲嵌段共聚物:
1、10.4g甲基丙烯酸二甲氨基乙酯与5.7gβ-丙内酯溶于无水二氯甲烷,冰浴并氮气保护下反应5h,用乙醚沉淀并抽滤,得羧基甜菜碱单体。2、403mg 4-氰基-4-(十二烷基硫烷基硫代羰基)硫烷基戊酸,6695mg羧基甜菜碱与67mg偶氮二异丁腈溶于甲醇中,重复“冷冻-抽真空-通氮气-复融”步骤三次后,65℃反应24h,透析,冻干,得pH响应高分子聚羧基甜菜碱。3、将纯化后的pH响应高分子聚羧基甜菜碱与1106mg甲基丙烯酸己酯和67mg偶氮二异丁腈溶于甲醇中重复“冷冻-抽真空-通氮气-复融”步骤三次后,65℃反应24h,透析,冻干,得到亲、疏链段聚合度比例为25∶5的pH响应两亲嵌段聚合物。
(2)、通过酸铵缩合反应制备阳离子pH响应两亲嵌段共聚物:
1、320mg pH响应两亲嵌段聚合物与40mg六氟磷酸苯并三唑-1-基-氧基三吡咯烷基磷,30mg三乙胺和20mg L-精氨酸溶于N,N-二甲基甲酰胺(DMF)溶液中,40℃反应24h。2、用DMF与水透析24h,冻干,得纯化后的阳离子两亲嵌段共聚物。
(3)、阳离子pH响应两亲嵌段共聚物负载香料:
1、100mg阳离pH响应子两亲嵌段共聚物和80mg芳樟醇香料溶于二甲基亚砜中,并在剧烈搅拌中逐滴加入到50ml去离子水中。2、超声0.5h,3、最后通过透析除去有机溶剂及未包载的香料。其中透析袋截留分子量为7000,透析液为去离子水。最终得到pH响应缓控释的聚合物纳米香料。
上述所得的pH响应缓控释的聚合物纳米香料所得产物粒径在300nm左右。所得纳米香料的载香率达到了36.65%。
应用实施例
丝绸样品(25cm2)浸泡在上述实施例1制备的pH响应缓控释的聚合物纳米香料水溶液中搅拌12h,其中搅拌速率为1200rpm。且芳樟醇浓度为1mg/mL。随后自然晾干。加香后的丝绸样品实现了香气分子在碱性条件稳定,酸性条件释放。解决了香料释放过程的不可控的问题,而且香气释放均匀,缓慢,留香时间久,效果明显。
此外,在本发明的上述实施例中,所述的有机溶剂还可以是本领域其他性质类似的有机溶剂,其也能实现基本相当的效果,并不以此为限。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种pH响应缓控释的聚合物纳米香料的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)将羧基甜菜碱单体、甲基丙烯酸己酯单体和含末端羧基的链转移剂在引发剂作用下通过可逆加成-断裂链转移聚合反应制备pH响应两亲嵌段共聚物;
(2)将所述pH响应两亲嵌段共聚物中的所述末端羧基和阳离子表面活性剂通过酸铵缩合反应制备阳离子pH响应两亲嵌段共聚物,其中阳离子表面活性剂为氨基酸类表面活性剂;
(3)将所述阳离子pH响应两亲嵌段共聚物负载香料,得到pH响应缓控释的聚合物纳米香料。
2.如权利要求1所述的制备方法,其特征在于,步骤(1)中,所述羧基甜菜碱单体通过将甲基丙烯酸二甲氨基乙酯和β-丙内酯反应制备。
3.如权利要求1所述的制备方法,其特征在于,步骤(1)中,所述可逆加成-断裂链转移聚合反应的步骤具体包括以下子步骤:
子步骤(11),将含末端羧基的链转移剂,羧基甜菜碱单体与引发剂溶于有机溶剂中,按照“冷冻-抽真空-通氮气-复融”步骤重复处理,然后进行加热反应后透析纯化得到pH响应高分子聚羧基甜菜碱;
子步骤(12),将纯化后的所述pH响应高分子聚羧基甜菜碱与甲基丙烯酸己酯单体和引发剂溶于有机溶剂中,按照“冷冻-抽真空-通氮气-复融”步骤重复处理,然后在进行加热反应后透析纯化得到pH响应两亲嵌段共聚物。
4.如权利要求3所述的制备方法,其特征在于:
所述含末端羧基的链转移剂为4-氰基-4-(十二烷基硫烷基硫代羰基)硫烷基戊酸;
所述引发剂为偶氮二异丁腈;
所述羧基甜菜碱单体、甲基丙烯酸己酯单体和含末端羧基的链转移剂的质量比为10~20∶2.75∶1。
5.如权利要求1所述的制备方法,其特征在于,步骤(2)具体包括:将所述pH响应两亲嵌段共聚物、缩合剂,碱催化剂和阳离子表面活性剂溶于有机溶剂中进行加热反应后,通过透析纯化得到阳离子pH响应两亲嵌段共聚物。
6.如权利要求5所述的制备方法,其特征在于:
所述缩合剂为六氟磷酸苯并三唑-1-基-氧基三吡咯烷基磷;
所述碱催化剂为三乙胺;
所述阳离子表面活性剂为L精氨酸或赖氨酸。
7.如权利要求1所述的制备方法,其特征在于:步骤(3)具体包括以下子步骤:
子步骤(31),将所述阳离子pH响应两亲嵌段共聚物和香料溶于有机溶剂中,并在剧烈搅拌中逐滴加入到去离子水中;
子步骤(32),进行超声沉淀;
子步骤(33),通过透析除去有机溶剂及未包载的香料,得到pH响应缓控释的聚合物纳米香料。
8.如权利要求7所述的制备方法,其特征在于:子步骤(31)中:
所述香料为疏水性香料,选自花香、木香或果香;
所述pH响应两亲嵌段共聚物和香料的质量比为1~5∶1。
9.如权利要求7所述的制备方法,其特征在于,子步骤(33)中,所述透析使用截留分子量为7000的透析袋,透析液为去离子水。
10.一种使用如权利要求1至9任意一项所述的制备方法所制得的pH响应缓控释的聚合物纳米香料,其平均粒径为50~300nm,载香率为35.21~40.55%。
CN201811344388.1A 2018-11-12 2018-11-12 pH响应缓控释的聚合物纳米香料及其制备方法 Active CN109518463B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811344388.1A CN109518463B (zh) 2018-11-12 2018-11-12 pH响应缓控释的聚合物纳米香料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811344388.1A CN109518463B (zh) 2018-11-12 2018-11-12 pH响应缓控释的聚合物纳米香料及其制备方法

