CN1094782C - 用流化床反应器进行烃类转化的方法和设备 - Google Patents
用流化床反应器进行烃类转化的方法和设备 Download PDFInfo
- Publication number
- CN1094782C CN1094782C CN97191523A CN97191523A CN1094782C CN 1094782 C CN1094782 C CN 1094782C CN 97191523 A CN97191523 A CN 97191523A CN 97191523 A CN97191523 A CN 97191523A CN 1094782 C CN1094782 C CN 1094782C
- Authority
- CN
- China
- Prior art keywords
- reactor
- gas
- cyclone separator
- riser
- hydrocarbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/14—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
- C10G11/18—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/005—Separating solid material from the gas/liquid stream
- B01J8/0055—Separating solid material from the gas/liquid stream using cyclones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1845—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised
- B01J8/1854—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised followed by a downward movement inside the reactor to form a loop
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/24—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
- B01J8/26—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/32—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
- C07C5/327—Formation of non-aromatic carbon-to-carbon double bonds only
- C07C5/333—Catalytic processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/40—Ethylene production
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S585/00—Chemistry of hydrocarbon compounds
- Y10S585/919—Apparatus considerations
- Y10S585/921—Apparatus considerations using recited apparatus structure
- Y10S585/924—Reactor shape or disposition
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Fertilizers (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明涉及烃类转化方法。根据该方法,气体或液体烃原料被送入一台循环流化床反应器,其中该原料在高温下和在处于液化状态的颗粒物作用下被转化,且被转化的烃产品以气相形式由反应器移去。根据本发明,使用有轴向环形横截面并装有多端口旋风分离器(14、17;52、63)的循环流化床反应器(1-3;41-43),旋风分离器用于将颗粒物由气相反应产品中分离。反应空间包括在两个同心装置的圆筒形和/或圆锥壳层表面之间形成的壳间提升管空间(13;50)。颗粒物由气相反应产品中的分离是由一台装有百叶窗式叶片的多端口旋风分离器来完成。
Description
本发明涉及烃类转化方法,本发明还涉及烃类处理和转化设备。
根据本发明方法,将要加工的气体或液体烃类原料通入用处于流化态下的循环固体颗粒物质进行操作的反应器(后面称做“流化床反应器”),在高温和在能够稳定转化过程能量平衡的流化固体颗粒介质存在下,原料在反应器中进行转化。
通常都将流化床反应器用于烃类的转化过程。在反应器中,利用气态烃的向上气流,将适于热交换和流态化的催化剂或类似的颗粒物保持在流化状态。典型地,利用一种预流化气体如蒸汽或循环产品气产生最小流化流动。在用其流速线速度被调节到接近最小流化流速的介质操作的普通流化床反应器中,颗粒物保留在反应器流化床中,而不是以显著数量和烃物流一起被带出反应器。
反之,如果流速明显高于最小流化流速,流化床的上表面就变得不明确,事实上,形成了一个固体颗粒含量沿垂直方向减少的区域。在足够高的流速下,这种影响导致实际上所有的颗粒物都随同维持流化态的烃物流被带走。于是,必须用旋风分离器将固体颗粒由离开反应器的出口烃物流中分离出来并且直接或经过再生器循环回至反应器底部。这种体系或者叫做循环流化床(CFB),或者类似地,如果在悬浮固体颗粒中发生化学反应时,叫做循环流化床反应器(CFBR)。
在烃类催化裂解技术中使用最普遍的反应器体系之一是FCC装置,它主要包括在快速流化流动状态下操作的提升管(riser tube)(反应器),在稀释悬浮相状态下操作的,将催化剂由反应产物中分离的几台旋风分离器和操作在流化床状态下的大容量再生器。这种FCC装置的例子可由US Pat.No.4,957,617中阐述的实施例为代表。
催化流化床反应器在其它方面的应用实例有
-催化重整,
-邻苯二甲酸酐或马来酸酐的制备,
-甲烷的氧化二聚,
-费-托合成,
-脱氢,
-甲烷、乙烷及类似烷烃的氯化和溴化,和
-甲醇转化为烯烃或汽油。
使用流化床反应器的非催化过程的例子有
-热裂解
-催化剂再生,和
-气化过程。
适宜的物理过程例如
-干燥,
-两种气体间的热交换,和
-吸附。
在以上列举的过程中,特别是催化裂解、脱氢、费-托合成、甲醇转化为烯烃(MTO),和还可能有仍处于实验阶段的甲烷氧化二聚,具有重要的经济价值。
通常的反应环境有某些固有的缺点。例如,通常流化床反应器的反应时间难以控制,而且催化剂/固体颗粒物与反应器结构之间的磨损是一个主要的设备问题。当要求过程控制于短停留时间及高反应温度时,这些问题特别突出。在按放大设计制造的化学反应器中,气体和固体颗粒两者的停留时间都必须保持不变。但是,固体颗粒在较大直径反应器中的停留时间会变长,因为器壁附近的固体颗粒回流量增加。为了克服这一影响,必须加大流速,这就需要更高的反应器来保证气体停留时间不变。
构成过程设备主要部分的分离气体与固体颗粒/催化剂颗粒的设备也受到下面详细讨论的问题的制约:
