CN109490881A - Interference SAR measurement of higher degree system and measurement method based on vortex electromagnetic wave - Google Patents
Interference SAR measurement of higher degree system and measurement method based on vortex electromagnetic wave Download PDFInfo
- Publication number
- CN109490881A CN109490881A CN201811390320.7A CN201811390320A CN109490881A CN 109490881 A CN109490881 A CN 109490881A CN 201811390320 A CN201811390320 A CN 201811390320A CN 109490881 A CN109490881 A CN 109490881A
- Authority
- CN
- China
- Prior art keywords
- vortex electromagnetic
- electromagnetic wave
- electromagnetic waves
- vortex
- exp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 22
- 238000000691 measurement method Methods 0.000 title claims abstract description 12
- 238000003384 imaging method Methods 0.000 claims abstract description 23
- 238000012545 processing Methods 0.000 claims abstract description 8
- 230000005540 biological transmission Effects 0.000 claims abstract description 4
- 230000006835 compression Effects 0.000 claims description 9
- 238000007906 compression Methods 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 3
- 238000013508 migration Methods 0.000 claims description 3
- 230000005012 migration Effects 0.000 claims description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 238000002592 echocardiography Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000004148 unit process Methods 0.000 abstract description 3
- 230000002452 interceptive effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000033772 system development Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9021—SAR image post-processing techniques
- G01S13/9023—SAR image post-processing techniques combined with interferometric techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种基于涡旋电磁波的干涉SAR高程测量系统及测量方法,该系统包括:涡旋电磁波天线,具有不同模态;发射通道,控制涡旋电磁波天线发射涡旋电磁波的频率;接收通道,接收涡旋电磁波天线不同模态下发射出的涡旋电磁波对应的回波数据;采集单元,处理接收通道接收到的回波数据并输出测量结果。本方案基于涡旋电磁波SAR成像原理,通过对多模态涡旋电磁波回波进行干涉相位处理反演目标高程信息,从根本上避免了传统InSAR对于基线的依赖,大大降低了系统复杂度以及对飞行平台的要求,有利于干涉SAR高程测量技术的推广应用;同时,本发明从根本上避免了基线去相干等问题,信号相干性更好。
The invention discloses an interferometric SAR elevation measurement system based on a vortex electromagnetic wave and a measurement method. The system includes: a vortex electromagnetic wave antenna with different modes; a transmission channel for controlling the frequency of the vortex electromagnetic wave antenna to transmit the vortex electromagnetic wave; The channel receives the echo data corresponding to the vortex electromagnetic wave emitted by the vortex electromagnetic wave antenna in different modes; the acquisition unit processes the echo data received by the receiving channel and outputs the measurement result. Based on the principle of vortex electromagnetic wave SAR imaging, this scheme inverts the target elevation information by interfering phase processing on the multi-modal vortex electromagnetic wave echoes, which fundamentally avoids the dependence of traditional InSAR on the baseline, greatly reduces the system complexity and The requirements of the flying platform are beneficial to the popularization and application of the interferometric SAR elevation measurement technology; at the same time, the invention fundamentally avoids the problems of baseline decoherence and the like, and the signal coherence is better.
Description
技术领域technical field
本发明属于雷达技术领域,尤其涉及一种基于涡旋电磁波的干涉SAR高程测量系统及测量方法。The invention belongs to the technical field of radar, and in particular relates to an interferometric SAR elevation measurement system and measurement method based on vortex electromagnetic waves.
背景技术Background technique
合成孔径雷达(SAR)因具有全天时、全天候、远距离成像的能力,在侦察、测绘、农林等军用和民用领域得到了广泛应用。目前,生产活动和军事活动对目标三维信息的需求越来越高,准确获得包括高程信息在内的目标三维信息在军事侦察、地形测绘、石油勘探、开山筑路、架设桥梁等方面具有重要价值,然而传统SAR仅能获取距离、方位二维图像,无法获取高程信息,且受到叠掩和透视收缩等影响,传统SAR成像系统已无法完全满足实际应用的要求。干涉合成孔径雷达(InSAR)利用多个接收天线或单个天线多次观测得到的回波数据进行干涉处理,可以估计地面高程信息,具有大面积生成地表高度模型的能力,近年来获得了广泛的应用。Synthetic Aperture Radar (SAR) has been widely used in military and civilian fields such as reconnaissance, surveying and mapping, agriculture and forestry because of its all-weather, all-weather and long-distance imaging capabilities. At present, the demand for 3D information of targets in production activities and military activities is getting higher and higher. Accurately obtaining 3D information of targets including elevation information is of great value in military reconnaissance, terrain mapping, oil exploration, building roads, building bridges, etc. However, traditional SAR can only obtain two-dimensional images of distance and azimuth, but cannot obtain elevation information, and is affected by overlapping and perspective shrinkage, so traditional SAR imaging systems can no longer fully meet the requirements of practical applications. Interferometric Synthetic Aperture Radar (InSAR) uses the echo data obtained by multiple receiving antennas or multiple observations from a single antenna for interferometric processing. It can estimate ground elevation information and has the ability to generate a large area surface height model. It has been widely used in recent years. .
近年来,携带轨道角动量(Orbital Angular Momentum,OAM)的涡旋电磁波受到了国内外学者的广泛关注,涡旋电磁波在无线通信,射电天文学、雷达成像等方面潜力巨大。基于涡旋电磁波的凝视成像可实现目标二维成像,但在凝视成像中雷达与目标相对静止,并没有利用合成孔径技术。而在现有技术中,最主要的技术缺陷还包括:a.InSAR系统实现高程估计需要具备一定长度的干涉基线,基线越长,高程精度越高,但是长基线增加了系统的复杂度同时对飞行平台提出了较高要求,系统研制和使用成本较高,限制了InSAR系统的推广应用;b.InSAR高程估计精度依赖于高质量的干涉相位,而长基线会导致严重的基线去相干问题,影响信号相干性,这是一对难以调和的矛盾,大大限制了InSAR系统高程测量能力的提高。In recent years, vortex electromagnetic waves carrying orbital angular momentum (OAM) have received extensive attention from scholars at home and abroad. Vortex electromagnetic waves have great potential in wireless communications, radio astronomy, and radar imaging. The staring imaging based on vortex electromagnetic wave can realize two-dimensional imaging of the target, but in staring imaging, the radar and the target are relatively stationary, and the synthetic aperture technology is not used. In the prior art, the main technical defects also include: a. InSAR system needs to have an interferometric baseline of a certain length to achieve elevation estimation. The longer the baseline, the higher the elevation accuracy, but the long baseline increases the complexity of the system. The flight platform puts forward higher requirements, and the system development and use costs are high, which limits the popularization and application of the InSAR system; b. InSAR elevation estimation accuracy depends on high-quality interferometric phase, and long baselines will lead to serious baseline decoherence problems. Affecting signal coherence, this is a pair of contradictions that are difficult to reconcile, which greatly limits the improvement of the InSAR system's elevation measurement capability.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供了一种基于涡旋电磁波的干涉SAR高程测量系统及测量方法,以至少部分解决上述问题。In view of this, the present invention provides an interferometric SAR elevation measurement system and measurement method based on vortex electromagnetic waves to at least partially solve the above problems.
本发明提供了一种基于涡旋电磁波的干涉SAR高程测量系统,包括:The present invention provides an interferometric SAR elevation measurement system based on vortex electromagnetic waves, comprising:
涡旋电磁波天线,具有不同模态;Vortex electromagnetic wave antenna with different modes;
发射通道,控制涡旋电磁波天线发射涡旋电磁波的频率;The transmitting channel controls the frequency of the vortex electromagnetic wave antenna to transmit the vortex electromagnetic wave;
接收通道,接收涡旋电磁波天线不同模态下发射出的涡旋电磁波对应的回波数据;The receiving channel receives the echo data corresponding to the vortex electromagnetic wave emitted by the vortex electromagnetic wave antenna in different modes;
采集单元,处理接收通道接收到的回波数据并输出测量结果。The acquisition unit processes the echo data received by the receiving channel and outputs the measurement results.
进一步的,该系统还包括一开关组件,控制系统的运行状态。Further, the system also includes a switch assembly to control the operating state of the system.
进一步的,涡旋电磁波天线为均匀圆阵天线、抛物面天线或超表面材料天线。Further, the vortex electromagnetic wave antenna is a uniform circular array antenna, a parabolic antenna or a metasurface material antenna.
进一步的,发射通道包括频率器和发射机,控制涡旋电磁波天线发射涡旋电磁波的频率。Further, the transmitting channel includes a frequency device and a transmitter, which controls the frequency of the vortex electromagnetic wave antenna to transmit the vortex electromagnetic wave.
进一步的,接收通道可为1个,用来分时接收涡旋电磁波天线不同模态下发射出的涡旋电磁波对应的回波数据。Further, there may be one receiving channel, which is used for time-sharing to receive echo data corresponding to the vortex electromagnetic wave emitted by the vortex electromagnetic wave antenna in different modes.
进一步的,接收通道也可为至少两个,用来同时接收涡旋电磁波天线所有模态下发射出的涡旋电磁波对应的回波数据。Further, there may also be at least two receiving channels for simultaneously receiving echo data corresponding to the vortex electromagnetic waves emitted by the vortex electromagnetic wave antenna in all modes.
本发明还提供了一种基于涡旋电磁波的干涉SAR高程测量方法,包括:The present invention also provides an interferometric SAR elevation measurement method based on vortex electromagnetic waves, comprising:
涡旋电磁波天线向待测目标发射不同模态的涡旋电磁波;The vortex electromagnetic wave antenna transmits vortex electromagnetic waves of different modes to the target to be measured;
涡旋电磁波经待测目标反射后获得对应模态涡旋电磁波的回波数据;After the vortex electromagnetic wave is reflected by the target to be measured, the echo data of the corresponding modal vortex electromagnetic wave is obtained;
利用涡旋电磁波SAR成像;SAR imaging using vortex electromagnetic waves;
计算目标高程信息。Calculate target elevation information.
进一步的,涡旋电磁波天线同时或分时向待测目标发射不同模态的涡旋电磁波。Further, the vortex electromagnetic wave antenna transmits vortex electromagnetic waves of different modes to the target to be measured at the same time or in time division.
进一步的,SAR成像使用RD成像算法或ωK算法。Further, SAR imaging uses the RD imaging algorithm or the ωK algorithm.
进一步的,计算目标高程信息包括:Further, calculating the target elevation information includes:
接收到对应模态涡旋电磁波的回波数据如下:The received echo data of the corresponding modal vortex electromagnetic wave is as follows:
其中tm为方位慢时间,t为快时间,1为涡旋电磁波模态,ωa为方位向包络,ωr为距离向包络,r(tm)为目标斜距,c为真空中光速,Kr为线性调频信号调频率,Jl为一阶贝塞尔函数,对其中相位项和斜距项r(tm)做近似处理后可得:where t m is the azimuth slow time, t is the fast time, 1 is the vortex electromagnetic wave mode, ω a is the azimuth envelope, ω r is the range envelope, r(t m ) is the target slant range, and c is the vacuum medium speed of light, K r is the frequency modulation frequency of the chirp signal, J l is the first-order Bessel function, and the phase term of the After approximation with the slant distance term r(t m ), we can get:
s(tm,t,l)≈Aωa(tm-x0/v)ωr(t-2r(tm)/c)exp{iπKr[t-2r(tm)/c]2}s(t m , t, l)≈Aω a (t m -x 0 /v)ω r (t-2r(t m )/c)exp{iπK r [t-2r(t m )/c] 2 }
exp{-iπKa(tm-x0/v)2}exp{i2lφ+i2lvtm/y0} (2)exp{-iπK a (t m -x 0 /v) 2 }exp{i2lφ+i2lvt m /y 0 } (2)
其中,in,
A=σN2Jl 2[k(tm)asinθ(tm)]exp{ilπ}exp(-i4πR0/λ) (3)A=σN 2 J l 2 [k(t m )asinθ(t m )]exp{ilπ}exp(-i4πR 0 /λ) (3)
A为回波幅度大小,Ka为方位向调频率,R0为参考斜距; A is the echo amplitude, Ka is the azimuth modulation frequency, and R 0 is the reference slope distance;
对回波做距离压缩和距离徙动校正:Perform range compression and range migration correction on the echo:
s(tm,t,l)≈Aωa(tm-x0/v)pr(t-2R0/c)s(t m , t, l)≈Aω a (t m -x 0 /v)p r (t-2R 0 /c)
exp{-iπKa(tm-x0/v)2}exp{i2lφ+i2lvtm/y0} (4)exp{-iπK a (t m -x 0 /v) 2 }exp{i2lφ+i2lvt m /y 0 } (4)
其中pr为距离压缩后包络;where pr is the envelope after distance compression;
以待测目标中心为参考,即y0=R0sinθc,其中θc为场景中心入射角,在方位时域补偿随地距空变的OAM相位项:Taking the center of the target to be measured as a reference, that is, y 0 =R 0 sinθ c , where θ c is the incident angle of the center of the scene, in the azimuth time domain, compensate the OAM phase term that varies with ground distance:
s(tm,t,l)≈Aωa(tm-x0/v)pr(t-2R0/c)s(t m , t, l)≈Aω a (t m -x 0 /v)p r (t-2R 0 /c)
exp{-iπKa(tm-x0/v)2}exp{i2lφ} (5)exp{-iπK a (t m -x 0 /v) 2 }exp{i2lφ} (5)
方位压缩:Azimuth Compression:
将回波相位做干涉处理,反演目标高程信息。Interferometric processing is performed on the echo phase to invert the target elevation information.
本发明具有如下有益效果:The present invention has the following beneficial effects:
a、本方案基于涡旋电磁波SAR成像原理,通过对多模态涡旋电磁波回波进行干涉相位处理反演目标高程信息,其中本发明实施例中双模态涡旋电磁波可采用单一天线相位中心收发,无需干涉基线,从根本上避免了传统InSAR对于基线的依赖,大大降低了系统复杂度以及对飞行平台的要求,有利于干涉SAR高程测量技术的推广应用;a. Based on the principle of vortex electromagnetic wave SAR imaging, this scheme inverts the target elevation information by performing interference phase processing on the echoes of the multi-modal vortex electromagnetic waves. In the embodiment of the present invention, the dual-mode vortex electromagnetic waves can use a single antenna phase center Transceiver, without interference baseline, fundamentally avoids the dependence of traditional InSAR on baseline, greatly reduces system complexity and requirements for flight platform, and is conducive to the popularization and application of interferometric SAR elevation measurement technology;
b、本方案实施例中利用单一天线相位中心及单一收发通道实现双模态涡旋电磁波的收发,从根本上避免了基线去相干等问题,信号相干性更好。b. In the embodiment of this solution, a single antenna phase center and a single transceiver channel are used to realize the transmission and reception of dual-mode vortex electromagnetic waves, which fundamentally avoids problems such as baseline decoherence, and has better signal coherence.
附图说明Description of drawings
图1是本发明实施例基于涡旋电磁波干涉高程测量系统的组成框图;Fig. 1 is the composition block diagram of the embodiment of the present invention based on the vortex electromagnetic wave interference height measurement system;
图2是本发明实施例涉及的高程测量方法流程图;2 is a flowchart of an elevation measurement method involved in an embodiment of the present invention;
图3是本发明实施例涡旋电磁波SAR成像几何模型;3 is a geometric model of vortex electromagnetic wave SAR imaging according to an embodiment of the present invention;
图4是本发明实施例干涉相位结果;Fig. 4 is the interference phase result of the embodiment of the present invention;
图5是本发明实施例目标高程模型。FIG. 5 is a target elevation model according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
本发明针对InSAR高程测量存在的问题,提出了一种基于涡旋电磁波的干涉SAR高程测量系统及测量方法。与传统方法不同,本发明避免了传统InSAR对基线的依赖,通过对多模态涡旋电磁波回波干涉处理获取目标高程信息。Aiming at the problems existing in InSAR elevation measurement, the present invention proposes an interferometric SAR elevation measurement system and measurement method based on vortex electromagnetic waves. Different from the traditional method, the present invention avoids the dependence of the traditional InSAR on the baseline, and obtains the target elevation information through the interference processing of the multi-mode vortex electromagnetic wave echo.
本发明一实施例提供了一种基于涡旋电磁波的干涉SAR高程测量系统,包括:An embodiment of the present invention provides an interferometric SAR elevation measurement system based on vortex electromagnetic waves, including:
涡旋电磁波天线,具有不同模态;Vortex electromagnetic wave antenna with different modes;
发射通道,控制涡旋电磁波天线发射涡旋电磁波的频率;The transmitting channel controls the frequency of the vortex electromagnetic wave antenna to transmit the vortex electromagnetic wave;
接收通道,接收涡旋电磁波天线不同模态下发射出的涡旋电磁波对应的回波数据;The receiving channel receives the echo data corresponding to the vortex electromagnetic wave emitted by the vortex electromagnetic wave antenna in different modes;
采集单元,处理接收通道接收到的回波数据并输出测量结果。The acquisition unit processes the echo data received by the receiving channel and outputs the measurement results.
一些实施例中,该系统还包括一开关组件,控制系统的运行状态。In some embodiments, the system further includes a switch assembly to control the operating state of the system.
一些实施例中,涡旋电磁波天线为均匀圆阵天线、抛物面天线或超表面材料天线。In some embodiments, the vortex electromagnetic wave antenna is a uniform circular array antenna, a parabolic antenna or a metasurface material antenna.
一些实施例中,发射通道包括频率器和发射机,控制涡旋电磁波天线发射涡旋电磁波的频率。In some embodiments, the transmission channel includes a frequency generator and a transmitter, and controls the frequency of the vortex electromagnetic wave antenna to transmit the vortex electromagnetic wave.
一些实施例中,接收通道可为1个,用来分时接收涡旋电磁波天线不同模态下发射出的涡旋电磁波对应的回波数据。In some embodiments, there may be one receiving channel, which is used for time-sharing to receive echo data corresponding to the vortex electromagnetic wave emitted by the vortex electromagnetic wave antenna in different modes.
一些实施例中,接收通道也可为至少两个,用来同时接收涡旋电磁波天线所有模态下发射出的涡旋电磁波对应的回波数据。In some embodiments, there may also be at least two receiving channels for simultaneously receiving echo data corresponding to the vortex electromagnetic waves emitted by the vortex electromagnetic wave antenna in all modes.
请参见图1所示,本发明采用双模态涡旋电磁波作为一具体实施例。整个系统由双模态涡旋电磁波天线、开关组件、发射通道、接收通道、采集单元等组成。在时序控制下,系统分时发射不同涡旋电磁波,经目标反射后获得对应模态涡旋电磁波的回波数据。这样,一个脉冲内获得一种模态回波数据,下一个脉冲内获得另一种模态回波,最终能够获得两种模态的涡旋电磁波回波数据。值得注意的是,本实施例所述系统虽是采用双模态涡旋电磁波且回波分时输出,但进一步,其实也可采取多模态涡旋电磁波,也可用多个接收通道同时获得所有模态的回波数据,方法是相通的,不再赘述。Referring to FIG. 1 , the present invention adopts dual-mode vortex electromagnetic waves as a specific embodiment. The whole system is composed of dual-mode vortex electromagnetic wave antenna, switch components, transmitting channel, receiving channel, acquisition unit and so on. Under the timing control, the system transmits different vortex electromagnetic waves in a time-sharing manner, and the echo data of the corresponding modal vortex electromagnetic waves are obtained after being reflected by the target. In this way, one mode of echo data is obtained in one pulse, and another mode of echo data is obtained in the next pulse, and finally two modes of vortex electromagnetic wave echo data can be obtained. It is worth noting that, although the system described in this embodiment uses dual-mode vortex electromagnetic waves and outputs echoes in time division, further, multi-mode vortex electromagnetic waves can also be used, and multiple receiving channels can be used to obtain all the signals at the same time. The modal echo data, the method is the same, and will not be repeated.
本发明另一实施例提供了一种基于涡旋电磁波的干涉SAR高程测量方法,包括:Another embodiment of the present invention provides an interferometric SAR elevation measurement method based on vortex electromagnetic waves, including:
涡旋电磁波天线向待测目标发射不同模态的涡旋电磁波;The vortex electromagnetic wave antenna transmits vortex electromagnetic waves of different modes to the target to be measured;
涡旋电磁波经待测目标反射后获得对应模态涡旋电磁波的回波数据;After the vortex electromagnetic wave is reflected by the target to be measured, the echo data of the corresponding modal vortex electromagnetic wave is obtained;
利用涡旋电磁波SAR成像;SAR imaging using vortex electromagnetic waves;
计算目标高程信息。Calculate target elevation information.
一些实施例中,涡旋电磁波天线同时或分时向待测目标发射不同模态的涡旋电磁波。In some embodiments, the vortex electromagnetic wave antenna transmits vortex electromagnetic waves of different modes to the target to be measured at the same time or in time division.
一些实施例中,SAR成像使用RD成像算法或ωK算法。In some embodiments, SAR imaging uses the RD imaging algorithm or the ωK algorithm.
一些实施例中,请参照图2,计算目标高程信息包括如下步骤:In some embodiments, referring to FIG. 2 , calculating the target elevation information includes the following steps:
步骤1,本发明发射双模态涡旋电磁波,利用双模态涡旋电磁波SAR成像,则其SAR回波表达式如下:Step 1, the present invention transmits a dual-mode vortex electromagnetic wave, and uses the dual-mode vortex electromagnetic wave SAR imaging, then its SAR echo expression is as follows:
其中tm为方位慢时间,t为快时间,1为涡旋电磁波模态,ωa为方位向包络,ωr为距离向包络,r(tm)为目标斜距,c为真空中光速,Kr为线性调频信号调频率,Jl为一阶贝塞尔函数。对其中相位项和斜距项r(tm)做近似处理后可得:where t m is the azimuth slow time, t is the fast time, 1 is the vortex electromagnetic wave mode, ω a is the azimuth envelope, ω r is the range envelope, r(t m ) is the target slant range, and c is the vacuum In the speed of light, K r is the frequency modulation frequency of the chirp signal, and J l is the first-order Bessel function. for the phase term After approximation with the slant distance term r(t m ), we can get:
s(tm,t,l)≈Aωa(tm-x0/v)ωr(t-2r(tm)/c)exp{iπKr[t-2r(tm)/c]2}s(t m , t, l)≈Aω a (t m -x 0 /v)ω r (t-2r(t m )/c)exp{iπK r [t-2r(t m )/c] 2 }
exp{-iπKa(tm-x0/v)2}exp{i2lφ+i2lvtm/y0} (2)exp{-iπK a (t m -x 0 /v) 2 }exp{i2lφ+i2lvt m /y 0 } (2)
其中,in,
A=σN2Jl 2[k(tm)asinθ(tm)]exp{ilπ}exp(-i4πR0/λ) (3)A=σN 2 J l 2 [k(t m )asinθ(t m )]exp{ilπ}exp(-i4πR 0 /λ) (3)
A为回波幅度大小,Ka为方位向调频率,R0为参考斜距。 A is the echo amplitude, Ka is the azimuth modulation frequency, and R 0 is the reference slant range.
步骤2,对回波做距离压缩和距离徙动校正后可得:Step 2, after performing range compression and range migration correction on the echo, we can obtain:
s(tm,t,l)≈Aωa(tm-x0/v)pr(t-2R0/c)s(t m , t, l)≈Aω a (t m -x 0 /v)p r (t-2R 0 /c)
exp{-iπKa(tm-x0/v)2}exp{i2lφ+i2lvtm/y0} (4)exp{-iπK a (t m -x 0 /v) 2 }exp{i2lφ+i2lvt m /y 0 } (4)
其中pr为距离压缩后包络。where pr is the envelope after distance compression.
步骤3,以场景中心为参考,即y0=R0sinθc,其中θc为场景中心入射角,在方位时域补偿随地距空变的OAM相位项后可得:Step 3, taking the center of the scene as a reference, that is, y 0 =R 0 sinθ c , where θ c is the incident angle of the center of the scene, after compensating the OAM phase term that varies with ground distance in the azimuth time domain, we can obtain:
s(tm,t,l)≈Aωa(tm-x0/v)pr(t-2R0/c)s(t m , t, l)≈Aω a (t m -x 0 /v)p r (t-2R 0 /c)
exp{-iπKa(tm-x0/v)2}exp{i2lφ} (5)exp{-iπK a (t m -x 0 /v) 2 }exp{i2lφ} (5)
步骤4,进行方位压缩后可得二维时域回波表达式:Step 4, after azimuth compression, the two-dimensional time domain echo expression can be obtained:
步骤5,此时目标初始方位角φ与OAM模态1成对偶关系,若将双模态SAR回波相位做干涉处理可解出目标初始方位角φ,根据图3中几何关系可得:Step 5. At this time, the initial azimuth angle φ of the target is in a dual relationship with the OAM mode 1. If the dual-mode SAR echo phase is subjected to interference processing, the initial azimuth angle φ of the target can be solved. According to the geometric relationship in Figure 3, we can obtain:
sinβ=sinθcosφ (7)sinβ=sinθcosφ (7)
其中,β=x0/R0为目标方位位置所对应的方位角,θ为目标初始入射角。Among them, β=x 0 /R 0 is the azimuth angle corresponding to the azimuth position of the target, and θ is the initial incident angle of the target.
根据图3中几何关系可得:According to the geometric relationship in Figure 3, it can be obtained:
h=H-rcosθ (8)h=H-rcosθ (8)
其中H为航高,r为目标初始斜距,最终可得到目标高程信息。Where H is the flight height, r is the initial slope distance of the target, and finally the target elevation information can be obtained.
下面结合仿真数据实验对本发明的效果做进一步的说明。仿真参数如下表所示,并假设在场景中有两个点目标。The effect of the present invention will be further described below in conjunction with the simulation data experiments. The simulation parameters are shown in the table below and assume that there are two point targets in the scene.
图4为干涉相位结果,最后,根据干涉相位和成像几何关系,可得目标高程估计结果如图5所示,两目标高程精度均优于1m,仿真结果初步验证了该方法的有效性。该方法突破了传统InSAR体制,克服了对基线的要求,从而降低对飞行平台的要求;同时避免了基线去相干等问题,信号相干性更好;为后续基于多模态涡旋电磁波SAR三维成像奠定了基础。Figure 4 shows the results of the interference phase. Finally, according to the interference phase and the imaging geometry, the target elevation estimation results are shown in Figure 5. The elevation accuracy of both targets is better than 1m. The simulation results preliminarily verify the effectiveness of the method. This method breaks through the traditional InSAR system, overcomes the requirements for the baseline, thereby reducing the requirements for the flight platform; at the same time, it avoids problems such as baseline decoherence, and the signal coherence is better; for the subsequent three-dimensional imaging based on multi-modal vortex electromagnetic waves Foundation.
本发明基于以上实施例,有以下可替代技术方案:Based on the above embodiment, the present invention has the following alternative technical solutions:
(1)涡旋电磁波收发天线形式上,均匀圆阵天线形式可以用抛物面天线或超表面材料天线形式代替;(1) In the form of the vortex electromagnetic wave transceiver antenna, the uniform circular array antenna form can be replaced by a parabolic antenna or a metasurface material antenna;
(2)在对涡旋电磁波SAR成像过程中RD成像算法可以用ωK算法来代替;(2) The RD imaging algorithm can be replaced by the ωK algorithm in the process of vortex electromagnetic wave SAR imaging;
(3)在涡旋电磁波模态选择上,不限于+1、-1模态,可用任意两种不同模态的涡旋电磁波代替。(3) In the mode selection of vortex electromagnetic wave, it is not limited to +1 and -1 modes, and can be replaced by vortex electromagnetic waves of any two different modes.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above-mentioned specific embodiments are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principle of the present invention, any modifications, equivalent replacements, improvements, etc. made should be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811390320.7A CN109490881A (en) | 2018-11-21 | 2018-11-21 | Interference SAR measurement of higher degree system and measurement method based on vortex electromagnetic wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811390320.7A CN109490881A (en) | 2018-11-21 | 2018-11-21 | Interference SAR measurement of higher degree system and measurement method based on vortex electromagnetic wave |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109490881A true CN109490881A (en) | 2019-03-19 |
Family
ID=65697249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811390320.7A Pending CN109490881A (en) | 2018-11-21 | 2018-11-21 | Interference SAR measurement of higher degree system and measurement method based on vortex electromagnetic wave |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109490881A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110011063A (en) * | 2019-04-11 | 2019-07-12 | 电子科技大学 | Metamaterial lens and method for generating Bessel beams in arbitrary directions based on time reversal |
CN110221293A (en) * | 2019-05-10 | 2019-09-10 | 电子科技大学 | A kind of pitch angle imaging method based on vortex electromagnetic wave |
CN110412571A (en) * | 2019-07-19 | 2019-11-05 | 西安电子科技大学 | 3D Imaging Method of Synthetic Aperture Radar Based on Electromagnetic Vortex |
CN110501707A (en) * | 2019-08-27 | 2019-11-26 | 中国人民解放军国防科技大学 | Electromagnetic vortex imaging method based on orbital angular momentum bimodal multiplexing |
CN111208511A (en) * | 2020-01-15 | 2020-05-29 | 西安电子科技大学 | Super-surface antenna three-dimensional imaging method based on linear frequency modulation signals |
CN112834980A (en) * | 2021-01-08 | 2021-05-25 | 北京理工大学 | A super-resolution direction finding method for vortex electromagnetic waves based on propagation operator |
WO2022117019A1 (en) * | 2020-12-04 | 2022-06-09 | 华为技术有限公司 | Communication method and apparatus, and computer readable storage medium |
CN117849882A (en) * | 2023-12-28 | 2024-04-09 | 山东科技大学 | Submerged oil detection method based on sound vortex technology |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103135098A (en) * | 2013-02-06 | 2013-06-05 | 中国科学院电子学研究所 | High-accuracy interference specific absorption rate (SAR) system performance analysis method |
CN107607952A (en) * | 2017-10-16 | 2018-01-19 | 电子科技大学 | Three-dimensional synthetic aperture radar imaging method based on electromagnetism vortex ripple |
CN107656253A (en) * | 2017-08-25 | 2018-02-02 | 北京航空航天大学 | Electromagnetism vortex Synthetic Aperture Radar Echo emulation mode and device |
-
2018
- 2018-11-21 CN CN201811390320.7A patent/CN109490881A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103135098A (en) * | 2013-02-06 | 2013-06-05 | 中国科学院电子学研究所 | High-accuracy interference specific absorption rate (SAR) system performance analysis method |
CN107656253A (en) * | 2017-08-25 | 2018-02-02 | 北京航空航天大学 | Electromagnetism vortex Synthetic Aperture Radar Echo emulation mode and device |
CN107607952A (en) * | 2017-10-16 | 2018-01-19 | 电子科技大学 | Three-dimensional synthetic aperture radar imaging method based on electromagnetism vortex ripple |
Non-Patent Citations (2)
Title |
---|
刘康等: "涡旋电磁波及其在雷达中应用研究进展", 《电子学报》 * |
李永生等: "基于网络法时序InSAR大气误差校正方法研究", 《大地测量与地球动力学》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110011063B (en) * | 2019-04-11 | 2021-11-02 | 电子科技大学 | A method of generating Bessel beams in arbitrary directions based on time inversion |
CN110011063A (en) * | 2019-04-11 | 2019-07-12 | 电子科技大学 | Metamaterial lens and method for generating Bessel beams in arbitrary directions based on time reversal |
CN110221293A (en) * | 2019-05-10 | 2019-09-10 | 电子科技大学 | A kind of pitch angle imaging method based on vortex electromagnetic wave |
CN110221293B (en) * | 2019-05-10 | 2022-11-08 | 电子科技大学 | Pitching angle imaging method based on vortex electromagnetic waves |
CN110412571A (en) * | 2019-07-19 | 2019-11-05 | 西安电子科技大学 | 3D Imaging Method of Synthetic Aperture Radar Based on Electromagnetic Vortex |
CN110412571B (en) * | 2019-07-19 | 2023-03-14 | 西安电子科技大学 | Synthetic aperture radar three-dimensional imaging method based on electromagnetic vortex wave |
CN110501707A (en) * | 2019-08-27 | 2019-11-26 | 中国人民解放军国防科技大学 | Electromagnetic vortex imaging method based on orbital angular momentum bimodal multiplexing |
CN110501707B (en) * | 2019-08-27 | 2021-07-02 | 中国人民解放军国防科技大学 | Electromagnetic Vortex Imaging Method Based on Orbital Angular Momentum Dual-modal Multiplexing |
CN111208511A (en) * | 2020-01-15 | 2020-05-29 | 西安电子科技大学 | Super-surface antenna three-dimensional imaging method based on linear frequency modulation signals |
CN111208511B (en) * | 2020-01-15 | 2023-07-28 | 西安电子科技大学 | Three-dimensional imaging method of metasurface antenna based on chirp signal |
WO2022117019A1 (en) * | 2020-12-04 | 2022-06-09 | 华为技术有限公司 | Communication method and apparatus, and computer readable storage medium |
CN112834980A (en) * | 2021-01-08 | 2021-05-25 | 北京理工大学 | A super-resolution direction finding method for vortex electromagnetic waves based on propagation operator |
CN112834980B (en) * | 2021-01-08 | 2024-01-26 | 北京理工大学 | Vortex electromagnetic wave super-resolution direction finding method based on propagation operator |
CN117849882A (en) * | 2023-12-28 | 2024-04-09 | 山东科技大学 | Submerged oil detection method based on sound vortex technology |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109490881A (en) | Interference SAR measurement of higher degree system and measurement method based on vortex electromagnetic wave | |
CN110412571B (en) | Synthetic aperture radar three-dimensional imaging method based on electromagnetic vortex wave | |
CN103454637B (en) | Terahertz inverse synthetic aperture radar imaging method based on frequency modulation step frequency | |
CN109633643B (en) | Terahertz ISAR three-dimensional imaging method based on back projection | |
CN109932718B (en) | Multi-rotor unmanned aerial vehicle-mounted circular track all-round-looking SAR (synthetic aperture radar) imaging method | |
CN106291557B (en) | A kind of satellite platform attitude maneuver method for realizing satellite-borne SAR ultrahigh resolution sliding beam bunching mode | |
CN105372657B (en) | Video Composition aperture radar motion compensation imaging method based on echo data | |
CN102778681B (en) | Method for imaging stationary transmitter bistatic foresight synthetic aperture radar (ST-BFSAR) | |
CN112083417B (en) | Distributed radar imaging topology design method based on wavenumber domain splicing | |
CN107728117B (en) | One-transmit and two-receive clutter suppression method for airborne bistatic SAR | |
CN110967692A (en) | Imaging method | |
CN107607952A (en) | Three-dimensional synthetic aperture radar imaging method based on electromagnetism vortex ripple | |
CN108152816A (en) | Real-time SAR imaging systems and imaging method based on multi-core DSP | |
CN104122552B (en) | A Sliding Dual Station Circular Synthetic Aperture Radar Imaging Method | |
CN102004250A (en) | Frequency domain expansion based spaceborne/airborne hybrid bistatic synthetic aperture radar imaging method | |
CN109597076B (en) | Data processing method and device for ground-based synthetic aperture radar | |
CN107271995A (en) | The system sensitivity Optimization Design adjusted based on beam position | |
Liang et al. | A two-step processing method for diving-mode squint SAR imaging with subaperture data | |
CN212845925U (en) | A shipborne SAR system | |
CN103235308B (en) | Forward-looking radar scanning coherent imaging method | |
CN116502476B (en) | A SAR system design method based on nonlinear frequency sweep response | |
CN107728144A (en) | A kind of interference SAR imaging technique based on the biradical pattern of forward sight | |
CN116388797A (en) | Bistatic SAR spatial synchronization method based on radar communication integration | |
RU95860U1 (en) | RADAR MODULE | |
CN108710117A (en) | A kind of synthetic aperture radar clutter cancellation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190319 |
|
RJ01 | Rejection of invention patent application after publication |