Publications (2)

Publication Number Publication Date
CN109518463A true CN109518463A (zh) 2019-03-26
CN109518463B CN109518463B (zh) 2020-10-02

Family

ID=65776194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811344388.1A Active CN109518463B (zh) 2018-11-12 2018-11-12 pH响应缓控释的聚合物纳米香料及其制备方法

Country Status (1)

Country Link
CN (1) CN109518463B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101104596A (zh) * 2006-07-11 2008-01-16 北京化工大学 温度响应型自封闭芳香缓释微胶囊及制备方法
CN101891870A (zh) * 2010-06-30 2010-11-24 华南理工大学 一种具有pH响应性的两亲性共聚物刷及其制法和应用
CN103483582A (zh) * 2013-08-22 2014-01-01 山东大学 pH响应的生物可降解聚合物囊泡及其制备方法与应用
CN103917205A (zh) * 2011-11-09 2014-07-09 金伯利-克拉克环球有限公司 用于活性成分的触发释放和湿度的视觉指示的水性介质敏感性涂层组合物
CN105968373A (zh) * 2016-05-16 2016-09-28 四川大学 一种含两性离子的多重酸敏感抗肿瘤载药胶束及其制备方法和应用
CN108546595A (zh) * 2018-04-19 2018-09-18 中国科学院过程工程研究所 光响应缓释的聚合物纳米香料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101104596A (zh) * 2006-07-11 2008-01-16 北京化工大学 温度响应型自封闭芳香缓释微胶囊及制备方法
CN101891870A (zh) * 2010-06-30 2010-11-24 华南理工大学 一种具有pH响应性的两亲性共聚物刷及其制法和应用
CN103917205A (zh) * 2011-11-09 2014-07-09 金伯利-克拉克环球有限公司 用于活性成分的触发释放和湿度的视觉指示的水性介质敏感性涂层组合物
CN103483582A (zh) * 2013-08-22 2014-01-01 山东大学 pH响应的生物可降解聚合物囊泡及其制备方法与应用
CN105968373A (zh) * 2016-05-16 2016-09-28 四川大学 一种含两性离子的多重酸敏感抗肿瘤载药胶束及其制备方法和应用
CN108546595A (zh) * 2018-04-19 2018-09-18 中国科学院过程工程研究所 光响应缓释的聚合物纳米香料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
余博,蒋锡群: "以 PAMAM为核的多臂高分子的合成、尺寸控制及药物传输研究", 《中国化学会2017全国高分子学术论文报告会论文集》 *

Also Published As

Publication number Publication date
CN109518463B (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
Dutta et al. Temperature, pH and redox responsive cellulose based hydrogels for protein delivery
Gan et al. Tunable swelling kinetics in core− shell hydrogel nanoparticles
Zhang et al. Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex–MA/PNIPAAm hydrogels
Wei et al. Self-assembled thermoresponsive micelles of poly (N-isopropylacrylamide-b-methyl methacrylate)
Zehm et al. Synthesis of diblock copolymer nanoparticles via RAFT alcoholic dispersion polymerization: Effect of block copolymer composition, molecular weight, copolymer concentration, and solvent type on the final particle morphology
Li et al. Synthesis and properties of thermo-responsive guar gum/poly (N-isopropylacrylamide) interpenetrating polymer network hydrogels
Reddy et al. Synthesis of alginate based silver nanocomposite hydrogels for biomedical applications
Ulu et al. Design of starch functionalized biodegradable P (MAA-co-MMA) as carrier matrix for l-asparaginase immobilization
Patel et al. Ceric-induced grafting of methyl acrylate onto sodium salt of partially carboxymethylated sodium alginate
Weda et al. Thermosensitive nanospheres of low-density core–An approach to hollow nanoparticles
Zhang et al. Synthesis and characterization of thermosensitive graft copolymer of N-isopropylacrylamide with biodegradable carboxymethylchitosan
Qiao et al. Synthesis of thermosensitive micelles based on poly (N-isopropylacrylamide) and poly (l-alanine) for controlled release of adriamycin
Xu et al. A strategy to introduce the pH sensitivity to temperature sensitive PNIPAAm hydrogels without weakening the thermosensitivity
Lequieu et al. Track etched membranes with thermo-adjustable porosity and separation properties by surface immobilization of poly (N-vinylcaprolactam)
Hebeish et al. Radically new cellulose nanocomposite hydrogels: Temperature and pH responsive characters
JP2004526566A (ja) 被覆されたナノ粒子の製造法
Chen et al. Synthesis and characterization of thermoresponsive and biocompatible core–shell microgels based on N-isopropylacrylamide and carboxymethyl chitosan
Sakthivel et al. Investigation on Au-nano incorporated pH-sensitive (itaconic acid/acrylic acid/triethylene glycol) based polymeric biocompatible hydrogels
Liu et al. Preparation of biodegradable and thermoresponsive enzyme–polymer conjugates with controllable bioactivity via RAFT polymerization
Petrov et al. Biocompatible cryogels of thermosensitive polyglycidol derivatives with ultra-rapid swelling properties
CN109518463A (zh) pH响应缓控释的聚合物纳米香料及其制备方法
Hou et al. Thermoresponsive nanocomposite hydrogels: Transparency, rapid deswelling and cell release
Liu et al. Cross-linking polymerization of acrylic acid in supercritical carbon dioxide
Ebara et al. Incorporation of new carboxylate functionalized co-monomers to temperature-responsive polymer-grafted cell culture surfaces
Quan et al. Polyethyleneimine modified biocompatible poly (N-isopropylacrylamide)-based nanogels for drug delivery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant