CN109507292B - 一种信号提取方法 - Google Patents
一种信号提取方法 Download PDFInfo
- Publication number
- CN109507292B CN109507292B CN201811597293.0A CN201811597293A CN109507292B CN 109507292 B CN109507292 B CN 109507292B CN 201811597293 A CN201811597293 A CN 201811597293A CN 109507292 B CN109507292 B CN 109507292B
- Authority
- CN
- China
- Prior art keywords
- atom
- signal
- honey
- honey source
- bee
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000605 extraction Methods 0.000 title claims abstract description 94
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 196
- 238000012545 processing Methods 0.000 claims abstract description 97
- 238000000034 method Methods 0.000 claims abstract description 82
- 238000005457 optimization Methods 0.000 claims abstract description 65
- 230000008569 process Effects 0.000 claims abstract description 35
- 235000012907 honey Nutrition 0.000 claims description 319
- 241000257303 Hymenoptera Species 0.000 claims description 66
- 238000005070 sampling Methods 0.000 claims description 46
- 238000004364 calculation method Methods 0.000 claims description 21
- 230000006870 function Effects 0.000 claims description 8
- 238000003860 storage Methods 0.000 claims description 7
- 238000013500 data storage Methods 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 13
- 238000013461 design Methods 0.000 abstract description 9
- 238000001514 detection method Methods 0.000 description 35
- 230000007547 defect Effects 0.000 description 33
- 239000000047 product Substances 0.000 description 19
- 238000004458 analytical method Methods 0.000 description 8
- 238000007689 inspection Methods 0.000 description 7
- 230000002068 genetic effect Effects 0.000 description 5
- 241000251468 Actinopterygii Species 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000011897 real-time detection Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000003245 coal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/048—Marking the faulty objects
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明公开了一种信号提取方法,包括步骤:一、待处理信号同步存储;步骤二、待处理信号处理:采用数据处理设备对待处理信号f(t)进行处理,过程如下:步骤201、基于寻优算法的信号稀疏分解;步骤202、残差量判断:判断信号稀疏分解完成后的||Rm(t)||2是否小于ε:当||Rm(t)||2≥ε时,进入步骤203;否则,进入步骤204;步骤203、最佳匹配原子优化;步骤204、信号重构。本发明方法步骤简单、设计合理且实现方便、使用效果好,采用基于寻优算法的信号稀疏分解方法搜索最佳匹配原子,同时通过残差量判断对信号提取精度进行判断,并根据判断结果进行最佳匹配原子优化,能大幅度加快信号提取速度,并能有效提高信号提取精度。
Description
技术领域
本发明属于信号时频分析技术领域,尤其是涉及一种信号提取方法。
背景技术
时间和频率是描述信号的两个最重要的物理量,信号的时域和频域之间具有紧密的联系。时频分析(JTFA)即时频联合域分析(Joint Time-Frequency Analysis)的简称,为分析时变非平稳信号的有力工具,是一种新兴的信号处理方法。时频分析方法提供了时间域(简称时域)与频率域(简称频域)的联合分布信息,清楚地描述了信号频率随时间变化的关系。
目前,所使用信号采样系统(也称信号采集系统或信号采集设备)所采集的信号多为需进行时频分析的信号,如超声波探伤系统所采集的待处理信号、脑电采集系统所采集的脑电波信号、振动系统所采用的振动波信号、地震波检测系统所采集的地震波信号、微波检测系统所采集微波信号、通信系统中的时频信号等。
对信号进行时频分析时,去燥是前提,至关重要。目前,已有许多信号去燥方法,也称为信号提取方法,如非线性滤波、傅里叶变换和小波变换等,这些方法对提高一般信号的信噪比具有较好效果,但对于弱小信号提取或者强噪声背景下信号的提取具有局限性,提取结果不准确,可靠性不高。稀疏分解是一种新的信号分析理论,可以根据待提取信号的特征自适应的选择合适的展开函数,用很少的函数可以表示出所提取信号的基本特征,它可以在低信噪比情况下,更好地提取出弱小信号,最大化的逼近原始信号。稀疏分解算法首先是由Mallat提出的,它是众所周知的匹配追踪算法。但实际使用时,该算法仍存在以下两个缺陷,一是稀疏分解算法的计算量很大,计算时间在目前现有计算条件下十分巨大,无法进行实时提取;二是稀疏分解算法是连续条件下求的最优解,对于弱小信号的提取精度仍然有局限。
例如在超声探伤领域,目前在采煤机箱体等机械设备的缺陷检测中广泛使用的是超声检测方法。超声检测是一种重要的无损检测方法,超声信号是一个被探头中心频率调制的宽带脉冲信号,其回波信号中包含了大量与缺陷有关的信息,但是超声波信号(即待处理信号)常常被测量系统和测试工件的随机噪声和相关噪声污染,特别是粗晶材料中的晶粒噪声,这些噪声会使超声信号的缺陷识别变得困难,严重制约缺陷检测的精度和可靠性。因此,对超声检测回波信号进行去噪处理,保证所得缺陷信号的真实性十分重要。这对企业提高产品缺陷检出率、保证产品质量和产品使用寿命具有重要意义。由上述内容可知,对采煤机等机械设备的缺陷进行超声检测过程中,噪声严重影响了检测结果的可靠性和质量。从混有各种干扰噪声的信号(即超声检测信号)中提取出缺陷信号是确保回波信号准确性的关键,用超声波对材料内部缺陷进行检测时,缺陷信息将通过接收到的待处理信号的幅值、频率或相位来表现。上述缺陷信号指的是检测到的待处理信号,该待处理信号中含有缺陷信息。但是由于仪器噪声和测试环境因素的影响,检测信号会伴有各种电噪声、结构噪声以及脉冲噪声等各种干扰噪声,特别是当缺陷信号的微结构噪声很大,或者材料本身晶粒粗大时,缺陷与噪声的信号强度相比会显得微弱,这种强噪声背景下缺陷信号的提取是超声信号处理领域研究的难题。如何从这些信号中提取所需信息是一项困难而又重要的课题。因此对超声检测回波信号进行去噪处理,保证所得缺陷信号的真实性十分重要。但上述现有的信号提取方法,如非线性滤波、傅里叶变换和小波变换等,这些方法对提高一般超声信号的信噪比具有较好效果,但是对于小缺陷或者强噪声背景下缺陷的提取具有局限性,检测结果不准确,可靠性不高。而稀疏分解算法存在两个缺陷,一是稀疏分解算法的计算量很大,计算时间在目前现有计算条件下十分巨大,无法进行实时检测;二是稀疏分解算法是连续条件下求的最优解,对于弱小缺陷的检测精度仍然有局限。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种信号提取方法,其方法步骤简单、设计合理且实现方便、使用效果好,采用基于寻优算法的信号稀疏分解方法搜索最佳匹配原子,同时通过残差量判断对信号提取精度进行判断,并根据判断结果进行最佳匹配原子优化,能大幅度加快信号提取速度,并能有效提高信号提取精度。
为解决上述技术问题,本发明采用的技术方案是:一种信号提取方法,其特征在于,该方法包括以下步骤:
步骤一、待处理信号同步存储:采用数据处理设备对待处理信号f(t)进行同步存储;所述待处理信号f(t)为信号采样系统所采集的信号;
其中,f(t)=[f(t1),f(t2),...,f(tN)]T,t表示时间参数,ti为信号采样系统的第i个采样时刻,f(ti)为待处理信号f(t)中第i个采样时刻的信号值,i为正整数且i=1、2、3、…、N,N为待处理信号f(t)的信号长度;
步骤二、待处理信号处理:采用数据处理设备对步骤一中所述待处理信号f(t)进行处理,过程如下:
步骤201、基于寻优算法的信号稀疏分解:采用数据处理设备且调用稀疏分解模块对步骤一中所述待处理信号f(t)进行迭代分解处理,将待处理信号f(t)转换为并获得此时的迭代分解最佳原子集合;此时的所述迭代分解最佳原子集合中包含m个最佳匹配原子,为所述迭代分解最佳原子集合中的第n个所述最佳匹配原子;
式中Rm(t)为待处理信号f(t)经过m次迭代分解后的残差量,其中m为预先设定的迭代分解总次数且m为正整数,n为正整数且n=1、2、…、m;an为第n次迭代分解后的最佳匹配原子与上一次迭代分解后残差量的展开系数;
为第n次迭代分解时采用数据处理设备且调用寻优算法模块找出的最佳匹配原子;为Gabor原子且式中函数ψ(t)为高斯窗函数且rn为的时频参数,rn=(sn,un,vn,wn),sn为尺度参数,un为位移参数,vn为频率参数,wn为相位参数;
本步骤中,寻找最佳匹配原子时,根据预先设定的sn、un、vn和wn的取值范围,采用数据处理设备且调用寻优算法模块,找出使适应度值Fitness(rn)最大的最佳时频参数,所找出的最佳时频参数为时频参数rn;
步骤202、残差量判断:判断||Rm(t)||2是否小于ε:当||Rm(t)||2<ε时,进入步骤204;否则,当||Rm(t)||2≥ε时,进入步骤203;
其中,||Rm(t)||2为步骤201中所述Rm(t)的2-范数,ε为预先设定的残差量判断阈值;
步骤203、最佳匹配原子优化,过程如下:
此时的所述迭代分解最佳原子集合中除所述待优化原子之外的m-1个最佳匹配原子均为待处理原子,m-1个待处理原子组成此时的待处理原子集合;
对最佳匹配原子进行查找时,根据预先设定的sj'、uj'、vj'和wj'的取值范围,采用数据处理设备且调用所述寻优算法模块,找出使适应度值fitness(rj')最大的最佳时频参数,所找出的最佳时频参数为时频参数rj';再根据公式求解出最佳匹配原子
步骤2033、原子替换判断及原子替换:采用数据处理设备且调用残值判断模块、适应度值判断模块或稀疏性判断模块,判断是否需对步骤2031中所述待优化原子进行替换,并根据判断结果对所述待优化原子进行替换;
采用数据处理设备且调用残值判断模块判断是否需对步骤2031中所述待优化原子进行替换时,根据替换后残值||Rj' m(t)||ξ是否小于替换前残值||Rj m(t)||ξ进行判断:当||Rj' m(t)||ξ<||Rj m(t)||ξ时,判断为需对步骤2031中所述待优化原子进行替换,将步骤2031中所述待优化原子替换为步骤2032中所述最佳匹配原子获得更新后的所述迭代分解最佳原子集合;否则,判断为无需对步骤2031中所述待优化原子进行替换,并进入步骤2035;
其中,Rj' m(t)=f(t)-ψj'(t),Rj m(t)=f(t)-ψj(t),ψj(t)为本步骤中进行原子替换判断之前所述迭代分解最佳原子集合中m个最佳匹配原子之和;||Rj' m(t)||ξ表示Rj' m(t)的ξ-范数,||Rj m(t)||ξ表示Rj m(t)的ξ-范数,ξ为常数且0≤ξ≤1;
采用数据处理设备且调用适应度值判断模块判断是否需对步骤2031中所述待优化原子进行替换时,根据替换后适应度值Fitness(rj')是否大于替换前适应度值Fitness(rj)进行判断:当Fitness(rj')>Fitness(rj)时,判断为需对步骤2031中所述待优化原子进行替换,将步骤2031中所述待优化原子替换为步骤2032中所述最佳匹配原子获得更新后的所述迭代分解最佳原子集合;否则,判断为无需对步骤2031中所述待优化原子进行替换,并进入步骤2035;
采用数据处理设备且调用稀疏性判断模块判断是否需对步骤2031中所述待优化原子进行替换时,根据||Rj'||ξ是否小于||Rj||ξ进行判断:当||Rj'||ξ<||Rj||ξ时,判断为需对步骤2031中所述待优化原子进行替换,将步骤2031中所述待优化原子替换为步骤2032中所述最佳匹配原子获得更新后的所述迭代分解最佳原子集合;否则,判断为无需对步骤2031中所述待优化原子进行替换,并进入步骤2035;
本步骤中,完成原子替换判断及原子替换后,完成步骤2031中选取的一个所述最佳匹配原子的优化过程;
步骤2034、残差量判断:对步骤2033中完成一个所述最佳匹配原子优化后的残差量进行判断:当||R'j m(t)||2<ε时,进入步骤204;否则,当||R'j m(t)||2≥ε时,进入步骤2035;
其中,||R'j m(t)||2为R'j m(t)的2-范数;R'j m(t)为根据此时所述迭代分解最佳原子集合中的m个所述最佳匹配原子对f(t)进行m次迭代分解后的残差量;
步骤2035、下一个最佳匹配原子优化:按照步骤2031中至步骤2033中所述的方法,对此时所述迭代分解最佳原子集合中未进行优化的一个所述最佳匹配原子进行优化;
步骤2036、残差量判断:对步骤2035中所述最佳匹配原子优化后的残差量进行判断:当||R”j m(t)||2<ε时,进入步骤204;否则,当||R”j m(t)||2≥ε时,返回步骤2035;
其中,||R”j m(t)||2为R”j m(t)的2-范数;R”j m(t)为根据此时所述迭代分解最佳原子集合中的m个所述最佳匹配原子对f(t)进行m次迭代分解后的残差量;
其中为此时所述迭代分解最佳原子集合中的第n'个所述最佳匹配原子,n'为正整数且n'=1、2、…、m;an'为与根据此时所述迭代分解最佳原子集合中的前n'-1个所述最佳匹配原子对f(t)进行n'-1次迭代分解后残差量的展开系数。
上述一种信号提取方法,其特征是:步骤一中所述待处理信号f(t)与数据处理设备通过有线或无线方式进行连接;所述信号采样系统将所采集的信号f(t)同步传送至数据处理设备,并通过数据处理设备进行同步存储;
所述的ti为信号采样系统的第i个采样时刻,f(ti)为信号采样系统的第i个采样时刻采样得到的信号值,i为正整数且i=1、2、3、…、N。
上述一种信号提取方法,其特征是:步骤201中进行信号稀疏分解后,采用数据处理设备将所述迭代分解最佳原子集合同步存储至数据存储器内,所述数据存储器与数据处理设备连接;
步骤2033中进行原子替换判断及原子替换后,采用数据处理设备对更新后的所述迭代分解最佳原子集合进行同步存储。
上述一种信号提取方法,其特征是:步骤201中进行信号稀疏分解后,采用数据处理设备将所述迭代分解最佳原子集合同步存储至数据存储器内时,按照迭代分解先后顺序对所述迭代分解最佳原子集合中的m个所述最佳匹配原子分别进行存储;其中,为步骤201中对所述待处理信号f(t)进行第n次迭代分解时找出的最佳匹配原子。
上述一种信号提取方法,其特征是:步骤203中最佳匹配原子优化时,按照存储先后顺序对所述迭代分解最佳原子集合中的所述最佳匹配原子进行优化;
步骤203中最佳匹配原子优化时,最先进行优化的所述最佳匹配原子为步骤201中所述迭代分解最佳原子集合中的第1个所述最佳匹配原子。
上述一种信号提取方法,其特征是:步骤201中sn的取值范围为[1,N]且sn∈[1,N],un的取值范围为[0,N]且un∈[0,N],vn的取值范围为且wn的取值范围为[0,2π]且wn∈[0,2π];其中,fo为信号采样系统的采样频率,fo的单位为MHz。
步骤201中进行信号稀疏分解时,采用数据处理设备由先至后找出步骤201中所述迭代分解最佳原子集合中的m个所述最佳匹配原子;
步骤201中所述寻优算法模块为人工蜂群算法模块;
步骤2011、参数初始化:采用数据处理设备设定所述人工蜂群算法模块的最大迭代次数MC、蜜源的数量SN、雇佣蜂的数量、观察蜂的数量和蜜源最大开采次数limit;同时,采用数据处理设备随机生成SN个不同的蜜源,SN个蜜源均为待开采蜜源,所生成的SN个蜜源中第p个所述蜜源记作一个4维向量Xp=(X1p,X2p,X3p,X4p),每个所述蜜源均为一个时频参数;所述雇佣蜂的数量和观察蜂的数量均为SN,所生成的每个蜜源均分配给一个雇佣蜂;
其中,p为正整数且p=1、2、…、SN;X1p的取值范围与步骤201中预先设定的sn的取值范围相同,X2p的取值范围与步骤201中预先设定的un的取值范围相同,X3p的取值范围与步骤201中预先设定的vn的取值范围相同,X4p的取值范围与步骤201中预先设定的wn的取值范围相同;
步骤2012、雇佣蜂邻域搜索:每个雇佣蜂均对其所分配的蜜源进行邻域搜索,如果搜索到的新蜜源的适应度值大于原有蜜源的适应度值,将新蜜源作为雇佣蜂搜索到的待开采蜜源,并将已开采次数置0;否则,将原有蜜源的已开采次数加1;
步骤2013、观察蜂邻域搜索:根据步骤2012中雇佣蜂搜索到的所有蜜源的适应度值,计算得出雇佣蜂搜索到的各蜜源的被选择概率;观察蜂再按照计算得出的各蜜源的被选择概率,从雇佣蜂搜索到的所有蜜源中选择采蜜的蜜源作为新的蜜源;
观察蜂对所选择的蜜源进行邻域搜索,如果搜索到的新蜜源的适应度值大于原有蜜源的适应度值,观察蜂转变为雇佣蜂,将新的蜜源作为搜索到的待开采蜜源,并将已开采次数置0;否则,否则蜜源和雇佣蜂保持不变,将原有蜜源的已开采次数加1;
步骤2014、最优蜜源实时记录:待雇佣蜂邻域搜索与观察蜂邻域搜索结束后,获得此时的最优蜜源并同步记录,所述人工蜂群算法模块的迭代次数加1;
雇佣蜂邻域搜索与观察蜂邻域搜索过程中,若蜜源的已开采次数达到蜜源最大开采次数limit,则观察蜂转变为侦查蜂,再通过侦查蜂生成新的蜜源,并将已开采次数置0;
步骤2012中进行雇佣蜂邻域搜索时和步骤2013中进行观察蜂邻域搜索时,任一个蜜源的适应度值均为该蜜源所对应的Gabor原子与Rn-1(t)的内积。
步骤20321、参数初始化:采用数据处理设备设定所述人工蜂群算法模块的最大迭代次数MC’、蜜源的数量SN’、雇佣蜂的数量、观察蜂的数量和蜜源最大开采次数limit’;同时,采用数据处理设备随机生成SN’个不同的蜜源,SN’个蜜源均为待开采蜜源,所生成的SN’个蜜源中第p'个所述蜜源记作一个4维向量Xp'=(X1p',X2p',X3p',X4p'),每个所述蜜源均为一个时频参数;所述雇佣蜂的数量和观察蜂的数量均为SN’,所生成的每个蜜源均分配给一个雇佣蜂;
其中,p'为正整数且p'=1、2、…、SN’;X1p'的取值范围与步骤201中预先设定的sn的取值范围相同,X2p'的取值范围与步骤201中预先设定的un的取值范围相同,X3p'的取值范围与步骤201中预先设定的vn的取值范围相同,X4p'的取值范围与步骤201中预先设定的wn的取值范围相同;
步骤20322、雇佣蜂邻域搜索:每个雇佣蜂均对其所分配的蜜源进行邻域搜索,如果搜索到的新蜜源的适应度值大于原有蜜源的适应度值,将新蜜源作为雇佣蜂搜索到的待开采蜜源,并将已开采次数置0;否则,将原有蜜源的已开采次数加1;
步骤20323、观察蜂邻域搜索:根据步骤20322中雇佣蜂搜索到的所有蜜源的适应度值,计算得出雇佣蜂搜索到的各蜜源的被选择概率;观察蜂再按照计算得出的各蜜源的被选择概率,从雇佣蜂搜索到的所有蜜源中选择采蜜的蜜源作为新的蜜源;
观察蜂对所选择的蜜源进行邻域搜索,如果搜索到的新蜜源的适应度值大于原有蜜源的适应度值,观察蜂转变为雇佣蜂,将新的蜜源作为搜索到的待开采蜜源,并将已开采次数置0;否则,否则蜜源和雇佣蜂保持不变,将原有蜜源的已开采次数加1;
步骤20324、最优蜜源实时记录:待雇佣蜂邻域搜索与观察蜂邻域搜索结束后,获得此时的最优蜜源并同步记录,所述人工蜂群算法模块的迭代次数加1;
雇佣蜂邻域搜索与观察蜂邻域搜索过程中,若蜜源的已开采次数达到蜜源最大开采次数limit,则观察蜂转变为侦查蜂,再通过侦查蜂生成新的蜜源,并将已开采次数置0;
步骤20322中进行雇佣蜂邻域搜索时和步骤20323中进行观察蜂邻域搜索时,任一个蜜源的适应度值均为该蜜源所对应的Gabor原子与Rn-1(t)的内积。
上述一种信号提取方法,其特征是:步骤2034中所述的R'j m(t)根据公式进行计算,其中为此时所述迭代分解最佳原子集合中的第n1个所述最佳匹配原子,n1为正整数且n1=1、2、…、m;an1为与根据此时所述迭代分解最佳原子集合中的前n1-1个所述最佳匹配原子对f(t)进行n1-1次迭代分解后残差量的展开系数;
步骤2036中所述的R”j m(t)根据公式进行计算,其中为此时所述迭代分解最佳原子集合中的第n2个所述最佳匹配原子,n2为正整数且n2=1、2、…、m;an2为与根据此时所述迭代分解最佳原子集合中的前n2-1个所述最佳匹配原子对f(t)进行n2-1次迭代分解后残差量的展开系数。
上述一种信号提取方法,其特征是:步骤2033中所述的Rj-1(t)为根据本步骤中进行原子替换判断之前所述迭代分解最佳原子集合中的前j-1个所述最佳匹配原子对f(t)进行j-1次迭代分解后的残差量;
步骤2033中对Rj-1(t)进行计算时,根据本步骤中进行原子替换判断之前所述迭代分解最佳原子集合与进行计算,其中k为正整数且k=1、2、…、j-1,k<j;为本步骤中进行原子替换判断之前所述迭代分解最佳原子集合中的第k个所述最佳匹配原子,ak为与根据本步骤中进行原子替换判断之前所述迭代分解最佳原子集合中的前k-1个所述最佳匹配原子对f(t)进行k-1次迭代分解后残差量的展开系数。
本发明与现有技术相比具有以下优点:
1、方法步骤简单、设计合理且实现方便,投入成本较低。
2、信号提取速度快,采用数据处理器自动完成信号提取过程,并且能在几分钟甚至更短的时间内完成信号提取过程,实现信号实时提取。
3、所采用的基于寻优算法的信号稀疏分解方法简单、设计合理且实现方便、使用效果好,不仅提高了信号提取的速度,而且经信号提取后能有效提高原信号的质量和性能指标,尤其在超声无损探伤中具有重要的作用。同时,将频率参数v的取值范围限定为并且fo的单位为MHz,一方面能有效减少稀疏分解算法的计算量,实现进行实时检测;另一方面,有效提高MP算法(即匹配追踪算法)的性能,使得稀疏表示的信号能有效满足弱小缺陷的检测精度,达到更简易、更准确地获得信号中所蕴含的有效信息。通过将频率参数v的取值范围限定为能进一步凸显信号中所蕴含有效的信息,使稀疏表示的信号更加侧重表达有效信息,弱化冗余信息,从而能更准确地表达信号本征特征,使信号提取精度能得到有效保证。
4、增加信号提取精度验证步骤且验证方法简单、易于实现,信号稀疏分解后还需通过残差量判断判断此时的迭代分解最佳原子集合是否满足预先设定的信号提取精度要求,并根据判断结果进行最佳匹配原子优化,从而能进一步提高信号提取的准确性,进一步提高信号提取精度,使提取后信号进一步逼近原始信号,实现与原始信号的最佳匹配,提高信号的提取准确性及提取速度。
5、所采用的最佳匹配原子优化方法设计合理、实现方便且使用效果好,从此时的迭代分解最佳原子集合中随机选取一个最佳匹配原子进行优化,当优化完成一个所述最佳匹配原子后,便通过残差量判断对此时迭代分解最佳原子集合是否满足信号提取精度要求进行判断,并根据判断结果决定是否需要继续对其余的最佳匹配原子进行优化。因而,实现简便,并能实现快速优化与优化结果实时判断相结合,能有效简化最佳匹配原子优化过程,并能快速达到最佳匹配原子优化的目的,进一步有效提高信号提取精度。同时,所采用的原子替换判断方法设计合理、实现简便且使用效果好,采用残值判断、适应度值判断或稀疏性判断任一种方法进行原子替换判断,可选取任一种方法进行原子替换判断,使用方式灵活,并且每一种原子替换判断方法均能实现有效的原子替换判断。
6、采用改进的人工蜂群算法进行寻优实现最佳匹配原子查找,信号稀疏分解之前不需要生成过完备字典中的全部原子,只需要产生蜜源的位置来替代原子库中的Gabor原子,大大节省了存储空间。此外,人工蜂群算法是在连续的空间中进行最佳匹配原子的搜寻,而匹配追踪算法是在离散的搜索空间中进行原子的搜寻,因此人工蜂群算法搜索的范围更广,提取出的原子能更好的反映原始信号的特点,不但提高了计算速度,由于其在连续解空间范围内寻优,因此,也提高了参数提取的准确性。相比离散空间范围,能更准确的提取出于信号匹配的最佳匹配原子,从而提高了信号提取的精度,能有效提取强噪声背景下的有用信号。尤其对于超声无损探伤而言,为缺陷准确检测提供可靠的依据,同时为缺陷的定性和定量分析提供理论基础,能有效解决强噪声背景下弱缺陷提取难的问题,能解决弱缺陷的提取速度和精度问题,能准确地提取出强噪声背景下的缺陷信息,提高了超声信号提取的速度,为实时自动化检测提供了技术支持,因而能有效解决现有匹配追踪算法存在的算法复杂度大,过匹配等问题。因此,本发明利用人工蜂群算法从连续字典库中选择与超声信号最优匹配的原子,从而恢复出待处理信号。
7、使用效果好且实用价值高,采用基于寻优算法的信号稀疏分解方法搜索最佳匹配原子,同时通过残差量判断对信号提取精度进行判断,并根据判断结果进行最佳匹配原子优化,能大幅度加快信号提取速度,并能有效提高信号提取精度。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明的方法流程框图。
图2为本发明所采用信号采样及提取系统的电路原理框图。
附图标记说明:
1—信号采样系统;2—数据处理设备;3—数据存储器。
具体实施方式
如图1所示的一种信号提取方法,包括以下步骤:
步骤一、待处理信号同步存储:采用数据处理设备2对待处理信号f(t)进行同步存储;所述待处理信号f(t)(即原始信号)为信号采样系统1所采集的信号;
其中,f(t)=[f(t1),f(t2),...,f(tN)]T,t表示时间参数,ti为信号采样系统1的第i个采样时刻,f(ti)为待处理信号f(t)中第i个采样时刻的信号值,i为正整数且i=1、2、3、…、N,N为待处理信号f(t)的信号长度;
步骤二、待处理信号处理:采用数据处理设备2对步骤一中所述待处理信号f(t)进行处理,过程如下:
步骤201、基于寻优算法的信号稀疏分解:采用数据处理设备2且调用稀疏分解模块对步骤一中所述待处理信号f(t)进行迭代分解处理,将待处理信号f(t)转换为并获得此时的迭代分解最佳原子集合;此时的所述迭代分解最佳原子集合中包含m个最佳匹配原子,为所述迭代分解最佳原子集合中的第n个所述最佳匹配原子;
式中Rm(t)为待处理信号f(t)经过m次迭代分解后的残差量,其中m为预先设定的迭代分解总次数且m为正整数,n为正整数且n=1、2、…、m;an为第n次迭代分解后的最佳匹配原子与上一次迭代分解后残差量的展开系数;
为第n次迭代分解时采用数据处理设备2且调用寻优算法模块找出的最佳匹配原子;为Gabor原子且式中函数ψ(t)为高斯窗函数且rn为的时频参数,rn=(sn,un,vn,wn),sn为尺度参数,un为位移参数,vn为频率参数,wn为相位参数;
本步骤中,寻找最佳匹配原子时,根据预先设定的sn、un、vn和wn的取值范围,采用数据处理设备2且调用寻优算法模块,找出使适应度值Fitness(rn)最大的最佳时频参数,所找出的最佳时频参数为时频参数rn;
步骤202、残差量判断:判断||Rm(t)||2是否小于ε:当||Rm(t)||2<ε时,进入步骤204;否则,当||Rm(t)||2≥ε时,进入步骤203;
其中,||Rm(t)||2为步骤201中所述Rm(t)的2-范数,ε为预先设定的残差量判断阈值;
步骤203、最佳匹配原子优化,过程如下:
此时的所述迭代分解最佳原子集合中除所述待优化原子之外的m-1个最佳匹配原子均为待处理原子,m-1个待处理原子组成此时的待处理原子集合;
对最佳匹配原子进行查找时,根据预先设定的sj'、uj'、vj'和wj'的取值范围,采用数据处理设备2且调用所述寻优算法模块,找出使适应度值fitness(rj')最大的最佳时频参数,所找出的最佳时频参数为时频参数rj';再根据公式求解出最佳匹配原子
步骤2033、原子替换判断及原子替换:采用数据处理设备2且调用残值判断模块、适应度值判断模块或稀疏性判断模块,判断是否需对步骤2031中所述待优化原子进行替换,并根据判断结果对所述待优化原子进行替换;
采用数据处理设备2且调用残值判断模块判断是否需对步骤2031中所述待优化原子进行替换时,根据替换后残值||Rj' m(t)||ξ是否小于替换前残值||Rj m(t)||ξ进行判断:当||Rj' m(t)||ξ<||Rj m(t)||ξ时,判断为需对步骤2031中所述待优化原子进行替换,将步骤2031中所述待优化原子替换为步骤2032中所述最佳匹配原子获得更新后的所述迭代分解最佳原子集合;否则,判断为无需对步骤2031中所述待优化原子进行替换,并进入步骤2035;
其中,Rj' m(t)=f(t)-ψj'(t),Rj m(t)=f(t)-ψj(t),ψj(t)为本步骤中进行原子替换判断之前所述迭代分解最佳原子集合中m个最佳匹配原子之和;||Rj' m(t)||ξ表示Rj' m(t)的ξ-范数,||Rj m(t)||ξ表示Rj m(t)的ξ-范数,ξ为常数且0≤ξ≤1;
采用数据处理设备2且调用适应度值判断模块判断是否需对步骤2031中所述待优化原子进行替换时,根据替换后适应度值Fitness(rj')是否大于替换前适应度值Fitness(rj)进行判断:当Fitness(rj')>Fitness(rj)时,判断为需对步骤2031中所述待优化原子进行替换,将步骤2031中所述待优化原子替换为步骤2032中所述最佳匹配原子获得更新后的所述迭代分解最佳原子集合;否则,判断为无需对步骤2031中所述待优化原子进行替换,并进入步骤2035;
采用数据处理设备2且调用稀疏性判断模块判断是否需对步骤2031中所述待优化原子进行替换时,根据||Rj'||ξ是否小于||Rj||ξ进行判断:当||Rj'||ξ<||Rj||ξ时,判断为需对步骤2031中所述待优化原子进行替换,将步骤2031中所述待优化原子替换为步骤2032中所述最佳匹配原子获得更新后的所述迭代分解最佳原子集合;否则,判断为无需对步骤2031中所述待优化原子进行替换,并进入步骤2035;
本步骤中,完成原子替换判断及原子替换后,完成步骤2031中选取的一个所述最佳匹配原子的优化过程;
步骤2034、残差量判断:对步骤2033中完成一个所述最佳匹配原子优化后的残差量进行判断:当||R'j m(t)||2<ε时,进入步骤204;否则,当||R'j m(t)||2≥ε时,进入步骤2035;
其中,||R'j m(t)||2为R'j m(t)的2-范数;R'j m(t)为根据此时所述迭代分解最佳原子集合中的m个所述最佳匹配原子对f(t)进行m次迭代分解后的残差量;
步骤2035、下一个最佳匹配原子优化:按照步骤2031中至步骤2033中所述的方法,对此时所述迭代分解最佳原子集合中未进行优化的一个所述最佳匹配原子进行优化;
步骤2036、残差量判断:对步骤2035中所述最佳匹配原子优化后的残差量进行判断:当||R”j m(t)||2<ε时,进入步骤204;否则,当||R”j m(t)||2≥ε时,返回步骤2035;
其中,||R”j m(t)||2为R”j m(t)的2-范数;R”j m(t)为根据此时所述迭代分解最佳原子集合中的m个所述最佳匹配原子对f(t)进行m次迭代分解后的残差量;
其中为此时所述迭代分解最佳原子集合中的第n'个所述最佳匹配原子,n'为正整数且n'=1、2、…、m;an'为与根据此时所述迭代分解最佳原子集合中的前n'-1个所述最佳匹配原子对f(t)进行n'-1次迭代分解后残差量的展开系数。
其中,[]T表示矩阵的转置。
步骤一中所述的[f(t1),f(t2),...,f(tN)]T为矩阵[f(t1),f(t2),...,f(tN)]的转置。
根据本领域公知常识,2-范数是指向量各元素的平方和然后求平方根(即L2范数)。
步骤202中所述的Rm(t)为N×1维向量,||Rm(t)||2为Rm(t)中N个元素绝对值的2次方和的1/2次幂。
步骤2034中R'j m(t)为N×1维向量,||R'j m(t)||2为R'j m(t)中N个元素绝对值的2次方和的1/2次幂。
步骤2036中R”j m(t)为N×1维向量,||R”j m(t)||2为R”j m(t)中N个元素绝对值的2次方和的1/2次幂。
步骤2033中所述的Rj' m(t)为N×1维向量,||Rj' m(t)||ξ为Rj' m(t)中N个元素绝对值的ξ次方和的1/ξ次幂。
所述的Rj m(t)为N×1维向量,||Rj m(t)||ξ为Rj m(t)中N个元素绝对值的ξ次方和的1/ξ次幂。
所述的Rj'为N×1维向量,||Rj'||ξ为Rj'中N个元素绝对值的ξ次方和的1/ξ次幂。所述的Rj为N×1维向量,||Rj||ξ为Rj中N个元素绝对值的ξ次方和的1/ξ次幂。
本实施例中,步骤一中所述信号采样系统1与数据处理设备2通过有线或无线方式进行连接;所述信号采样系统1将所采集的信号f(t)同步传送至数据处理设备2,并通过数据处理设备2进行同步存储;
所述的ti为信号采样系统1的第i个采样时刻,f(ti)为信号采样系统1的第i个采样时刻采样得到的信号值,i为正整数且i=1、2、3、…、N。
所述信号采样系统1为超声波探伤装置、脑电波采集系统、微波检测系统、振动检测系统或通信信号检测系统。
所述待处理信号f(t)相应为所述超声波探伤装置检测到的超声回波信号、所述脑电波采集系统采集到的脑电波信号、所述微波检测系统检测到的微波信号、所述振动检测系统检测到的振动波信号或所述通信信号检测系统检测到的通信信号。实际使用时,所述待处理信号f(t)也可以为其它类型的时间序列信号。
本实施例中,所述信号采样系统1为超声波探伤装置,所述待处理信号f(t)为所述超声波探伤装置检测到的超声回波信号。
并且,所述超声波探伤装置为A型数字超声探伤仪。实际使用时,也可以采用其它类型的超声波探伤设备。
步骤201中进行信号稀疏分解之前,按照常规信号稀疏分解时时频参数中尺度参数、位移参数、频率参数和相位参数的取值范围确定方法,对sn、un、vn和wn的取值范围分别进行确定。步骤201中所述的为对待处理信号f(t)进行第n次迭代分解时的最佳匹配原子。
步骤2032中进行最佳匹配原子查找之前,先对sj'、uj'、vj'和wj'的取值范围分别进行设定,并且所设定的sj'的取值范围与步骤201中所设定的sn的取值范围相同,所设定的uj'的取值范围与步骤201中所设定的un的取值范围相同,所设定的vj'的取值范围与步骤201中所设定的vn的取值范围相同,所设定的wj'的取值范围与步骤201中所设定的wn的取值范围相同。
每个Gabor原子均与其时频参数相对应,并且每个Gabor原子均与其时频参数一一对应。
2006年4月《电子与信息学报》(第28卷第4期)公开的《利用FFT实现基于MP的信号稀疏分解》(作者:尹忠科)一文中公开:“…,r=(s,u,v,w),时频参数可以按以下方法离散化:r=(αj,pαjΔu,kα-jΔv,iΔw),其中α=2,Δu=1/2,Δv=π,Δw=π/6,0<j<log2N,0≤p≤N2-j+1,0≤k≤N2j+1,0≤i≤12。上面的描述就给出了一个具体的过完备原子库”。由上述内容可知,频率参数v根据kα-jΔv进行离散化,由于0≤k≤N2j+1、0<j<log2N、α=2且Δv=π,此时频率参数v的取值范围非常大,频率参数v的最小值为0且其最大值为因而频率参数v的取值范围为即使离散化,但频率参数v的取值范围仍非常大。
本实施例中,步骤201中sn的取值范围为[1,N]且sn∈[1,N],un的取值范围为[0,N]且un∈[0,N],vn的取值范围为且wn的取值范围为[0,2π]且wn∈[0,2π]。其中,fo为信号采样系统1的采样频率,fo的单位为MHz。
根据本领域公知常识,稀疏分解算法(也称为MP算法)存在两个缺陷,一是稀疏分解算法的计算量很大,计算时间在目前现有计算条件下十分巨大,无法进行实时检测;二是稀疏分解算法是连续条件下求的最优解,对于弱小缺陷的检测精度仍然有局限。
信号稀疏表示的目的就是在给定的超完备字典中用尽可能少的原子来表示信号,可以获得信号更为简洁的表示方式,从而使我们更容易地获取信号中所蕴含的信息,更方便进一步对信号进行加工处理,如压缩、编码等。信号稀疏表示方向的研究热点主要集中在稀疏分解算法、超完备原子字典(也称为原子库,Gabor字典)和稀疏表示的应用等方面。信号稀疏表示的两大主要任务就是字典的生成和信号的稀疏分解。但现有的研究已证实在不增加原子库大小的情况下,从一个粗尺度到细尺度上在尺度和频率上搜索原子能显著提高MP算法(即匹配追踪算法)的性能。因而,对频率参数v的取值范围进行进一步的缩小化能有效提高MP算法(即匹配追踪算法)的性能。尤其对于频率参数而言,其中取值范围对MP算法(即匹配追踪算法)的性能影响更大。
由于频率参数v的取值范围与信号的实际采样频率有关,在多年稀疏分解的研究经验基础上,同时借助时频参数的取值范围对提高MP算法(即匹配追踪算法)性能的影响进行充分、长期的研究与验证后,得出将频率参数v的取值范围与被处理信号的实际采样频率(即信号采样系统1的采样频率fo)密切相关,并且并不是完全地一一对应关系,从简化稀疏分解算法的计算量与细化时频参数的取值范围并提高匹配追踪算法性能这一综合角度出发,将频率参数v的取值范围限定为并且fo的单位为MHz,一方面能有效减少稀疏分解算法的计算量,实现进行实时检测;另一方面,有效提高MP算法(即匹配追踪算法)的性能,使得稀疏表示的信号能有效满足弱小缺陷的检测精度,达到更简易、更准确地获得信号中所蕴含的有效信息。通过将频率参数v的取值范围限定为能进一步凸显信号中所蕴含有效的信息,使稀疏表示的信号更加侧重表达有效信息,弱化冗余信息,从而能更准确地表达信号本征特征,使信号提取精度能得到有效保证。
根据本领域公知常识,同时结合2006年4月《电子与信息学报》(第28卷第4期)公开的《利用FFT实现基于MP的信号稀疏分解》(作者:尹忠科)一文可知,目前进行稀疏分解之前,通常均需要对时频参数的四个参数分别进行离散化,并生成过完备原子库,但所生成过完备原子库中的原子数量通常均非常大,所占用的存储空间非常大,并且计算量大,计算工程复杂,需对过完备原子库中的所有原子分别进行分析判断,并找出最佳匹配原子;同时,参数的取值范围与离散化方法对所生成的过完备原子库也会产生极大影响,不可避免会造成所生成过完备原子库(也称为过完备字典,Gabor字典)的准确性较差,从而不能准确地表达信号本征特征,使信号提取精度不能得到保证。
而本发明中步骤201中进行信号稀疏分解之前,不需要生成过完备字典中的全部原子,只需采用数据处理设备2且调用寻优算法模块进行寻优,便可简便、快速逐一找出最佳匹配原子即可,从而大大节省了存储空间。此外,所述寻优算法模块是在各参数的取值范围内(具体是在连续的空间中)进行最佳匹配原子的搜寻,与传统的匹配追踪算法在离散的搜索空间中(即经离散化获得的过完备字典或过完备原子库)进行最佳匹配原子的搜寻,因此寻优算法模块搜索的范围更广,搜索出的最佳匹配原子能更好地反映原始信号的特点,从而能进一步确保信号提取的精度。
步骤201中所述寻优算法模块为遗传算法模块、人工鱼群算法模块或人工蜂群算法模块。实际使用时,所述寻优算法模块也可以为其它类型的寻优算法模块。其中,调用遗传算法模块进行寻优时,采用常规的遗传算法即可;调用人工鱼群算法模块进行寻优时,采用常规的人工鱼群算法即可;调用遗传算法模块人工蜂群算法模块进行寻优时,采用常规的人工蜂群算法即可。
采用数据处理设备2且调用寻优算法模块进行寻优确定最佳匹配原子的方法,具有以下优点:第一、摆脱了傅里叶变换与小波变换等传统方法只能在正交基上进行分解的缺点,能够用更准确地表达信号本征特征,从而提高信号提取的精度;第二、能有效避免局部最优值的产生,并且可以进行连续空间的寻优查找,与原匹配追踪算法进行离散空间的寻优相比,扩大了搜索范围,从而进一步有效提高了信号提取的准确率;第三、通过寻优算法模块寻优找出最佳匹配原子,实现简便且提取速度快,能有效解决原始匹配算法复杂度大的问题,极大提高了降噪处理的收敛速度和信号提取的速度,提高了信号提取的实时性;第四、能有效提高信号提取的精度,解决了强噪声背景下的信号提取以及弱小信号的提取问题;第五、使用效果好,能解决超声无损探伤领域弱小缺陷等检测问题,提高了生产企业的产品质量,避免了安全隐患;第六、适用范围广,能有效适用于多种信号的提取过程,特别是能对非平稳难检声信号进行有效提取。因而,调用寻优算法模块进行寻优确定最佳匹配原子的方法,设计合理、效果好且实用价值高,不仅提高了信号提取的速度,而且经信号提取后能有效提高原信号的质量和性能指标,尤其在超声无损探伤中具有重要的作用。
本实施例中,步骤2032中sj'的取值范围与sn的取值范围相同,uj'的取值范围与un的取值范围相同,vj'的取值范围与vn的取值范围相同,wj'的取值范围与wn的取值范围相同。因此,sj'的取值范围为[1,N]且sj'∈[1,N],uj'的取值范围为[0,N]且uj'∈[0,N],vj'的取值范围为且wj'的取值范围为[0,2π]且wj'∈[0,2π]。
实际使用过程中,不论是常规匹配追踪算法中建立过完备原子库后进行稀疏分解,还是利用寻优算法模块寻优找出最佳匹配原子完成信号稀疏分解,均具有一定的局限性,均是在一定限制条件下获取的最佳匹配原子,因而采用上述两种方法进行信号提取时,仅能说信号提取的准确性相对较高。其中,采用过完备原子库进行稀疏分解时,由于时频参数中各参数的取值范围与离散化方法均对所生成的过完备原子库也会产生极大影响,而最终确定的过完备原子库中不可能包括所有原子,不可避免会遗漏一个或多个最佳匹配原子,从而影响信号提取的准确性。而利用寻优算法模块寻优找出最佳匹配原子时,虽能提高信号提取速度,并能实现连续区间上的搜索,受寻优算法模块中算法本身的优劣性和性能影响,如搜索步长、搜索策略、搜索终止条件等,所找出的最佳匹配原子也仅是在一定程度上或一定范围内的最佳匹配原子,因而在一定程度上也会影响信号提取的准确性。
由上述内容可知,步骤201中完成信号稀疏分解后,还需进入步骤202进行残差量判断,判断此时的迭代分解最佳原子集合是否满足预先设定的信号提取精度要求,如不符合,需进入进行步骤203进行最佳匹配原子优化,以便进一步提高信号提取的准确性。因而,步骤201中完成信号稀疏分解后,根据步骤202中残差量判断结果,对步骤201中信号稀疏分解后迭代分解最佳原子集合是否满足预先设定的信号提取精度要求进行判断,增设这一信号提取精度的验证环节,从而能进一步提高信号提取精度,使提取后信号进一步逼近原始信号。
步骤203中进行最佳匹配原子优化时,所采用的最佳匹配原子优化方法设计合理、实现方便且使用效果好,从此时的迭代分解最佳原子集合中随机选取一个最佳匹配原子进行优化,当优化完成一个所述最佳匹配原子后,便通过残差量判断对此时迭代分解最佳原子集合是否满足信号提取精度要求进行判断,并根据判断结果决定是否需要继续对其余的最佳匹配原子进行优化。因而,实现简便,可随机选取一个最佳匹配原子进行优化,原子优化顺序不限,并且每完成一个最佳匹配原子的优化过程,便进行一次残差量判断,并能实现快速优化与优化结果实时判断相结合,能有效简化最佳匹配原子优化过程,并能快速达到最佳匹配原子优化的目的,有效提高信号提取精度。
对所述待优化原子进行优化时,所采用的与该待优化原子对应的最佳匹配原子查找方法(即步骤2032中进行最佳匹配原子查找的方法)设计合理,并且能简便、快速找出比该待优化原子更佳的最佳匹配原子。
所找出的时频参数rj'为使适应度值fitness(rj')最大的最佳时频参数;
由于且ψ0(t)为步骤2031中m-1个所述待处理原子之和,因而为待处理信号f(t)(即原始信号)减去除该待优化原子之外的m-1个所述待处理原子后的残差,因而是与该待优化原子直接相关的残差信号,因而利用作为评价所找出时频参数rj'的指标更具有针对性,除去此时迭代分解最佳原子集合中m-1个所述待处理原子之外的残差信号与该待优化原子直接相关,利用寻优算法模块找出时频参数rj'的过程不受其它原子(即m-1个所述待处理原子)的影响,并且找出比该待优化原子更佳的最佳匹配原子的概率更高,同时获得的最佳匹配原子对此时迭代分解最佳原子集合中m-1个所述待处理原子不会造成影响,无需重新进行信号稀疏分解,只需按照步骤2033中所述的方法完成该待优化原子的原子替换,最后直接进入步骤204进行信号重构即可,因而使用效果非常好,能简便、快速提高信号提取精度。
步骤2033中进行原子替换判断及原子替换时,采用残值判断、适应度值判断或稀疏性判断任一种方法进行原子替换判断,可选取任一种方法进行原子替换判断,使用方式灵活,并且每一种原子替换判断方法均能实现有效的原子替换判断。
其中,调用残值判断模块判断是否需对步骤2031中所述待优化原子进行替换时,根据替换后残值||Rj' m(t)||ξ是否小于替换前残值||Rj m(t)||ξ的判断结果判断是否对待优化原子进行替换,选取残值较小的原子,使信号残差量更小,从而有效提高信号提取精度,使提取后信号更进一步逼近原始信号。
调用适应度值判断模块判断是否需对步骤2031中所述待优化原子进行替换时,根据替换后适应度值Fitness(rj')是否大于替换前适应度值Fitness(rj)判断是否对待优化原子进行替换,选取适应度值较大的原子,使信号残差量更小,从而有效提高信号提取精度,使提取后信号更进一步逼近原始信号。
调用稀疏性判断模块判断是否需对步骤2031中所述待优化原子进行替换时,根据最小鲁棒支撑来判断是否进行原子替换,选取更低的鲁棒支撑的原子,从而能更好的匹配信号特征,使得信号的表示更稀疏,从而达到有效提高信号提取精度的目的,使提取后信号更进一步逼近原始信号。
本实施例中,步骤201中进行信号稀疏分解后,采用数据处理设备2将所述迭代分解最佳原子集合同步存储至数据存储器3内,所述数据存储器3与数据处理设备2连接;
步骤2033中进行原子替换判断及原子替换后,采用数据处理设备2对更新后的所述迭代分解最佳原子集合进行同步存储。
其中,所述信号采样系统1、数据处理设备2与数据存储器3组成信号采样及提取系统,详见图2。
步骤2035中所优化的所述最佳匹配原子为步骤201中所述迭代分解最佳原子集合中的一个所述最佳匹配原子。已经完成优化的所述最佳匹配原子不能再次进行优化。
本实施例中,步骤2033中完成一个所述最佳匹配原子的优化过程后,将步骤2031中选取的所述最佳匹配原子标注为已优化原子。因而,步骤2035中所优化的最佳匹配原子为此时所述迭代分解最佳原子集合中除所述已优化原子之外的一个所述最佳匹配原子。其中,此时所述迭代分解最佳原子集合中未优化的一个所述最佳匹配原子为此时所述迭代分解最佳原子集合中除所述已优化原子之外的一个所述最佳匹配原子。
本实施例中,步骤201中进行信号稀疏分解后,采用数据处理设备2将所述迭代分解最佳原子集合同步存储至数据存储器3内时,按照迭代分解先后顺序对所述迭代分解最佳原子集合中的m个所述最佳匹配原子分别进行存储;其中,为步骤201中对所述待处理信号f(t)进行第n次迭代分解时找出的最佳匹配原子。
本实施例中,步骤203中最佳匹配原子优化时,按照存储先后顺序对所述迭代分解最佳原子集合中的所述最佳匹配原子进行优化;
步骤203中最佳匹配原子优化时,最先进行优化的所述最佳匹配原子为步骤201中所述迭代分解最佳原子集合中的第1个所述最佳匹配原子。
实际使用时,步骤203中最佳匹配原子优化时,也可以不按存储先后顺序对所述迭代分解最佳原子集合中的所述最佳匹配原子进行优化。
步骤202中所述的ε为预先设定的残差量判断阈值,实际使用时,可根据具体需要,对ε的取值大小进行限定。
本实施例中,步骤202中所述的ε=e-5。
实际使用时,可根据具体需要,对ε的取值大小进行相应调整。
本实施例中,步骤2033中所述的ξ=1。
实际使用时,可根据具体需要,对ξ的取值大小进行相应调整。
步骤201中进行信号稀疏分解时,采用数据处理设备(2)由先至后找出步骤201中所述迭代分解最佳原子集合中的m个所述最佳匹配原子;
步骤201中所述寻优算法模块为人工蜂群算法模块。
实际使用时,所述寻优算法模块也可以为其它寻优算法模块,如遗传算法模块、人工鱼群算法模块等。
步骤2011、参数初始化:采用数据处理设备2设定所述人工蜂群算法模块的最大迭代次数MC、蜜源的数量SN、雇佣蜂的数量、观察蜂的数量和蜜源最大开采次数limit;同时,采用数据处理设备2随机生成SN个不同的蜜源,SN个蜜源均为待开采蜜源,所生成的SN个蜜源中第p个所述蜜源记作一个4维向量Xp=(X1p,X2p,X3p,X4p),每个所述蜜源均为一个时频参数;所述雇佣蜂的数量和观察蜂的数量均为SN,所生成的每个蜜源均分配给一个雇佣蜂;
其中,p为正整数且p=1、2、…、SN;X1p的取值范围与步骤201中预先设定的sn的取值范围相同,X2p的取值范围与步骤201中预先设定的un的取值范围相同,X3p的取值范围与步骤201中预先设定的vn的取值范围相同,X4p的取值范围与步骤201中预先设定的wn的取值范围相同;
步骤2012、雇佣蜂邻域搜索:每个雇佣蜂均对其所分配的蜜源进行邻域搜索,如果搜索到的新蜜源的适应度值大于原有蜜源的适应度值,将新蜜源作为雇佣蜂搜索到的待开采蜜源,并将已开采次数置0;否则,将原有蜜源的已开采次数加1;
步骤2013、观察蜂邻域搜索:根据步骤2012中雇佣蜂搜索到的所有蜜源的适应度值,计算得出雇佣蜂搜索到的各蜜源的被选择概率;观察蜂再按照计算得出的各蜜源的被选择概率,从雇佣蜂搜索到的所有蜜源中选择采蜜的蜜源作为新的蜜源;
观察蜂对所选择的蜜源进行邻域搜索,如果搜索到的新蜜源的适应度值大于原有蜜源的适应度值,观察蜂转变为雇佣蜂,将新的蜜源作为搜索到的待开采蜜源,并将已开采次数置0;否则,否则蜜源和雇佣蜂保持不变,将原有蜜源的已开采次数加1;
步骤2014、最优蜜源实时记录:待雇佣蜂邻域搜索与观察蜂邻域搜索结束后,获得此时的最优蜜源并同步记录,所述人工蜂群算法模块的迭代次数加1;
雇佣蜂邻域搜索与观察蜂邻域搜索过程中,若蜜源的已开采次数达到蜜源最大开采次数limit,则观察蜂转变为侦查蜂,再通过侦查蜂生成新的蜜源,并将已开采次数置0;
步骤2012中进行雇佣蜂邻域搜索时和步骤2013中进行观察蜂邻域搜索时,任一个蜜源的适应度值均为该蜜源所对应的Gabor原子与Rn-1(t)的内积。
步骤2014中所获得的最优蜜源为一次迭代过程中获得的最优蜜源,步骤2015中获得的最优蜜源为MC次迭代过程中所获得的最优蜜源中适应度值最大的最优蜜源。
本实施例中,所述原有蜜源为步骤2011中所生成的第p个所述蜜源Xn。
本步骤中,雇佣蜂搜索到的待开采蜜源的数量为多个,雇佣蜂搜索到的所有待开采蜜源均为雇佣蜂搜索到的蜜源。
步骤2012中任一个搜索到的新蜜源的适应度值均为该蜜源所对应的Gabor原子与Rn-1(t)的内积。
步骤20321、参数初始化:采用数据处理设备(2)设定所述人工蜂群算法模块的最大迭代次数MC’、蜜源的数量SN’、雇佣蜂的数量、观察蜂的数量和蜜源最大开采次数limit’;同时,采用数据处理设备(2)随机生成SN’个不同的蜜源,SN’个蜜源均为待开采蜜源,所生成的SN’个蜜源中第p'个所述蜜源记作一个4维向量Xp'=(X1p',X2p',X3p',X4p'),每个所述蜜源均为一个时频参数;所述雇佣蜂的数量和观察蜂的数量均为SN’,所生成的每个蜜源均分配给一个雇佣蜂;
其中,p'为正整数且p'=1、2、…、SN’;X1p'的取值范围与步骤201中预先设定的sn的取值范围相同,X2p'的取值范围与步骤201中预先设定的un的取值范围相同,X3p'的取值范围与步骤201中预先设定的vn的取值范围相同,X4p'的取值范围与步骤201中预先设定的wn的取值范围相同;
步骤20322、雇佣蜂邻域搜索:每个雇佣蜂均对其所分配的蜜源进行邻域搜索,如果搜索到的新蜜源的适应度值大于原有蜜源的适应度值,将新蜜源作为雇佣蜂搜索到的待开采蜜源,并将已开采次数置0;否则,将原有蜜源的已开采次数加1;
步骤20323、观察蜂邻域搜索:根据步骤20322中雇佣蜂搜索到的所有蜜源的适应度值,计算得出雇佣蜂搜索到的各蜜源的被选择概率;观察蜂再按照计算得出的各蜜源的被选择概率,从雇佣蜂搜索到的所有蜜源中选择采蜜的蜜源作为新的蜜源;
观察蜂对所选择的蜜源进行邻域搜索,如果搜索到的新蜜源的适应度值大于原有蜜源的适应度值,观察蜂转变为雇佣蜂,将新的蜜源作为搜索到的待开采蜜源,并将已开采次数置0;否则,否则蜜源和雇佣蜂保持不变,将原有蜜源的已开采次数加1;
步骤20324、最优蜜源实时记录:待雇佣蜂邻域搜索与观察蜂邻域搜索结束后,获得此时的最优蜜源并同步记录,所述人工蜂群算法模块的迭代次数加1;
雇佣蜂邻域搜索与观察蜂邻域搜索过程中,若蜜源的已开采次数达到蜜源最大开采次数limit,则观察蜂转变为侦查蜂,再通过侦查蜂生成新的蜜源,并将已开采次数置0;
步骤20322中进行雇佣蜂邻域搜索时和步骤20323中进行观察蜂邻域搜索时,任一个蜜源的适应度值均为该蜜源所对应的Gabor原子与Rn-1(t)的内积。
步骤20324中所获得的最优蜜源为一次迭代过程中获得的最优蜜源,步骤20325中获得的最优蜜源为MC’次迭代过程中所获得的最优蜜源中适应度值最大的最优蜜源。
并且,本发明中采用越界折回处理,雇佣蜂和观察蜂进行邻域搜索,生成新的蜜源后,对新蜜源进行边界检测,若超出上下界,则要对新蜜源进行越界折回操作。对新蜜源进行越界折回操作时,根据蜜源的四个元素的最大值和最小值,对新蜜源的4个元素分别进行越界折回操作。对新蜜源进行边界检测,根据蜜源的四个元素的最大值和最小值,对新蜜源的4个元素分别进行超界判断;并根据超界判断结果对新蜜源的4个元素分别进行越界折回操作,并获得越界折回操作后的蜜源,避免了误搜索现象。
其中,新蜜源对新蜜源的第q个元素进行超界判断时,当时,判断为未超界,无需对进行越界折回操作;当时,判断为超出下界,根据公式获得越界折回操作处理后的当时,判断为超出上界,根据公式获得越界折回操作处理后的
步骤2013中根据步骤2012中雇佣蜂搜索到的所有蜜源的适应度值,计算得出雇佣蜂搜索到的各蜜源的被选择概率时,根据轮盘赌方式计算各蜜源的被选择概率。其中,任一个蜜源的被选择概率均为该蜜源的适应度值与雇佣蜂搜索到的所有蜜源的适应度值之和的比值。步骤2013中观察蜂再按照计算得出的各蜜源的被选择概率,从雇佣蜂搜索到的所有蜜源中选择采蜜的蜜源作为新的蜜源时,选取被选择概率最大的蜜源作为新的蜜源。
相应地,步骤20323中根据步骤20322中雇佣蜂搜索到的所有蜜源的适应度值,计算得出雇佣蜂搜索到的各蜜源的被选择概率时,根据轮盘赌方式计算各蜜源的被选择概率。其中,任一个蜜源的被选择概率均为该蜜源的适应度值与雇佣蜂搜索到的所有蜜源的适应度值之和的比值。步骤20323中观察蜂再按照计算得出的各蜜源的被选择概率,从雇佣蜂搜索到的所有蜜源中选择采蜜的蜜源作为新的蜜源时,选取被选择概率最大的蜜源作为新的蜜源。
步骤2013中进行观察蜂邻域搜索时和步骤20323进行观察蜂邻域搜索时,为了加快搜索速度,搜索方式由随机搜索改为以下搜索方式:判断下一个随机搜索的蜜源的适应度值是否大于此时蜂群中心位置的蜜源的适应度值,当下一个随机搜索的蜜源的适应度值大于此时蜂群中心位置的蜜源的适应度值时,则将下一个随机搜索的蜜源作为新的蜜源;否则,将此时蜂群中心位置的蜜源作为新的蜜源,以提高算法的搜索速度。其中,此时蜂群中心位置的蜜源为此时所搜索到的所有蜜源之和的平均值。
由于随着蜂群搜索次数的增多,距离最优原子也越来越近,为了加快寻优速度并且避免陷入局部最优,则在观察蜂进行搜索时,比较下一搜索位置和蜜蜂中心位置的蜜源浓度(即适应度值),并根据比较结果确定新的蜜源,这样加大了搜索的步长,加快蜜蜂向着最优原子方向而去的速度。
本实施例中,步骤2011中和步骤20321中进行参数初始化时,初始蜂群采用均匀分布方法生成。
原有人工蜂群算法中初始蜂群分布的随机性会造成搜索空间的不确定性,若初始蜂群搜索空间不包含全局最优解,且又不能在有限次的搜索内覆盖到全局最优解的区域,则会造成过早收敛现象。而本发明中初始蜂群采用均匀分布方法生成,因而能有效避免上述过早收敛现象。
本实施例中,步骤2011中进行参数初始化过程中,对SN个蜜源进行生成时,根据公式计算得出SN个蜜源中第p个所述蜜源的第q个元素Xqp,其中q为正整数且q=1、2、3或4;Xqup为蜜源的第q个元素的最大值,Xqlow为蜜源的第q个元素的最小值。
其中,蜜源的第1个元素的最大值为N且其最小值为1,因而X1up=N且X1low=1。蜜源的第2个元素的最大值为N且其最小值为0,因而X2up=N且X2low=0。蜜源的第3个元素的最大值为且其最小值为0,因而且X3low=0。蜜源的第4个元素的最大值为2π且其最小值为0,因而X4up=2π且X4low=0。
本实施例中,步骤2012中雇佣蜂邻域搜索时,通过雇佣蜂在当前蜜源位置附近进行邻域搜索并产生一个新蜜源,新蜜源位置根据公式Xp*=Xp+φp(Xp-Xl)进行确定,其中Xp为当前所搜索的原蜜源,φp为[-1,1]范围内的一个随机数,Xl为一个随机蜜源,Xp*为新蜜源,通过φp限定了新蜜源的范围。
本实施例中,步骤20322中雇佣蜂邻域搜索时,通过雇佣蜂在当前蜜源位置附近进行邻域搜索并产生一个新蜜源,新蜜源位置根据公式Xp'*=Xp'+φp(Xp'*-Xl)进行确定,其中Xp'为当前所搜索的原蜜源,φp为[-1,1]范围内的一个随机数,Xl为一个随机蜜源,Xp'*为新蜜源,通过φp限定了新蜜源的范围。
本实施例中,步骤2034中所述的R'j m(t)根据公式进行计算,其中为此时所述迭代分解最佳原子集合中的第n1个所述最佳匹配原子,n1为正整数且n1=1、2、…、m;an1为与根据此时所述迭代分解最佳原子集合中的前n1-1个所述最佳匹配原子对f(t)进行n1-1次迭代分解后残差量的展开系数;
步骤2036中所述的R”j m(t)根据公式进行计算,其中为此时所述迭代分解最佳原子集合中的第n2个所述最佳匹配原子,n2为正整数且n2=1、2、…、m;an2为与根据此时所述迭代分解最佳原子集合中的前n2-1个所述最佳匹配原子对f(t)进行n2-1次迭代分解后残差量的展开系数。
本实施例中,步骤2033中所述的Rj-1(t)为根据本步骤中进行原子替换判断之前所述迭代分解最佳原子集合中的前j-1个所述最佳匹配原子对f(t)进行j-1次迭代分解后的残差量。
步骤2033中对Rj-1(t)进行计算时,根据本步骤中进行原子替换判断之前所述迭代分解最佳原子集合与进行计算,其中k为正整数且k=1、2、…、j-1,k<j;为本步骤中进行原子替换判断之前所述迭代分解最佳原子集合中的第k个所述最佳匹配原子,ak为与根据本步骤中进行原子替换判断之前所述迭代分解最佳原子集合中的前k-1个所述最佳匹配原子对f(t)进行k-1次迭代分解后残差量的展开系数。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。
Claims (10)
1.一种信号提取方法,其特征在于,该方法包括以下步骤:
步骤一、待处理信号同步存储:采用数据处理设备(2)对待处理信号f(t)进行同步存储;所述待处理信号f(t)为信号采样系统(1)所采集的信号;
其中,f(t)=[f(t1),f(t2),...,f(tN)]T,t表示时间参数,ti为信号采样系统(1)的第i个采样时刻,f(ti)为待处理信号f(t)中第i个采样时刻的信号值,i为正整数且i=1、2、3、…、N,N为待处理信号f(t)的信号长度;
步骤二、待处理信号处理:采用数据处理设备(2)对步骤一中所述待处理信号f(t)进行处理,过程如下:
步骤201、基于寻优算法的信号稀疏分解:采用数据处理设备(2)且调用稀疏分解模块对步骤一中所述待处理信号f(t)进行迭代分解处理,将待处理信号f(t)转换为并获得此时的迭代分解最佳原子集合;此时的所述迭代分解最佳原子集合中包含m个最佳匹配原子,为所述迭代分解最佳原子集合中的第n个所述最佳匹配原子;
式中Rm(t)为待处理信号f(t)经过m次迭代分解后的残差量,其中m为预先设定的迭代分解总次数且m为正整数,n为正整数且n=1、2、…、m;an为第n次迭代分解后的最佳匹配原子与上一次迭代分解后残差量的展开系数;
为第n次迭代分解时采用数据处理设备(2)且调用寻优算法模块找出的最佳匹配原子;为Gabor原子且式中函数ψ(t)为高斯窗函数且rn为的时频参数,rn=(sn,un,vn,wn),sn为尺度参数,un为位移参数,vn为频率参数,wn为相位参数;
本步骤中,寻找最佳匹配原子时,根据预先设定的sn、un、vn和wn的取值范围,采用数据处理设备(2)且调用寻优算法模块,找出使适应度值Fitness(rn)最大的最佳时频参数,所找出的最佳时频参数为时频参数rn;
步骤202、残差量判断:判断||Rm(t)||2是否小于ε:当||Rm(t)||2<ε时,进入步骤204;否则,当||Rm(t)||2≥ε时,进入步骤203;
其中,||Rm(t)||2为步骤201中所述Rm(t)的2-范数,ε为预先设定的残差量判断阈值;
步骤203、最佳匹配原子优化,过程如下:
此时的所述迭代分解最佳原子集合中除所述待优化原子之外的m-1个最佳匹配原子均为待处理原子,m-1个待处理原子组成此时的待处理原子集合;
对最佳匹配原子进行查找时,根据预先设定的sj'、uj'、vj'和wj'的取值范围,采用数据处理设备(2)且调用所述寻优算法模块,找出使适应度值fitness(rj')最大的最佳时频参数,所找出的最佳时频参数为时频参数rj';再根据公式求解出最佳匹配原子
步骤2033、原子替换判断及原子替换:采用数据处理设备(2)且调用残值判断模块、适应度值判断模块或稀疏性判断模块,判断是否需对步骤2031中所述待优化原子进行替换,并根据判断结果对所述待优化原子进行替换;
采用数据处理设备(2)且调用残值判断模块判断是否需对步骤2031中所述待优化原子进行替换时,根据替换后残值||Rj' m(t)||ξ是否小于替换前残值||Rj m(t)||ξ进行判断:当||Rj' m(t)||ξ<||Rj m(t)||ξ时,判断为需对步骤2031中所述待优化原子进行替换,将步骤2031中所述待优化原子替换为步骤2032中所述最佳匹配原子获得更新后的所述迭代分解最佳原子集合;否则,判断为无需对步骤2031中所述待优化原子进行替换,并进入步骤2035;
其中,Rj' m(t)=f(t)-ψj'(t),Rj m(t)=f(t)-ψj(t),ψj(t)为本步骤中进行原子替换判断之前所述迭代分解最佳原子集合中m个最佳匹配原子之和;||Rj' m(t)||ξ表示Rj' m(t)的ξ-范数,||Rj m(t)||ξ表示Rj m(t)的ξ-范数,ξ为常数且0≤ξ≤1;
采用数据处理设备(2)且调用适应度值判断模块判断是否需对步骤2031中所述待优化原子进行替换时,根据替换后适应度值Fitness(rj')是否大于替换前适应度值Fitness(rj)进行判断:当Fitness(rj')>Fitness(rj)时,判断为需对步骤2031中所述待优化原子进行替换,将步骤2031中所述待优化原子替换为步骤2032中所述最佳匹配原子获得更新后的所述迭代分解最佳原子集合;否则,判断为无需对步骤2031中所述待优化原子进行替换,并进入步骤2035;
采用数据处理设备(2)且调用稀疏性判断模块判断是否需对步骤2031中所述待优化原子进行替换时,根据||Rj'||ξ是否小于||Rj||ξ进行判断:当||Rj'||ξ<||Rj||ξ时,判断为需对步骤2031中所述待优化原子进行替换,将步骤2031中所述待优化原子替换为步骤2032中所述最佳匹配原子获得更新后的所述迭代分解最佳原子集合;否则,判断为无需对步骤2031中所述待优化原子进行替换,并进入步骤2035;
本步骤中,完成原子替换判断及原子替换后,完成步骤2031中选取的一个所述最佳匹配原子的优化过程;
步骤2034、残差量判断:对步骤2033中完成一个所述最佳匹配原子优化后的残差量进行判断:当||R′j m(t)||2<ε时,进入步骤204;否则,当||R′j m(t)||2≥ε时,进入步骤2035;
其中,||R′j m(t)||2为R′j m(t)的2-范数;R′j m(t)为根据此时所述迭代分解最佳原子集合中的m个所述最佳匹配原子对f(t)进行m次迭代分解后的残差量;
步骤2035、下一个最佳匹配原子优化:按照步骤2031中至步骤2033中所述的方法,对此时所述迭代分解最佳原子集合中未进行优化的一个所述最佳匹配原子进行优化;
步骤2036、残差量判断:对步骤2035中所述最佳匹配原子优化后的残差量进行判断:当||R″j m(t)||2<ε时,进入步骤204;否则,当||R″j m(t)||2≥ε时,返回步骤2035;
其中,||R″j m(t)||2为R″j m(t)的2-范数;R″j m(t)为根据此时所述迭代分解最佳原子集合中的m个所述最佳匹配原子对f(t)进行m次迭代分解后的残差量;
2.按照权利要求1所述的一种信号提取方法,其特征在于:步骤一中所述待处理信号f(t)与数据处理设备(2)通过有线或无线方式进行连接;所述信号采样系统(1)将所采集的信号f(t)同步传送至数据处理设备(2),并通过数据处理设备(2)进行同步存储;
所述的ti为信号采样系统(1)的第i个采样时刻,f(ti)为信号采样系统(1)的第i个采样时刻采样得到的信号值,i为正整数且i=1、2、3、…、N。
3.按照权利要求1或2所述的一种信号提取方法,其特征在于:步骤201中进行信号稀疏分解后,采用数据处理设备(2)将所述迭代分解最佳原子集合同步存储至数据存储器(3)内,所述数据存储器(3)与数据处理设备(2)连接;
步骤2033中进行原子替换判断及原子替换后,采用数据处理设备(2)对更新后的所述迭代分解最佳原子集合进行同步存储。
5.按照权利要求4所述的一种信号提取方法,其特征在于:步骤203中最佳匹配原子优化时,按照存储先后顺序对所述迭代分解最佳原子集合中的所述最佳匹配原子进行优化;
步骤203中最佳匹配原子优化时,最先进行优化的所述最佳匹配原子为步骤201中所述迭代分解最佳原子集合中的第1个所述最佳匹配原子。
步骤201中进行信号稀疏分解时,采用数据处理设备(2)由先至后找出步骤201中所述迭代分解最佳原子集合中的m个所述最佳匹配原子;
步骤201中所述寻优算法模块为人工蜂群算法模块;
步骤2011、参数初始化:采用数据处理设备(2)设定所述人工蜂群算法模块的最大迭代次数MC、蜜源的数量SN、雇佣蜂的数量、观察蜂的数量和蜜源最大开采次数limit;同时,采用数据处理设备(2)随机生成SN个不同的蜜源,SN个蜜源均为待开采蜜源,所生成的SN个蜜源中第p个所述蜜源记作一个4维向量Xp=(X1p,X2p,X3p,X4p),每个所述蜜源均为一个时频参数;所述雇佣蜂的数量和观察蜂的数量均为SN,所生成的每个蜜源均分配给一个雇佣蜂;
其中,p为正整数且p=1、2、…、SN;X1p的取值范围与步骤201中预先设定的sn的取值范围相同,X2p的取值范围与步骤201中预先设定的un的取值范围相同,X3p的取值范围与步骤201中预先设定的vn的取值范围相同,X4p的取值范围与步骤201中预先设定的wn的取值范围相同;
步骤2012、雇佣蜂邻域搜索:每个雇佣蜂均对其所分配的蜜源进行邻域搜索,如果搜索到的新蜜源的适应度值大于原有蜜源的适应度值,将新蜜源作为雇佣蜂搜索到的待开采蜜源,并将已开采次数置0;否则,将原有蜜源的已开采次数加1;
步骤2013、观察蜂邻域搜索:根据步骤2012中雇佣蜂搜索到的所有蜜源的适应度值,计算得出雇佣蜂搜索到的各蜜源的被选择概率;观察蜂再按照计算得出的各蜜源的被选择概率,从雇佣蜂搜索到的所有蜜源中选择采蜜的蜜源作为新的蜜源;
观察蜂对所选择的蜜源进行邻域搜索,如果搜索到的新蜜源的适应度值大于原有蜜源的适应度值,观察蜂转变为雇佣蜂,将新的蜜源作为搜索到的待开采蜜源,并将已开采次数置0;否则,否则蜜源和雇佣蜂保持不变,将原有蜜源的已开采次数加1;
步骤2014、最优蜜源实时记录:待雇佣蜂邻域搜索与观察蜂邻域搜索结束后,获得此时的最优蜜源并同步记录,所述人工蜂群算法模块的迭代次数加1;
雇佣蜂邻域搜索与观察蜂邻域搜索过程中,若蜜源的已开采次数达到蜜源最大开采次数limit,则观察蜂转变为侦查蜂,再通过侦查蜂生成新的蜜源,并将已开采次数置0;
步骤2012中进行雇佣蜂邻域搜索时和步骤2013中进行观察蜂邻域搜索时,任一个蜜源的适应度值均为该蜜源所对应的Gabor原子与Rn-1(t)的内积。
8.按照权利要求1或2所述的一种信号提取方法,其特征在于:步骤2032中对最佳匹配原子进行查找时,采用数据处理设备(2)且调用所述寻优算法模块查找的时频参数rj',所述寻优算法模块为人工蜂群算法模块,过程如下:
步骤20321、参数初始化:采用数据处理设备(2)设定所述人工蜂群算法模块的最大迭代次数MC’、蜜源的数量SN’、雇佣蜂的数量、观察蜂的数量和蜜源最大开采次数limit’;同时,采用数据处理设备(2)随机生成SN’个不同的蜜源,SN’个蜜源均为待开采蜜源,所生成的SN’个蜜源中第p'个所述蜜源记作一个4维向量Xp'=(X1p',X2p',X3p',X4p'),每个所述蜜源均为一个时频参数;所述雇佣蜂的数量和观察蜂的数量均为SN’,所生成的每个蜜源均分配给一个雇佣蜂;
其中,p'为正整数且p'=1、2、…、SN’;X1p'的取值范围与步骤201中预先设定的sn的取值范围相同,X2p'的取值范围与步骤201中预先设定的un的取值范围相同,X3p'的取值范围与步骤201中预先设定的vn的取值范围相同,X4p'的取值范围与步骤201中预先设定的wn的取值范围相同;
步骤20322、雇佣蜂邻域搜索:每个雇佣蜂均对其所分配的蜜源进行邻域搜索,如果搜索到的新蜜源的适应度值大于原有蜜源的适应度值,将新蜜源作为雇佣蜂搜索到的待开采蜜源,并将已开采次数置0;否则,将原有蜜源的已开采次数加1;
步骤20323、观察蜂邻域搜索:根据步骤20322中雇佣蜂搜索到的所有蜜源的适应度值,计算得出雇佣蜂搜索到的各蜜源的被选择概率;观察蜂再按照计算得出的各蜜源的被选择概率,从雇佣蜂搜索到的所有蜜源中选择采蜜的蜜源作为新的蜜源;
观察蜂对所选择的蜜源进行邻域搜索,如果搜索到的新蜜源的适应度值大于原有蜜源的适应度值,观察蜂转变为雇佣蜂,将新的蜜源作为搜索到的待开采蜜源,并将已开采次数置0;否则,否则蜜源和雇佣蜂保持不变,将原有蜜源的已开采次数加1;
步骤20324、最优蜜源实时记录:待雇佣蜂邻域搜索与观察蜂邻域搜索结束后,获得此时的最优蜜源并同步记录,所述人工蜂群算法模块的迭代次数加1;
雇佣蜂邻域搜索与观察蜂邻域搜索过程中,若蜜源的已开采次数达到蜜源最大开采次数limit,则观察蜂转变为侦查蜂,再通过侦查蜂生成新的蜜源,并将已开采次数置0;
步骤20322中进行雇佣蜂邻域搜索时和步骤20323中进行观察蜂邻域搜索时,任一个蜜源的适应度值均为该蜜源所对应的Gabor原子与Rn-1(t)的内积。
9.按照权利要求1或2所述的一种信号提取方法,其特征在于:步骤2034中所述的R′j m(t)根据公式进行计算,其中为此时所述迭代分解最佳原子集合中的第n1个所述最佳匹配原子,n1为正整数且n1=1、2、…、m;an1为与根据此时所述迭代分解最佳原子集合中的前n1-1个所述最佳匹配原子对f(t)进行n1-1次迭代分解后残差量的展开系数;
10.按照权利要求1或2所述的一种信号提取方法,其特征在于:步骤2033中所述的Rj-1(t)为根据本步骤中进行原子替换判断之前所述迭代分解最佳原子集合中的前j-1个所述最佳匹配原子对f(t)进行j-1次迭代分解后的残差量;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811597293.0A CN109507292B (zh) | 2018-12-26 | 2018-12-26 | 一种信号提取方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811597293.0A CN109507292B (zh) | 2018-12-26 | 2018-12-26 | 一种信号提取方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109507292A CN109507292A (zh) | 2019-03-22 |
CN109507292B true CN109507292B (zh) | 2021-08-06 |
Family
ID=65754718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811597293.0A Active CN109507292B (zh) | 2018-12-26 | 2018-12-26 | 一种信号提取方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109507292B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112861731B (zh) * | 2021-02-09 | 2023-04-18 | 西安科技大学 | 一种基于参数寻优的超声信号去噪方法 |
CN112906632B (zh) * | 2021-03-18 | 2022-11-11 | 中北大学 | 一种高度自适应时延目标信号自动提取方法 |
CN117635924B (zh) * | 2024-01-25 | 2024-05-07 | 南京慧然科技有限公司 | 一种基于自适应知识蒸馏的低能耗目标检测方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103176946A (zh) * | 2013-04-02 | 2013-06-26 | 哈尔滨工业大学 | 一种面向块稀疏信号的稀疏分解去噪方法 |
CN103473451A (zh) * | 2013-09-05 | 2013-12-25 | 江苏大学 | 超声专业字典的构造和使用方法 |
CN105551503A (zh) * | 2015-12-24 | 2016-05-04 | 武汉大学 | 基于原子预选择的音频匹配追踪方法与系统 |
CN108416296A (zh) * | 2018-03-09 | 2018-08-17 | 东北电力大学 | 一种基于改进稀疏分解的超声信号特征获取方法 |
CN108896306A (zh) * | 2018-03-26 | 2018-11-27 | 四川大学 | 基于自适应原子字典omp的轴承故障诊断方法 |
CN108917917A (zh) * | 2018-05-16 | 2018-11-30 | 国网山东省电力公司莱芜供电公司 | 一种基于稀疏分解的断路器机械振动信号去噪方法 |
CN109087367A (zh) * | 2018-07-27 | 2018-12-25 | 西安航空学院 | 一种基于粒子群优化的高光谱图像快速压缩感知重构方法 |
-
2018
- 2018-12-26 CN CN201811597293.0A patent/CN109507292B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103176946A (zh) * | 2013-04-02 | 2013-06-26 | 哈尔滨工业大学 | 一种面向块稀疏信号的稀疏分解去噪方法 |
CN103473451A (zh) * | 2013-09-05 | 2013-12-25 | 江苏大学 | 超声专业字典的构造和使用方法 |
CN105551503A (zh) * | 2015-12-24 | 2016-05-04 | 武汉大学 | 基于原子预选择的音频匹配追踪方法与系统 |
CN108416296A (zh) * | 2018-03-09 | 2018-08-17 | 东北电力大学 | 一种基于改进稀疏分解的超声信号特征获取方法 |
CN108896306A (zh) * | 2018-03-26 | 2018-11-27 | 四川大学 | 基于自适应原子字典omp的轴承故障诊断方法 |
CN108917917A (zh) * | 2018-05-16 | 2018-11-30 | 国网山东省电力公司莱芜供电公司 | 一种基于稀疏分解的断路器机械振动信号去噪方法 |
CN109087367A (zh) * | 2018-07-27 | 2018-12-25 | 西安航空学院 | 一种基于粒子群优化的高光谱图像快速压缩感知重构方法 |
Non-Patent Citations (3)
Title |
---|
An artificial bee colony optimization based matching pursuit approach for ultrasonic echo estimation;Ai Ling Qi et al.;《Ultrasonics》;20180405;第1-5页 * |
信号稀疏分解的人工蜂群-MP算法;侯坤 等;《计算机仿真》;20121130;第249页 * |
采用改进人工蜂群算法实现基于MP的信号稀疏分解;刘继承 等;《通信与信息处理》;20161231;第54-58页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109507292A (zh) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109632973B (zh) | 一种基于多尺度匹配追踪的超声回波信号提取方法 | |
CN109682892B (zh) | 一种基于时频分析的信号去噪方法 | |
CN109507292B (zh) | 一种信号提取方法 | |
CN109507304B (zh) | 一种基于超声探伤的缺陷检测方法 | |
Jin et al. | A novel adaptive EEMD method for switchgear partial discharge signal denoising | |
Bao et al. | Ship classification using nonlinear features of radiated sound: An approach based on empirical mode decomposition | |
Miriyala et al. | Robust detection of ionospheric scintillations using MF-DFA technique | |
CN109632974B (zh) | 一种超声波探伤用回波信号分离方法 | |
Shi-qiao et al. | A hybrid AR-DWT-EMD model for the short-term prediction of nonlinear and non-stationary ship motion | |
Al-Jawarneh et al. | Elastic net regression and empirical mode decomposition for enhancing the accuracy of the model selection | |
Li et al. | A new denoising method based on decomposition mixing of hydro-acoustic signal | |
Zhang et al. | Towards Diverse and Coherent Augmentation for Time-Series Forecasting | |
Zhang et al. | Identification and Suppression of Multi-component Noise in Audio Magnetotelluric based on Convolutional Block Attention Module | |
Liu et al. | Sparse coefficient fast solution algorithm based on the circulant structure of a shift-invariant dictionary and its applications for machine fault diagnosis | |
CN109711333B (zh) | 基于信号区段分割的超声信号接收及处理方法 | |
CN117331047A (zh) | 基于毫米波雷达的人体行为数据分析方法及系统 | |
CN109507291B (zh) | 一种信号预处理方法 | |
Hu et al. | A novel detrended fluctuation analysis method for gear fault diagnosis based on variational mode decomposition | |
Yan et al. | Mutual Information‐Assisted Wavelet Function Selection for Enhanced Rolling Bearing Fault Diagnosis | |
Nan et al. | Detection of jelly orange granulation disease using a dual-input Resnet-Transformer model (DresT) based on acoustic vibration images and a novel acoustic vibration device | |
CN115563480A (zh) | 基于峭度比系数筛选辛几何模态分解的齿轮故障辨识方法 | |
WO2008104483A1 (en) | Automatic procedure for merging tracks and estimating harmonic combs | |
Chen et al. | A novel weakly matching pursuit recovery algorithm and its application | |
Yan et al. | Transient electromagnetic data noise suppression method based on RSA-VMD-DNN | |
Xie et al. | Data-driven parameter estimation of contaminated damped exponentials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |