CN109517256A - B1级高阻燃绿色环保布线的制造工艺 - Google Patents
B1级高阻燃绿色环保布线的制造工艺 Download PDFInfo
- Publication number
- CN109517256A CN109517256A CN201811300144.3A CN201811300144A CN109517256A CN 109517256 A CN109517256 A CN 109517256A CN 201811300144 A CN201811300144 A CN 201811300144A CN 109517256 A CN109517256 A CN 109517256A
- Authority
- CN
- China
- Prior art keywords
- parts
- insulating layer
- grades
- environmentally protective
- high fire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0853—Vinylacetate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/02—Disposition of insulation
- H01B7/0258—Disposition of insulation comprising one or more longitudinal lapped layers of insulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/18—Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
- H01B7/24—Devices affording localised protection against mechanical force or pressure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/29—Protection against damage caused by extremes of temperature or by flame
- H01B7/295—Protection against damage caused by extremes of temperature or by flame using material resistant to flame
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2217—Oxides; Hydroxides of metals of magnesium
- C08K2003/2224—Magnesium hydroxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
- C08K2003/387—Borates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
- C08L2203/202—Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Insulating Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明公开了一种B1级高阻燃绿色环保布线的制造工艺,所述B1级高阻燃绿色环保布线包括导体和绝缘层,所述绝缘层挤包在导体的外表面;所述绝缘层的原料由以下重量份的组分组成:乙烯‑醋酸乙烯共聚物25~35份,氢氧化镁15~25份,氢氧化铝10~15份,改性纳米氮化钛5~10份,硼酸镁1~5份,聚乙烯接枝马来酸苷2~10份,磷酸三聚氰胺5~10份,茂金属聚乙烯,抗氧剂,硬脂酸锌0.1~1份,N‑甲基吡咯烷酮0.1~0.5份,三烯丙基异氰脲酸酯0.5~1份;本发明制造工艺制得的布线拉伸强度大,耐热阻燃性能好,且其绝缘层材料中不含卤素,是一种环境友好的绿色环保布线。
Description
技术领域
本发明涉及电缆技术领域,尤其涉及一种B1级高阻燃绿色环保布线的制造工艺。
背景技术
目前,我国建筑行业使用的室内布电线主要为聚氯乙烯绝缘电线,但聚氯乙烯绝缘电线在使用中存在着安全隐患,当发生火灾事故时,因电线的燃烧而产生的大量浓烟和释放出的卤酸气体将严重影响消防人员的救火甚至危及他们的生命,产生所谓的“二次灾害”;具有腐蚀性的卤酸气体还会腐蚀家具和家用电器的设施。随着人们的环保意识的日益提高,以及在国家有关高层建筑、人员密集的公共场所等禁止使用聚氯乙烯绝缘电线的规定的实施,聚氯乙烯绝缘电线已逐渐受到排挤,取而代之的将是具有高阻燃性能、不含卤素的环保型电线。
然而目前市面上的电线只考虑成束阻燃、低烟无卤和烟密度等燃烧性能,没有考虑火灾条件下的热释放特性、烟气释放特性、滴落物可燃性、烟气毒性等指标,不能满足使用单位对于B1级燃烧等级的要求,而市面上相关产品仍属于空白。因此,如何开发出一种能够制造出物理性能佳,防火阻燃性能好的绿色环保布线的制造工艺成为本领域技术人员努力的方向。
发明内容
本发明目的在于提供一种B1级高阻燃绿色环保布线的制造工艺,该制造工艺制得的电线拉伸强度大,耐热阻燃性能好,材料中不含卤素,是一种环境友好的绿色环保布线。
为达到上述目的,本发明采用的技术方案是:一种B1级高阻燃绿色环保布线的制造工艺,所述B1级高阻燃绿色环保布线包括导体和绝缘层,所述绝缘层挤包在导体的外表面;
所述绝缘层的原料由以下重量份的组分组成:
乙烯-醋酸乙烯共聚物 25~35份,
氢氧化镁 15~25份,
氢氧化铝 10~15份,
改性纳米氮化钛 5~10份,
硼酸镁 1~5份,
聚乙烯接枝马来酸苷 2~10份,
磷酸三聚氰胺 5~10份,
茂金属聚乙烯CB3518 2~10份,
茂金属聚乙烯CB1001 1~5份,
抗氧剂1035 0.1~1份,
抗氧剂1010 0.5~2份,
抗氧剂B225 0.1~1份,
硬脂酸锌 0.1~1份,
N-甲基吡咯烷酮 0.1~0.5份,
三烯丙基异氰脲酸酯 0.5~1份;
所述改性纳米氮化钛通过以下步骤获得:将纳米氮化钛和乙醇混合加热至60℃,搅拌均匀后,加入重量比为1:2的异氰酸丙基三乙氧基硅烷和甲基丙烯酸月桂酯,搅拌反应4h后将混合物真空干燥12h,研磨即得所述改性纳米氮化钛;
所述绝缘层通过以下步骤获得:
S1. 称取乙烯-醋酸乙烯共聚物25~35份,氢氧化镁15~25份,氢氧化铝10~15份,改性纳米氮化钛5~10份,硼酸镁1~5份,聚乙烯接枝马来酸苷2~10份,磷酸三聚氰胺5~10份,茂金属聚乙烯CB3518和茂金属聚乙烯CB1001分别2~10份和1~5份,抗氧剂1035、抗氧剂1010和抗氧剂B225分别0.1~1份、0.5~2份和0.1~1份,硬脂酸锌0.1~1份,N-甲基吡咯烷酮0.1~0.5份,三烯丙基异氰脲酸酯0.5~1份投入密炼机中混炼至料温为120℃时出料并送入锥形喂料斗;
S2. 将混炼胶料由锥形喂料斗引入双螺杆挤出机熔融挤出加工,然后经单螺杆挤出造粒,得到绝缘层电缆料,备用;
S3. 用挤出机将S2中制得的绝缘层电缆料挤包到导体外表面,由电子加速器进行辐照交联,控制电子束流强度介于1~20mA之间,使辐照剂量达到6~15Mrad,即得到所述绝缘层。
上述技术方案中进一步改进的技术方案如下:
1. 上述方案中,所述导体为退火铜导体。
2. 上述方案中,所述乙烯-醋酸乙烯共聚物的VA值为25~30%。
3. 上述方案中,所述氢氧化铝的粒径为1.5~3.0μm。
4. 上述方案中,进行所述双螺杆挤出机熔融挤出加工时,双螺杆挤出机的一区至九区的温度分别控制为:一区95℃,二区105℃、三区115℃、四区125℃、五区135℃,六区125℃、七区115℃、八区105℃和九区95℃,双螺杆挤出机的机头温度控制为105℃。
由于上述技术方案的运用,本发明与现有技术相比具有下列优点:
1. 本发明B1级高阻燃绿色环保布线的制造工艺,其绝缘层配方基于乙烯-醋酸乙烯共聚物25~35份、聚乙烯接枝马来酸苷2~10份、茂金属聚乙烯CB3518和茂金属聚乙烯CB1001分别2~10份和1~5份,添加氢氧化镁15~25份、氢氧化铝10~15份、硼酸镁1~5份,且搭配改性纳米氮化钛5~10份和磷酸三聚氰胺5~10份复配使用,形成了一种新型阻燃体系,极大的提高了氢氧化物的阻燃效率;该配方控制了阻燃剂的填充比例以保证电缆料机械性能,其邵氏硬度达到97,拉伸强度为13.0Mpa,断裂伸长率175%以上,同时也具有优良的耐火阻燃特性,其氧指数达到45以上,具有很高的实用价值。
2. 本发明B1级高阻燃绿色环保布线的制造工艺,其绝缘层材料中采用的纳米氮化钛经异氰酸丙基三乙氧基硅烷和甲基丙烯酸月桂酯表面改性,使其在体系中分散性更好、比表面积更大,同时额外添加了N-甲基吡咯烷酮0.1~0.5份,有效降低了材料的燃烧热释放速率,避免高温影响光纤通信强度,并能在较高温度下仍保留一定的机械性能,使采用该聚烯烃材料的电缆结构稳定性更强,更可靠。
附图说明
附图1为本发明B1级高阻燃绿色环保布线结构示意图。
以上附图中:1、导体;2、绝缘层。
具体实施方式
下面结合实施例对本发明作进一步描述:
实施例1~3:一种B1级高阻燃绿色环保布线的制造工艺,所述B1级高阻燃绿色环保布线包括导体1和绝缘层2,所述绝缘层2挤包在导体1的外表面;
所述导体1为退火铜导体;
所述绝缘层2的原料由以下重量份的组分组成:
表1
组分 | 实施例1 | 实施例2 | 实施例3 | 实施例4 |
乙烯-醋酸乙烯共聚物 | 25 | 35 | 30 | 32 |
氢氧化镁 | 18 | 15 | 25 | 22 |
氢氧化铝 | 10 | 12 | 14 | 15 |
改性纳米氮化钛 | 10 | 5 | 9 | 7 |
硼酸镁 | 5 | 1 | 2 | 4 |
聚乙烯接枝马来酸苷 | 2 | 6 | 10 | 4 |
磷酸三聚氰胺 | 7 | 5 | 10 | 9 |
茂金属聚乙烯CB3518 | 7 | 2 | 5 | 10 |
茂金属聚乙烯CB1001 | 1 | 5 | 3 | 4 |
抗氧剂1035 | 0.1 | 0.3 | 0 | 0.8 |
抗氧剂1010 | 2 | 0.5 | 1 | 1.5 |
抗氧剂B225 | 0.1 | 0.3 | 0.6 | 1 |
硬脂酸锌 | 0.3 | 1 | 0.1 | 0.7 |
N-甲基吡咯烷酮 | 0.1 | 0.4 | 0.2 | 0.5 |
三烯丙基异氰脲酸酯 | 1 | 0.7 | 0.9 | 0.5 |
所述改性纳米氮化钛通过以下步骤获得:将纳米氮化钛和乙醇混合加热至60℃,搅拌均匀后,加入重量比为1:2的异氰酸丙基三乙氧基硅烷和甲基丙烯酸月桂酯,搅拌反应4h后将混合物真空干燥12h,研磨即得所述改性纳米氮化钛;
所述绝缘层2通过以下步骤获得:
S1. 称取乙烯-醋酸乙烯共聚物25~35份,氢氧化镁15~25份,氢氧化铝10~15份,改性纳米氮化钛5~10份,硼酸镁1~5份,聚乙烯接枝马来酸苷2~10份,磷酸三聚氰胺5~10份,茂金属聚乙烯CB3518和茂金属聚乙烯CB1001分别2~10份和1~5份,抗氧剂1035、抗氧剂1010和抗氧剂B225分别0.1~1份、0.5~2份和0.1~1份,硬脂酸锌0.1~1份,N-甲基吡咯烷酮0.1~0.5份,三烯丙基异氰脲酸酯0.5~1份投入密炼机中混炼至料温为120℃时出料并送入锥形喂料斗;
S2. 将混炼胶料由锥形喂料斗引入双螺杆挤出机熔融挤出加工,然后经单螺杆挤出造粒,得到绝缘层电缆料,备用;
S3. 用挤出机将S2中制得的绝缘层电缆料挤包到导体1外表面,由电子加速器进行辐照交联,控制电子束流强度介于1~20mA之间,使辐照剂量达到6~15Mrad,即得到所述绝缘层2;
进行所述双螺杆挤出机熔融挤出加工时,双螺杆挤出机的一区至九区的温度分别控制为:一区95℃,二区105℃、三区115℃、四区125℃、五区135℃,六区125℃、七区115℃、八区105℃和九区95℃,双螺杆挤出机的机头温度控制为105℃。
对比例1~3:一种聚烯烃绝缘料,由以下重量份的组分组成:
表2
组分 | 对比例1 | 对比例2 | 对比例3 |
乙烯-醋酸乙烯共聚物 | 35 | 30 | 32 |
氢氧化镁 | 18 | 15 | 22 |
氢氧化铝 | 15 | 12 | 14 |
改性纳米氮化钛 | - | 5 | - |
硼酸镁 | 5 | - | - |
聚乙烯接枝马来酸苷 | 2 | 4 | 10 |
磷酸三聚氰胺 | - | 5 | - |
茂金属聚乙烯CB3518 | 2 | 5 | 10 |
茂金属聚乙烯CB1001 | 1 | 5 | 3 |
抗氧剂1035 | 0.1 | 0.3 | 0 |
抗氧剂1010 | 2 | 0.5 | 1 |
抗氧剂B225 | 0.1 | 0.3 | 0.6 |
硬脂酸锌 | 1 | 0.1 | 0.7 |
N-甲基吡咯烷酮 | 0.4 | - | - |
三烯丙基异氰脲酸酯 | 0.7 | 0.9 | 0.5 |
制备方法为常规方法。
各实施例和对比例制备的绝缘层性能检测数据如下:
表3
由表3可知,本发明聚烯烃绝缘料无论是热老化前后机械性能,还是热延伸试验和燃烧热释放性能都显著优于各对比例,该聚烯烃绝缘料用作布线绝缘层时,制得的布线拉伸强度大,耐热阻燃性能好。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。
Claims (5)
1.一种B1级高阻燃绿色环保布线的制造工艺,其特征在于:所述B1级高阻燃绿色环保布线包括导体(1)和绝缘层(2),所述绝缘层(2)挤包在导体(1)的外表面;
所述绝缘层(2)的原料由以下重量份的组分组成:
乙烯-醋酸乙烯共聚物 25~35份,
氢氧化镁 15~25份,
氢氧化铝 10~15份,
改性纳米氮化钛 5~10份,
硼酸镁 1~5份,
聚乙烯接枝马来酸苷 2~10份,
磷酸三聚氰胺 5~10份,
茂金属聚乙烯CB3518 2~10份,
茂金属聚乙烯CB1001 1~5份,
抗氧剂1035 0.1~1份,
抗氧剂1010 0.5~2份,
抗氧剂B225 0.1~1份,
硬脂酸锌 0.1~1份,
N-甲基吡咯烷酮 0.1~0.5份,
三烯丙基异氰脲酸酯 0.5~1份;
所述改性纳米氮化钛通过以下步骤获得:将纳米氮化钛和乙醇混合加热至60℃,搅拌均匀后,加入重量比为1:2的异氰酸丙基三乙氧基硅烷和甲基丙烯酸月桂酯,搅拌反应4h后将混合物真空干燥12h,研磨即得所述改性纳米氮化钛;
所述绝缘层(2)通过以下步骤获得:
S1. 称取乙烯-醋酸乙烯共聚物25~35份,氢氧化镁15~25份,氢氧化铝10~15份,改性纳米氮化钛5~10份,硼酸镁1~5份,聚乙烯接枝马来酸苷2~10份,磷酸三聚氰胺5~10份,茂金属聚乙烯CB3518和茂金属聚乙烯CB1001分别2~10份和1~5份,抗氧剂1035、抗氧剂1010和抗氧剂B225分别0.1~1份、0.5~2份和0.1~1份,硬脂酸锌0.1~1份,N-甲基吡咯烷酮0.1~0.5份,三烯丙基异氰脲酸酯0.5~1份投入密炼机中混炼至料温为120℃时出料并送入锥形喂料斗;
S2. 将混炼胶料由锥形喂料斗引入双螺杆挤出机熔融挤出加工,然后经单螺杆挤出造粒,得到绝缘层电缆料,备用;
S3. 用挤出机将S2中制得的绝缘层电缆料挤包到导体(1)外表面,由电子加速器进行辐照交联,控制电子束流强度介于1~20mA之间,使辐照剂量达到6~15Mrad,即得到所述绝缘层(2)。
2.根据权利要求1所述的B1级高阻燃绿色环保布线的制造工艺,其特征在于:所述导体(1)为退火铜导体。
3.根据权利要求1所述的B1级高阻燃绿色环保布线的制造工艺,其特征在于:所述乙烯-醋酸乙烯共聚物的VA值为25~30%。
4.根据权利要求1所述的B1级高阻燃绿色环保布线的制造工艺,其特征在于:所述氢氧化铝的粒径为1.5~3.0μm。
5.根据权利要求1所述的B1级高阻燃绿色环保布线的制造工艺,其特征在于:进行所述双螺杆挤出机熔融挤出加工时,双螺杆挤出机的一区至九区的温度分别控制为:一区95℃,二区105℃、三区115℃、四区125℃、五区135℃,六区125℃、七区115℃、八区105℃和九区95℃,双螺杆挤出机的机头温度控制为105℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811300144.3A CN109517256A (zh) | 2018-11-02 | 2018-11-02 | B1级高阻燃绿色环保布线的制造工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811300144.3A CN109517256A (zh) | 2018-11-02 | 2018-11-02 | B1级高阻燃绿色环保布线的制造工艺 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109517256A true CN109517256A (zh) | 2019-03-26 |
Family
ID=65774340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811300144.3A Pending CN109517256A (zh) | 2018-11-02 | 2018-11-02 | B1级高阻燃绿色环保布线的制造工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109517256A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111849057A (zh) * | 2020-06-30 | 2020-10-30 | 浙江太湖远大新材料股份有限公司 | 一种b1级低烟无卤料绝缘料及其制备方法 |
CN115181418A (zh) * | 2022-09-13 | 2022-10-14 | 广东南缆电缆有限公司 | B1级阻燃包带及其制备方法和应用 |
-
2018
- 2018-11-02 CN CN201811300144.3A patent/CN109517256A/zh active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111849057A (zh) * | 2020-06-30 | 2020-10-30 | 浙江太湖远大新材料股份有限公司 | 一种b1级低烟无卤料绝缘料及其制备方法 |
CN115181418A (zh) * | 2022-09-13 | 2022-10-14 | 广东南缆电缆有限公司 | B1级阻燃包带及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3053956B1 (en) | Zero-halogen cable insulation material for 125°c irradiation cross-linked epcv photovoltaics, and method for preparation thereof | |
CN105504480B (zh) | 一种机车线缆用耐油辐照交联低烟无卤阻燃聚烯烃料 | |
CN109593257A (zh) | 一种低收缩热塑性低烟无卤阻燃聚烯烃电缆料及其制备方法及其用途 | |
CN106916362B (zh) | 一种无卤阻燃聚烯烃树脂及其制备方法 | |
CN106397947B (zh) | 无卤阻燃性树脂组合物、绝缘电线和电缆 | |
CN101456991B (zh) | 光伏电缆用无卤阻燃护套料 | |
CN104403190A (zh) | 一种紫外光交联耐油低烟无卤阻燃聚烯烃电缆料及其制备方法 | |
CN109957199A (zh) | 一种光伏电缆用无卤低烟阻燃护套料及其制备方法和用途 | |
CN109553846A (zh) | 长寿命辐照交联低烟无卤高阻燃聚烯烃电缆料及制法 | |
CN109401011A (zh) | 一种阻燃电缆材料及其制备方法 | |
CN100363415C (zh) | 低烟无卤膨胀阻燃聚烯烃电子线料及其制备方法 | |
CN113980381A (zh) | 一种长寿命耐高温聚烯烃绝缘料及其制备方法和应用 | |
CN103739928A (zh) | 一种硅树脂增效的高性能低烟无卤电力电缆护套料及其制造方法 | |
CN106432894A (zh) | 一种无卤无磷光伏电缆及其制备方法与应用 | |
CN104945705A (zh) | 耐油型热塑性低烟无卤阻燃聚烯烃电缆料及其制备方法 | |
CN111117054A (zh) | 一种低烟无卤阻燃b1级聚烯烃电缆护套料及其制备方法 | |
CN109651691A (zh) | 一种耐低温耐油耐扭转低烟无卤阻燃风能电缆护套料及其制备方法及其用途 | |
CN109517256A (zh) | B1级高阻燃绿色环保布线的制造工艺 | |
CN103554639B (zh) | 一种环保型无卤阻燃电线电缆的生产方法 | |
CN105034186B (zh) | 光伏线缆护套层材料的制备方法 | |
CN104987644A (zh) | 一种不含磷化氢的耐析出无卤阻燃电线电缆料及其制备方法 | |
CN112574496B (zh) | 一种低烟无卤阻燃电缆料及其制备方法和应用 | |
CN109485989A (zh) | 一种光伏电缆用电缆料及其制备方法 | |
CN105801990A (zh) | 一种无卤无红磷高阻燃热缩套管及其制备方法 | |
CN112225983A (zh) | 核电站电缆的阻燃护套材料、制备方法以及寿命检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190326 |
|
WD01 | Invention patent application deemed withdrawn after publication |