颗粒物和离开反应器的产品气之间的分离是利用离心力在旋风分离器中进行的。一般,旋风分离器具有单口结构,即它们仅有一个颗粒物悬浮体进口喷咀,实际上,单口旋风分离器的最大直径大约是1m,因此,为满足流通容量的要求,必须将一组旋风分离器并联起来,而且要将2或3组沿气流方向串联起来。
如果一台旋风分离器能够由气流中分离直径小于15μm的微小颗粒,就认为它是有效的。通常,旋风分离器具有盘旋或螺旋式结构。颗粒物悬浮体沿切线方向进入旋风分离器的圆筒部分,典型地当流体在旋风分离器的圆筒和盘旋部分旋转7-9圈后,便在离心力作用下分离出来,形成其继续部分。还有一种轴向旋风分离器,其中流过管道的气体被叶片强制旋转运动,借以将在离心力作用下的固体颗粒推向管壁并在这里由气体中分离出来。最常用的旋风分离器类型是所谓的Zenz旋风分离器,其中各部分的比例是标准化的,可按图和计算公式进行设计。通过增加在旋风分离器中流动圈数,增加入口喷咀处的流速,提高固体颗粒密度,减小入口喷咀孔道的横截面以及降低气体粘度,可提高旋风分离器的分离效率。
在一般单口旋风分离器中,固体颗粒流以均匀的高流速气体悬浮喷射流撞击旋风分离器内壁,其典型流速在第一级旋风分离器中是20-25m/s,在第二级旋风分离器中是大约35m/s,在第三级旋风分离器中是大约40m/s。撞击射流流速必须很高,因为旋风分离器入口喷咀宽度(射流宽度)一般是,例如在标准Zenz旋风分离器中,旋风分离器直径的大约四分之一,而且必须将颗粒物在撞击射流的整个宽度上带到旋风分离器内壁附近以达到分离固体颗粒之目的。在这类旋风分离器中,最易受磨损的地方是受悬浮固体颗粒射流冲击的旋风分离器的内壁区域。
本发明的一个目的是克服现有技术的上述缺点并在一种能提供横向混合(lateral mixing)效率最大的一种新型流化床反应器中实现流态化。本发明的另一目的是提供一种可将反应后的固体颗粒以最快的速度和最高的效率由产物气体中分离反应器结构。
根据本发明,烃类转化在循环流化床反应器中进行,其中反应空间,即反应器流化空间包括在两个同心放置的圆筒之间或同心圆锥之间的轴向环状横截面的壳间空间,典型情况下为液相的原料在该空间是首先蒸发,然后在颗粒物存在和高温下转化为反应产物,该颗粒物可兼有催化剂性能。该原料也可以是气相。反应产物离开反应器后,通常进行蒸馏或用其它方法进行纯化,使之变成有用的镏分。该新型反应器尤其适用于催化裂解和热裂解,脱氢以及甲烷的氧化二聚。
此外,根据本发明,还使用多入口(下文也叫“多端口”(“multiport”))旋风分离器将颗粒物由反应气中分离,该旋风分离器直接安装在轴向环形反应器提升管空间(riser space)之上。这种安排可以缩短反应停留时间,因为多端口旋风分离器比单口旋风分离器能更快、更有效地把颗粒物由反应气流中分离出来。颗粒物可经过固体颗粒回流通道,或下降回流管循环至再生器,该下降回流管由两个同心圆筒之间或同心圆锥之间形成的轴向环形横截面的壳间空间所构成。
更具体地说,根据本发明的方法为一种烃类转化方法,在该方法中
-一种气体或液体烃原料被通入一台循环流化床反应器,其中该
原料在高温下和在保持流化状态的颗粒物作用下进行转化,并且
-转化的烃产品以气相形式由反应器中被移去
其特征在于
-它使用循环流化床反应器(1-3;41-43),该反应器有轴向
环形横截面并装有用于将颗粒物与气相反应产品分离的多入口
旋风分离器(14、17;52、63),所述多入口旋风分离器直接安
装在轴向环形反应器之上。
此外,根据本发明的设备为一种用于在热的流化态颗粒物作用下进行烃转化的反应器,所说反应器包括
-具有至少基本垂直对准的纵轴的反应空间(13;50),
-与所说反应空间(13;50)底部相连的喷咀(8;44),预
流化气可通过该喷咀进入反应器,
-流化分布器底板(12;48),预流化气可通过该底板进入反
应空间,
-与所说反应空间(13;50)相连的第一组进料喷咀(31;
52),通过这些喷咀可将形成流化物流的颗粒物加进预流化气流
中,
-与所说反应空间底部相连的第二组进料喷咀(10;46),要
处理的烃物质可通过这些喷咀加进反应空间以便所说材料在反
应空间(13;50)与所说预流化气和流化颗粒物的向上物流快速
混合并在遍布所说反应空间的高温下进行所说烃物质的转化,
-安装在所说反应空间(13;50)上端的,用来将所说颗粒物
由反应气体中分离的分离设备(14,17;52,63),以及
-用以由反应器中移去产品气的反应气出料喷咀(30;45),
其特征在于
-所说反应空间(13;50)由一个轴向环形横截面的提升管空
间形成,而且
-所说颗粒物分离设备(14;17;52,63)是多端口旋风分
离器。
在本发明叙述过程中,术语“停留时间”是指烃分子由反应器进料点到旋风分离器出口管的平均停留时间,所说时间在0.05-10s之间变化,典型的是0.1-5s之间,术语“高温”是指100-1000℃的温度。该反应器适用于如下过程:催化裂解和热裂解、脱氢、费-托合成、马来酸酐制备、甲烷氧化二聚及其它一些过程。
术语“反应产物”用以表示由以上所说过程得到的产物。因此,反应产物可能包括,例如主要含轻烯烃如丙烯、正丁烯、异丁烯和戊烯的裂解和脱氢产物。
术语“固体颗粒”用以表示在反应空间形成悬浮体的颗粒物。如果反应器是用来进行催化反应,典型的颗粒物包括固体催化剂颗粒。当反应器用于热过程时,颗粒物由用于将热量或物质传入或传出反应空间的惰性粒子所构成。催化剂选择要适应过程要求。因此,催化裂解典型地是使用天然或合成的硅酸铝、沸石和氧化铝。通常的沸石包括沸石X和Y,它们可以被镧系元素稳定化。脱氢过程可以使用例如铬-铝氧化物催化剂。
一般,本发明最适用于需要短停留时间的高温吸热和放热过程。例如催化裂解或热裂解、脱氢、费-托合成、MTO以及甲烷氧化二聚。根据第一优选实施方案,基于本发明的反应器被用于进行催化裂解,其中反应器原料可以是轻粗柴油、重柴油或轻残油,用以生产轻质烯烃和/或汽油。在裂解时,过程温度约为520-650℃,和停留时间在0.5-5s之间。
根据第二优选实施方案,基于本发明的反应器被用于进行热裂解,其中残油或其它重质烃被供料给反应器以便裂解为较轻的烃镏分。该过程的温度是650-1000℃,停留时间在0.2-0.5s之间。
根据第三优选实施方案,反应器被用于含戊烷、异丁烷、正丁烷、丙烷或它们的混合物的原料的脱氢,过程温度为650-750℃,停留时间在0.4-2s之间,目的是制备戊烯、异丁烯、正丁烯、丙烯或它们的混合物。
根据第四优选实施方案,反应器被用于天然气原料中甲烷的氧化二聚,过程温度为800-900℃,停留时间在0.08-0.3s之间。
根据第五优选实施方案,含烃的反应器原料被气化,即,被空气或其它含氧气体部分氧化为合成气,即至少含一氧化碳和氢的气体。部分热氧化发生在1000-1300℃而部分催化氧化发生在700-1000℃,停留时间足以使化学反应基本上达到平衡。为了增加所产合成气中氢的比例并达到热平衡,可将蒸汽追加引入反应。
下面将借助于详细叙述和几个示例性实施方案更仔细地考察本发明,这些实施方案的设备结构参照附图加以说明,其中:
图1是一种设备结构优选实施方案的侧视图,该设备特别适用于催化裂解和热交换过程;和
图2是根据本发明的一种简化反应器实施方案基本结构的侧视图。
适于一般由链烷烃原料在循环床反应器中进行烃类转化的根据本发明的反应器主要包括:在两个同心安装的垂直圆筒或圆锥之间形成的反应空间,从而该反应空间和向下回流管有一个轴向环形横截面。进料喷咀位于该反应空间的底部,液体,有时是气体原料经过该喷咀进入该反应空间。原料喷咀通常是朝上排列的。惰性固体颗粒或催化剂沿着向下的回流管被取出,通过安装在反应器外壳的环形口或者通过多个开在所说反应器外壳上的多个较小开口进到反应器底部,向下的回流管以轴向环状方式环绕着反应器。利用在反应器外壳周围安装的圆筒形物(clylinder)来有效地控制进入反应器的固体颗粒流速,所说圆筒形物(clylinder)的转动或提升能使固体颗粒进口节流。普通阀门也可用来控制由向下回流管返回反应器的固体颗粒流。
在根据本发明的反应器用以进行催化裂解的本发明优选实施方案中,反应器可与另一反应器同心安装。于是,两反应器中的内反应器用作裂解反应器,而外反应器则用作再生器,其中催化剂被再生并加热到要求的温度。催化剂由反应器本身经过轴向环形出口通道,或向下回流管,和通向反应器流化空间的通道转移到再生器。也称做通向反应器催化剂返回通道的向下回流管形成了一个轴向环形横截面空间。
固体颗粒通过其入口进入反应空间并在反应器的轴向环形提升管与向上的预流化气流混合,其中固体颗粒通过轴向环状提升管到达原料入口喷咀的高度。在这里当被粉碎成小滴的液体原料与向上的颗粒物热物流相遇时,原料被汽化并加热到反应温度。固体颗粒流速将会因原料的汽化而增加。当流速大大超过最低流化速度时,固体颗粒将跟着气体流动,但其速度低于气流速度。由安装在反应空间上端的反应器的多端口旋风分离器构成的分离单元完成颗粒物从固体颗粒悬浮物中的分离。固体颗粒由旋风分离器,以再生后,通过围绕反应器提升管的轴向环形向下回流管回到反应器中。反应产品气由旋风分离器的中心管被移去。
具有轴向环形横截面的提升管通道可在例如两个同心旋转圆筒面之间形成,从而外圆筒壳的内表面构成反应空间的外壁,而内圆筒壳的外表面构成反应空间的内壁。因此,由两个同心装配的圆筒壳层构成的基于本发明的反应器结构,导致一种紧凑的,坚固的并且容易安装的反应器结构。
在垂直方向上,反应器提升管空间的轴向环形 横截面可以保持不变,从而使由垂直圆筒或圆锥壳层形成的反应器壁空间在反应器提升管的整个高度上保持不变。也可以使反应器横截面作为高度坐标的函数而加以改变,这一方案可用以影响反应器的流化特征。
必要时,可将反应器提升管空间轴向地分隔成同心的几部分。这种分隔可通过在两个同心圆筒壳层间形成的反应空间中安装附加的同心圆筒状或螺旋形挡板而完成。使用螺旋形挡板时减小挡板的螺角可在给定反应器高度下延长烃类和催化剂在提升管通道中的停留时间。在某些情况下,挡板作为反应器结构的加固件是必须的。另外由一组(例如6-20)沿圆周等距配量轴向平行排列的管子构造反应器提升管空间可得到同样的结果。
由以上讨论显然可知,本发明介绍中所用术语“轴向环形横截面”必须理解为包括所有那些其中构成反应提升管横截面的元件至少基本上是沿轴向环形反应器提升管圆周配置的可能实施方案。反应器轴向横截面不一定是连续圆环形,虽然这一实施方案是有利的。更确切地说,轴向环形反应器提升管包括轴向环形横截面空间其可以是连续的,或者被例如挡板或管子分割成的轴向平行的向上运行的提升管弓形段的。
用作由反应产物流中除去颗粒物的固体颗粒分离单元的多端口旋风分离器与反应器提升管上部相连接。要处理的固体颗粒悬浮物经过一组入口进入旋风分离器室内。入口可以是对称地或非对称地沿着围绕垂直轴的圆相互隔开。将入口对称排列是有利的,因为反应器提升管通道具有轴向环形横截面,这意味着通过提升管通道横截面的流动方式是均匀的。旋风分离器装有叶片,可以产生离心分离所需要的涡流。叶片一般在旋风分离器室的圆周周围排列成圆形,以便形成提供多个平行气体入口的百叶窗。
本发明有很大的优越性。安装在轴向环形反应器提升管上面的多端口旋风分离器在流体动力学及过程工程方面提供了比通常的布置及单口旋风分离器很大的优越性。这时,旋风分离器可有与一般多端口旋风分离器相似的结构,但最有利地使用环形百叶窗式入口,这样可以得到最大比例的容许气体-悬浮固体颗粒流进入的环形入口面积。后面将在本文中阐明由轴向环形横截面提升管和与之相连的多端口旋风分离器两者提供的基于本发明结构的主要优点。
如前所述,在基于本发明的设备中,固体颗粒的横向混合与在通常的管式提升管中相比,可在较短距离内发生。因此,温度和浓度差别很快被均衡,比在管式反应器中更均匀,这是化学流化床反应器的一个重要设计目标。例如,在外径大约1.67m,内径大约1.35m实际大小的轴向环形提升管中,横向混合距离是160mm。相反,同样横截面积(0.76m2)的管式提升管的内径(横向混合距离)为983mm,是环形提升管的6倍。这里,如果希望管式提升管有较短的横向混合距离,必须大大增加反应器的高度。
由于横向混合距离短,可使穿越反应器横截面的原料流动更均匀。由于上述原因,在加料点之前使流动稳定的预流化区被制作的更薄。
还应提到的是,根据本发明的轴向环状提升管可在此管式提升管更小的流速下操作,这样可减少反应器中结构材料的磨损并使设备尺寸的放大更容易,更成功。此外,设备高度可以降低,从而可以缓解与结构设计和热膨胀有关的问题。
根据一个优选的实施方案,基于本发明的设备可包括一台具有在两个同心圆筒壳层之间形成的轴向环形横截面的提升管空间的内反应器和一台环绕的外再生器,其中被污染的催化剂固体颗粒或冷却的传热颗粒物可得到再生以便返回到过程中。很显然,基于本发明的反应空间概念可以应用到各种过程并可以同与上述结构不同的再生器相结合。但是,本文讨论的再生器实施方案特别有利,因为固体颗粒侧向走行的距离大大缩短,甚至一台大再生器相对于其直径可做得很矮,因而只需要较小的支架,再生器的热膨胀问题大大减小,反应器-再生器结构形成一个紧凑,坚固和易于安装的统一体。
借助以下流动设计方法,基于本发明的结构克服了磨损问题:在多端口旋风分离器中,固体颗粒悬浮物流以许多小的固体颗粒射流入射至旋风分离器内表面,而不是以单个强冲击固体颗粒流进入,从而使结构磨损问题变小,变缓和。基于本发明的与反应器连接的旋风分离器高度可减至标准旋风分离器的一半(导致停留时间减半),这是因为新型旋风分离器流动动力学得到改善,使其尺寸可更薄(由于入口窄)。
由于旋风分离器的多端口结构,其入口可以很窄,从而催化剂层变浅,而且入口处的流速大大低于通常的单口旋风分离器,在通常单口旋风分离器中入口宽度的减小需要增加通道的高度,使旋风分离器变高,并使输送通道变长,形状笨重。使用较低的旋风分离器入口流速可进一步降低磨损速度,这一速度依赖于流速的4-5次幂。
在-FCC预分离旋风分离器中的实验表明,气体由提升管顶部至旋风分离器出口的停留时间大约是1.0-2.0s,此后,反应产品在分离容器中在高温下再停留5-40s。一些有价值的化合物在这段时间将会由于化学反应而损失。与此相反,由于催化剂同时由提升管顶部的每个点进入旋风分离器,所以基于本发明的结构提供了可以准确控制的反应时间。必要时,产品可在旋风分离器出口喷咀的出口点立即冷却,不需要分离容器。
由以下实施例显然可以看出多端口旋风分离器可达到比普通旋风分离器大大改善的分离效率:
在于室温下进行的试验中,一个直径为465mm,具有全面积入口和直型叶片的旋风分离器,分离效率在入口流速为5.6m/s当催化剂横截面质量流速大于200kg/m2s时是99.99%。而在一普通的,尺寸和流速相同的Zenz旋风分离器中,按颗粒大小分数计算的分离效率是99.10%。分离效率的这一对比清楚地表明,这种基于本发明具有多个狭窄入口的新型旋风分离器在当设计目的是避免高流速导致磨损时,可提供优异的效率。
由附图可清楚地知道基于本发明设备中使用的结构的详细情况。在以下详细叙述中,循环固体颗粒用略语“CS”表示,作为实施例的过程是使用液态烃为原料的催化裂解。
参照图1,一个基于本发明设备的优选实施方案包括两台同心安装的圆筒形CS反应器,被中间壳层22分割开,在后文中,将把其中里面的叫做“反应器”,外面的叫做“再生器”。
反应器单元由三个同心安装的基本上是圆筒形的管1、2和3制成,其管间空间形成轴向环形横截面空间20、19和13。所需反应在其中的空间13中进行。由例如钢制成的管子以其纵轴同心竖直对准进行安装。在该轴向环形提升管空间13之上,作为管子2和3的延续,安装一台带有固定于外壁的百叶窗叶片14的多端口旋风分离器14、17。旋风分离器装有中心管21,用以移去产品气体,而在内钢管3的内空间提供有输送通道19和20用以移去旋风分离器中由气相分离出的固体颗粒。
在反应器外壳3内侧,再生器单元包括三个同心安装,由例如钢制成的,基本上是圆筒形的管4、5和6,它们的管间空间形成了轴向环形横截面空间29、28和24。催化剂的再生在其中的空间24内进行。压力外壳6内衬绝热材料层7以使外壳温度保持在对壳强度合理的水平。与反应器中类似,在轴向环形空间24之上安装一台多端口旋风分离器25、26,其叶片或者装在圆筒管5上。或者装在压力外壳6上。旋风分离器中装有一根中心管30以移去再生器中形成的烟道气,由钢管5和6提供输送通道28和29以便除去旋风分离器中由气相分离出的固体颗粒。
反应器的流化气流在图中以参考数字8表示。气流8通过流化底板12进入反应空间,在底板12以上首先与通过回流通道20和阀31进入的固体颗粒混合,然后在反应器提升管的较高处与通过进料管16的喷咀17注入的原料流10混合,从而使原料在与热固体颗粒流接触时立即蒸发。混合气流8和10以气相形式沿轴向环形提升管13运动,同时将其夹带的固体颗粒带入反应器旋风分离器的叶片14。固体颗粒将热量释放给提升管13中发生的反应或其它过程以及原料流10的蒸发,因而固体颗粒温度下降。气体和夹带固体颗粒由叶片14沿切线进入内反应器旋风分离器室17的内部,颗粒物在这里通过撞击旋风分离器内壁18并落入固体颗粒输送 通道19和20进行分离。如有必要,可将一部分固体颗粒通过轴向环形通道19溢流送回反应器底部。虽然通道19对该设备的作用并不重要,但在某些情况下对反应操作可能是有利的。在通道20中,固体颗粒以密相滴落,从而阻止了反应器与再生器之间气流通过固体颗粒输送通道20进行混合。进入反应器旋风分离器的气流11通过内部旋风分离器的中心管21排出反应器。由反应器进入再生器的固体颗粒流由装有圆筒形控制元件的阀门31来控制,该控制元件可由杆32进行机械运动。
再生器围绕反应器安装以便将它们用充满密相固体颗粒的输送通道29彼此分离开。与反应器类似,再生器处于两个圆筒形壳层表面之间所保持的壳间空间,壳层表面由设备壳和装在该壳内的反应器管形成。在所说反应器管与反应器所说外圆筒形壳结构之间还安装了一个圆筒形壁以提供所说固体颗粒输送通道29。含氧气流9经过流化分布器23进入再生器并在轴向环形提升管通道24中上升,同时将固体颗粒带入再生器旋风分离器叶片25。可能在固体颗粒表面积累的焦炭和渗透到固体颗粒孔隙的有机化合物在再生器中被氧化,即在提升管通道24中被烧掉,从而将固体颗粒温度提高。再生器旋风分离器室26位于反应器之上。通过撞击旋风分离器壁27,固体颗粒在旋风分离器室26中被分离,并然后落入通道28和29。回流通道29将固体颗粒送回反应器。未能进入回流通道的多余固体颗粒将经过通道28作为溢流落回再生器底部。催化剂或类似颗粒物在内回流通道中通过时保持流化态是有利的,这样可不用控制阀。再生器的烟道气12经过再生器旋风分离器的中心管30被移去。回流通道29中以密相缓慢下滴的固体颗粒避免了反应器和再生器气体空间的连通。由再生器至反应器的固体颗粒流速可通过用连接于阀33上的圆筒形控制元件的杆34机械移动该控制元件加以控制。
现参见图2,其中所示设备包括一台延长的反应器41,其纵轴基本上是垂直对准的。反应器最里部分包含两个同心安装、基本是圆筒形的管42和43,其管间空间形成用作反应器提升管的轴向环形横截面空间50。作为管子42和43的延伸,在轴向环形空间之上安装了一台多端口旋风分离器52,其百页窗式叶片63固定在其外壁上。该旋风分离器装有中心管57,用以移去产品气,而内管43用作由旋风分离器气相分离出来的被污染的催化剂的中间储存室和固体颗粒输送通道54。在外管42和反应器壳41之间形成了轴向环形横截面的回流通道60,用于再生后催化剂的返回。与反应器外壳41底部相连接的有与反应器提升管50相通的预流化器入口喷咀44,与旋风分离器中心管57相通的产品气出料喷咀45,液态烃进料喷咀46,与再生催化剂返回通道相通的催化固体颗粒进料喷咀47,和一个再生烟道气出料喷咀49,由再生器同再生后的催化剂一起带来的气体通过该喷咀被除去。回流通道60的上部还可以连接一个催化剂回流室,例如可以是一台旋风分离器,其中再生后的催化剂由与催化剂一起带来的气体中分离出来并被均匀地再分配到回流通道。被污染的催化剂由输送通道54,经过出料喷咀64进入再生器。
上述反应器用于以如下方式进行裂解:
流化气经喷咀44和流化分布器底板48进入轴向环形横截面的反应器提升管50,其中首先与来自回流通道60经过开口62的再生催化剂混合,然后与经喷咀注入的烃类原料46混合。液体烃原料在与热催化剂接触下立即蒸发。催化剂在提升管50中释放其热量用于液体烃原料的蒸发和裂解反应,从而降低了自身温度。混合气流沿轴向环形提升管50以气相向上流动,从而将催化剂带入反应器旋风分离器的叶片,气体和夹带的催化剂粒子由叶片51以切线方向进入反应器旋风分离器室52,催化剂粒子在这里通过撞击旋风分离器室壁而分离出来并落入被污染的催化剂收集室和输送通道54。被污染催化剂可由输送通道54经出料口64除去并送去再生。如有必要,可将一部分污染的催化剂经由阀门55控制的开口56送回反应器。虽然返回开口56对反应器的作用并非必需的,在某些情况下让部分污染的催化剂返回反应器可加速反应。在输送通道54中,污染的催化剂以密相向下运动,从而避免了反应器气流和再生器气流经过催化剂输送通道54相互连通。气体由反应器旋风分离器经旋风分离器中心管57和喷咀45被移去。由再生器经喷咀47进入反应器的催化剂流沿回流通道60流动。如果催化剂流处于流化状态,带入的气体在催化剂回流室61与催化剂分离。经开口62进入反应器的催化剂流由阀58控制。带有圆筒形控制元件的阀58通过与之相连的杆59进行机械运动。在某些情况下,机械阀可用气动阀代替。
基于本发明的反应器可用于以下反应及其它反应:催化裂解反应 吸热过程温度 520-650℃反应时间 0.5-5s催化剂 一般或最新FCC催化剂原料 轻柴油、重柴油、轻残油产品 轻质烯烃,汽油热裂解反应 吸热过程温度 650-950℃反应时间 0.2-0.5s固体颗粒 惰性颗粒物,可能有催化性能原料 残油、其它含重质烃的原料其中有相当多的挥发
镏份产品 轻质烯烃,汽油、柴油脱氢反应 吸热过程温度 600-750℃(对C4大约650℃,对C3大约700
℃,对C2大约750℃)反应时间 0.4-2s固体颗粒 脱氢催化剂:Cr-Al2O3、V-Ca或V-Zr型原料 异丁烷、正丁烷、丙烷、乙烷产品 异丁烯、丁烯、丙烯、乙烯甲烷氧化二聚反应 放热过程温度 800-900℃反应时间 0.08-0.3s固体颗粒 Zr-La-Sr,La2O3-CaO原料 天然气、氧产品 乙烯气化反应 放热或自热过程温度 1000-1300℃(热部分氧化)
700-1000℃(催化部分氧化)压力 10-40bar(热部分氧化)
1-10bar(催化部分氧化)原料 含烃材料,如天然气、煤、残油和/或生物质产品 含氢和一氧化碳的合成气
Claims (23)
1.一种烃类转化方法,在该方法中
-一种气体或液体烃原料被通入一台循环流化床反应器,其中该
原料在高温下和在保持流化状态的颗粒物作用下进行转化,并且
-转化的烃产品以气相形式由反应器中被移去
其特征在于
-它使用循环流化床反应器(1-3;41-43),该反应器有轴向
环形横截面并装有用于将颗粒物与气相反应产品分离的多入口旋
风分离器(14、17;52、63),所述多入口旋风分离器直接安装
在轴向环形反应器之上。
2.根据权利要求1的方法,其特征在于反应空间包括一个在两个同心放置的圆筒和/或圆锥壳层表面之间形成的壳间提升管空间(13;50)。
3.根据权利要求1的方法,其特征在于所说过程的停留时间是0.05-10s。
4.根据权利要求2的方法,其特征在于所说过程的停留时间是0.05-10s。
5.根据权利要求1-4的任何之一的方法,该方法用于由气相反应产品中分离颗粒物,其特征在于使用一台装有百叶窗式叶片(14;63)的多端口旋风分离器。
6.根据权利要求1-4的任何之一的方法,其特征在于在520-650℃的过程温度下,使用0.5-5s的停留时间,对含轻柴油、重柴油和/或轻残油的原料进行催化裂解,以制备轻烯烃。
7.根据权利要求6的方法,所述轻烯烃是丙烯、丁烯或戊烯和/或汽油。
8.根据权利要求6的方法,其特征在于被污染的催化剂由反应器输送到一台再生器进行再生,和于再生步骤后由再生器回到反应器。
9.根据权利要求8的方法,其特征在于污染的催化剂在另一轴向环形横截面的循环流化床反应器中进行再生,且该反应器与用来转化烃原料的反应器同心安装。
10.根据权利要求1-4任何之一的方法,其特征在于在650-950℃的过程温度下,使用0.2-0.5s的停留时间,对含残油的原料和/或其它含重质烃及一定量挥发馏分的原料进行热裂解,以便制备轻质烃。
11.根据权利要求1-4任何之一的方法,其特征在于在500-750℃的过程温度下,使用0.4-2s的停留时间,对含戊烷、异丁烷、正丁烷、丙烷和/或乙烷的原料进行脱氢反应,以便分别制备戊烯、异丁烯、丁烯、丙烯或乙烯。
12.根据权利要求1-4任何之一的方法,其特征在于在800-900℃过程温度下,使用0.08-0.3s的停留时间,用氧进行天然气的氧化以便使甲烷二聚。
13.根据权利要求1-4任何之一的方法,其特征在于在700-1300℃的过程温度下,对含烃原料进行热气化或催化气化以便制备合成气。
14.一种用于在热的流化态颗粒物作用下进行烃转化的反应器,所说反应器包括
-具有至少基本垂直对准的纵轴的反应空间(13;50),
-与所说反应空间(13;50)底部相连的喷咀(8;44),预
流化气可通过该喷咀进入反应器,
-流化分布器底板(12;48),预流化气可通过该底板进入反
应空间,
-与所说反应空间(13;50)相连的第一组进料喷咀(31;
52),通过这些喷咀可将形成流化物流的颗粒物加进预流化气流
中,
-与所说反应空间底部相连的第二组进料喷咀(10;46),要
处理的烃物质可通过这些喷咀加进反应空间以便所说材料在反
应空间(13;50)与所说预流化气和流化颗粒物的向上物流快速
混合并在遍布所说反应空间的高温下进行所说烃物质的转化,
-安装在所说反应空间(13;50)上端的,用来将所说颗粒物
由反应气体中分离的分离设备(14,17;52,63),以及
-用以由反应器中移去产品气的反应气出料喷咀(30;45),
其特征在于
-所说反应空间(13;50)由一个轴向环形横截面的提升管空
间形成,而且
-所说颗粒物分离设备(14;17;52,63)是多端口旋风分
离器。
15.根据权利要求14的反应器,其特征在于所说轴向环形横截面的提升管空间(13;50)包括一个在两个同心放置的圆筒形和/或圆锥形壳层表面之间形成的壳间提升管空间。
16.根据权利要求14或15的反应器,其特征在于所说提升管空间(13;50)被分割挡板分成平行的流动弓形段。
17.根据权利要求16的反应器,其特征在于所说平行的流动弓形段是由横跨所说两个同心安装的圆筒形壳层表面之间的挡板所形成,挡板基本上或准确地与反应器纵轴平行对准。
18.根据权利要求17的反应器,其特征在于所说挡板沿纵轴或反应器提升管以螺旋形式安装。
19.根据权利要求16的反应器,其特征在于基本为轴向环形横截面的反应器提升管空间由按环形等距分隔的平行管形成。
20.根据权利要求14或15的反应器,其特征在于旋风分离器的叶片(14;63)以环形百叶窗的形式围绕在旋风分离器室(17;52)的周边,部分或完全地处于提升管通道内,以便作为百叶窗能形成多个平行的气流入口通道。
21.根据权利要求14或15的反应器,其特征在于所说旋风分离器(14;17)有一个导向下方的中心管(21)。
22.根据权利要求14或15的反应器,其特征在于借助于环形通道(20)将所说反应器(13)与一个同心环绕所说反应器空间的轴向环形横截面的再生器(24)相连。
23.根据权利要求22的反应器,其特征在于所说轴向环形横截面再生器通道(24)由保持在两个圆筒形或圆锥形壳之间的壳间提升管空间所形成。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI963404A FI101156B (fi) | 1996-08-30 | 1996-08-30 | Kiertomassareaktoriin perustuva menetelmä ja laite hiilivetyjen konver toimiseksi |
FI963404 | 1996-08-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1206356A CN1206356A (zh) | 1999-01-27 |
CN1094782C true CN1094782C (zh) | 2002-11-27 |
Family
ID=8546569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN97191523A Expired - Fee Related CN1094782C (zh) | 1996-08-30 | 1997-09-01 | 用流化床反应器进行烃类转化的方法和设备 |
Country Status (14)
Country | Link |
---|---|
US (1) | US6045688A (zh) |
EP (1) | EP0888174B1 (zh) |
JP (1) | JPH11514700A (zh) |
KR (1) | KR19990067208A (zh) |
CN (1) | CN1094782C (zh) |
AT (1) | ATE207384T1 (zh) |
AU (1) | AU732603B2 (zh) |
CA (1) | CA2235491C (zh) |
DE (1) | DE69707654T2 (zh) |
EA (1) | EA000819B1 (zh) |
ES (1) | ES2162323T3 (zh) |
FI (1) | FI101156B (zh) |
PT (1) | PT888174E (zh) |
WO (1) | WO1998008600A1 (zh) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69636357T2 (de) * | 1995-08-11 | 2007-08-09 | Zenon Environmental Inc., Oakville | Membranmodul mit frei schwingenden Hohlfasermembranen |
FI104561B (fi) * | 1998-02-27 | 2000-02-29 | Fortum Oil And Gas Oy Fortum O | Menetelmä hiilipitoisten lähtöaineiden pyrolysoimiseksi |
SE522657C2 (sv) * | 1999-07-15 | 2004-02-24 | Tps Termiska Processer Ab | Förfarande och reaktorsystem för avskiljande av partiklar från en gas |
US7102050B1 (en) * | 2000-05-04 | 2006-09-05 | Exxonmobil Chemical Patents Inc. | Multiple riser reactor |
US6656347B2 (en) | 2000-09-22 | 2003-12-02 | Engelhard Corporation | Structurally enhanced cracking catalysts |
US6673235B2 (en) | 2000-09-22 | 2004-01-06 | Engelhard Corporation | FCC catalysts for feeds containing nickel and vanadium |
FI119432B (fi) * | 2000-12-19 | 2008-11-14 | Neste Oil Oyj | Menetelmä olefiinien konvertoimiseksi |
US20020132147A1 (en) * | 2001-03-16 | 2002-09-19 | Yong Gao | Chambered reactor for fuel processing |
DE10133991B4 (de) * | 2001-07-12 | 2012-08-02 | Doosan Lentjes Gmbh | Vorrichtung zur Reinigung von Verbrennungsabgasen |
US6696378B2 (en) | 2001-08-31 | 2004-02-24 | Engelhard Corporation | Fluid catalytic cracking catalyst manufacturing process |
US7101473B2 (en) * | 2002-05-31 | 2006-09-05 | Engelhard Corporation | Method of enhancing the activity of FCC catalysts |
US6960325B2 (en) * | 2002-08-22 | 2005-11-01 | Hydrocarbon Technologies | Apparatus for hydrocracking and/or hydrogenating fossil fuels |
US7122160B2 (en) * | 2002-09-24 | 2006-10-17 | Exxonmobil Chemical Patents Inc. | Reactor with multiple risers and consolidated transport |
US20040064007A1 (en) * | 2002-09-30 | 2004-04-01 | Beech James H. | Method and system for regenerating catalyst from a plurality of hydrocarbon conversion apparatuses |
US7083762B2 (en) * | 2002-10-18 | 2006-08-01 | Exxonmobil Chemical Patents Inc. | Multiple riser reactor with centralized catalyst return |
FI118516B (fi) | 2003-03-14 | 2007-12-14 | Neste Oil Oyj | Menetelmä katalyytin valmistamiseksi |
US7256318B2 (en) * | 2003-03-28 | 2007-08-14 | Exxonmobil Chemical Patents Inc. | Regeneration temperature control in a catalytic reaction system |
US6942783B2 (en) * | 2003-05-19 | 2005-09-13 | Engelhard Corporation | Enhanced FCC catalysts for gas oil and resid applications |
US7141231B2 (en) * | 2003-08-11 | 2006-11-28 | Membrane Reactor Technologies Ltd. | Internally circulating fluidized bed membrane reactor system |
US7442739B1 (en) | 2003-11-12 | 2008-10-28 | Henkel Corporation | Hot melt pressure sensitive adhesives |
JP4726240B2 (ja) * | 2004-02-09 | 2011-07-20 | ザ ダウ ケミカル カンパニー | 脱水素された炭化水素化合物の製造方法 |
DE102005041860A1 (de) * | 2005-09-02 | 2007-03-08 | Schering Ag | Nanopartikulärer Einschluss- und Ladungskomplex für pharmazeutische Formulierungen |
JP4852366B2 (ja) * | 2006-07-12 | 2012-01-11 | 財団法人 国際石油交流センター | 気固分離器の設計方法 |
US20080152551A1 (en) * | 2006-12-21 | 2008-06-26 | Senetar John J | Screenless moving bed reactor |
US20080260631A1 (en) | 2007-04-18 | 2008-10-23 | H2Gen Innovations, Inc. | Hydrogen production process |
US7906077B2 (en) * | 2007-12-17 | 2011-03-15 | Uop Llc | FCC process with spent catalyst recycle |
WO2010078298A1 (en) | 2008-12-30 | 2010-07-08 | Greatpoint Energy, Inc. | Processes for preparing a catalyzed coal particulate |
US8092755B2 (en) * | 2009-04-06 | 2012-01-10 | Lummus Technology Inc. | Devices for injection of gaseous streams into a bed of fluidized solids |
US8624074B2 (en) | 2010-03-22 | 2014-01-07 | Uop Llc | Reactor flowscheme for dehydrogenation of propane to propylene |
US9126174B2 (en) * | 2010-03-31 | 2015-09-08 | Uop Llc | Hydroprocessing method, or an apparatus relating thereto |
DE102010018219A1 (de) * | 2010-04-23 | 2011-10-27 | Uhde Gmbh | Vorrichtung und Verfahren zur thermischen Vorbehandlung von festen Einsatzstoffen in einer konzentrisch gestuften Wirbelschicht |
CN102389753B (zh) * | 2011-09-29 | 2014-01-08 | 清华大学 | 吸热反应用双流化床反应器及吸热反应的供热方法 |
CN103721643B (zh) * | 2014-01-10 | 2015-09-23 | 华东理工大学 | 一种z型丁烯氧化脱氢固定床径向反应器 |
JP6187315B2 (ja) * | 2014-02-28 | 2017-08-30 | 三菱マテリアル株式会社 | 流動仮焼炉 |
CN108863703B (zh) * | 2017-05-10 | 2021-11-23 | 中石油吉林化工工程有限公司 | 脱氢系统及其脱除异丁烷脱氢产物中催化剂的方法 |
US10464872B1 (en) | 2018-07-31 | 2019-11-05 | Greatpoint Energy, Inc. | Catalytic gasification to produce methanol |
US10344231B1 (en) | 2018-10-26 | 2019-07-09 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with improved carbon utilization |
US10435637B1 (en) | 2018-12-18 | 2019-10-08 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation |
US10576443B1 (en) * | 2019-02-15 | 2020-03-03 | Uop Llc | Sealing apparatus for a catalyst regenerator |
US10618818B1 (en) | 2019-03-22 | 2020-04-14 | Sure Champion Investment Limited | Catalytic gasification to produce ammonia and urea |
KR20230011380A (ko) | 2020-10-16 | 2023-01-20 | 달리안 인스티튜트 오브 케미컬 피직스, 차이니즈 아카데미 오브 사이언시즈 | 유동상 반응기, 장치 및 응용 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2358497A (en) * | 1943-09-11 | 1944-09-19 | Universal Oil Prod Co | Method of conducting conversion reactions |
US2525925A (en) * | 1946-08-21 | 1950-10-17 | Donald E Marshall | Process utilizing solid carrier particles |
US4341717A (en) * | 1973-03-08 | 1982-07-27 | The Standard Oil Company | Reactor for contacting gases and a particulate solid |
CN1034320A (zh) * | 1987-12-21 | 1989-08-02 | 法国精制和总分配公司 | 流化床催化剂再生的方法和设备 |
US5070822A (en) * | 1990-01-29 | 1991-12-10 | Tampella Power Oy | Combustion unit |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2515155A (en) * | 1941-07-12 | 1950-07-11 | Standard Oil Dev Co | Apparatus for separating solids from gases |
US2514288A (en) * | 1942-12-29 | 1950-07-04 | Standard Oil Dev Co | Method and apparatus for carrying out catalytic reactions |
US2448135A (en) * | 1943-10-25 | 1948-08-31 | Universal Oil Prod Co | Separation of suspended solids from fluids |
US2671796A (en) * | 1948-12-18 | 1954-03-09 | Hydrocarbon Research Inc | Hydrocarbon synthesis and apparatus therefor |
US4152393A (en) * | 1973-03-08 | 1979-05-01 | The Standard Oil Company | Reactor for contacting gases and a particulate solid |
US4957617A (en) * | 1986-09-03 | 1990-09-18 | Mobil Oil Corporation | Fluid catalytic cracking |
-
1996
- 1996-08-30 FI FI963404A patent/FI101156B/fi active
-
1997
- 1997-08-29 US US08/921,384 patent/US6045688A/en not_active Expired - Fee Related
- 1997-09-01 CN CN97191523A patent/CN1094782C/zh not_active Expired - Fee Related
- 1997-09-01 JP JP10511326A patent/JPH11514700A/ja active Pending
- 1997-09-01 ES ES97937611T patent/ES2162323T3/es not_active Expired - Lifetime
- 1997-09-01 EA EA199800415A patent/EA000819B1/ru not_active IP Right Cessation
- 1997-09-01 KR KR1019980703162A patent/KR19990067208A/ko not_active Application Discontinuation
- 1997-09-01 WO PCT/FI1997/000509 patent/WO1998008600A1/en not_active Application Discontinuation
- 1997-09-01 CA CA002235491A patent/CA2235491C/en not_active Expired - Fee Related
- 1997-09-01 DE DE69707654T patent/DE69707654T2/de not_active Expired - Lifetime
- 1997-09-01 AU AU40178/97A patent/AU732603B2/en not_active Ceased
- 1997-09-01 PT PT97937611T patent/PT888174E/pt unknown
- 1997-09-01 AT AT97937611T patent/ATE207384T1/de not_active IP Right Cessation
- 1997-09-01 EP EP97937611A patent/EP0888174B1/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2358497A (en) * | 1943-09-11 | 1944-09-19 | Universal Oil Prod Co | Method of conducting conversion reactions |
US2525925A (en) * | 1946-08-21 | 1950-10-17 | Donald E Marshall | Process utilizing solid carrier particles |
US4341717A (en) * | 1973-03-08 | 1982-07-27 | The Standard Oil Company | Reactor for contacting gases and a particulate solid |
CN1034320A (zh) * | 1987-12-21 | 1989-08-02 | 法国精制和总分配公司 | 流化床催化剂再生的方法和设备 |
US5070822A (en) * | 1990-01-29 | 1991-12-10 | Tampella Power Oy | Combustion unit |
Also Published As
Publication number | Publication date |
---|---|
JPH11514700A (ja) | 1999-12-14 |
EA199800415A1 (ru) | 1998-12-24 |
ATE207384T1 (de) | 2001-11-15 |
WO1998008600A1 (en) | 1998-03-05 |
US6045688A (en) | 2000-04-04 |
FI963404A (fi) | 1998-03-01 |
DE69707654D1 (de) | 2001-11-29 |
ES2162323T3 (es) | 2001-12-16 |
AU4017897A (en) | 1998-03-19 |
CA2235491C (en) | 2006-08-15 |
EP0888174B1 (en) | 2001-10-24 |
CN1206356A (zh) | 1999-01-27 |
PT888174E (pt) | 2002-04-29 |
KR19990067208A (ko) | 1999-08-16 |
FI101156B (fi) | 1998-04-30 |
EP0888174A1 (en) | 1999-01-07 |
FI963404A0 (fi) | 1996-08-30 |
AU732603B2 (en) | 2001-04-26 |
DE69707654T2 (de) | 2002-08-01 |
EA000819B1 (ru) | 2000-04-24 |
CA2235491A1 (en) | 1998-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1094782C (zh) | 用流化床反应器进行烃类转化的方法和设备 | |
US8299314B2 (en) | Method and system for regenerating catalyst from a plurality of hydrocarbon conversion apparatuses | |
EP1235886B1 (en) | Flash-pyrolysis in a cyclone | |
AU747822B2 (en) | Method and assembly for separating solids from gaseous phase | |
US8419835B2 (en) | Apparatuses and methods for gas-solid separations using cyclones | |
US9370783B2 (en) | Apparatuses and methods for gas-solid separations using cyclones | |
CN111807916B (zh) | 一种高效的含氧化合物生产低碳烯烃的装置 | |
US2525925A (en) | Process utilizing solid carrier particles | |
EP1054725B1 (en) | Method and assembly for separating solids from a gaseous phase | |
CN1094781C (zh) | 用于化学和物理过程的循环流化床设备 | |
CN111875464B (zh) | 一种高效的含氧化合物生产低碳烯烃的方法 | |
CN111875465B (zh) | 一种含氧化合物生产低碳烯烃的方法 | |
RU2694840C1 (ru) | Распределители катализатора и транспортного газа для систем циркуляции реактор-регенератор с кипящим слоем | |
CN111871343A (zh) | 一种含氧化合物生产低碳烯烃的装置 | |
CN216630754U (zh) | 流化床反应器 | |
CN113509893A (zh) | 一种高效的含氧化合物生产低碳烯烃的方法 | |
CN113087584A (zh) | 一种含氧化合物生产低碳烯烃的方法 | |
US20240017232A1 (en) | Coupled fluidized beds reactor-regenerator apparatus for catalytic dehydrogenation of propane | |
CN111715154B (zh) | 一种循环流化床反应装置 | |
CN114425248B (zh) | 一种催化器混合器和用于生产低碳烯烃的装置及生产低碳烯烃的方法和应用 | |
CN116920730A (zh) | 一种用于烃类及衍生物催化裂解的螺旋逆流反应器 | |
KR20240090303A (ko) | 플라스틱 열분해를 위한 다수의 유동층 또는 분출층 반응기 | |
CN113509897A (zh) | 一种高效的含氧化合物生产低碳烯烃的装置 | |
CN114130312A (zh) | 流化床反应器 | |
CN113354496A (zh) | 一种含氧化合物生产低碳烯烃的装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20021127 Termination date: 20100901 |