CN109475329A - 基于ts模糊控制的非侵入性医疗分析方法 - Google Patents

基于ts模糊控制的非侵入性医疗分析方法 Download PDF

Info

Publication number
CN109475329A
CN109475329A CN201580077553.XA CN201580077553A CN109475329A CN 109475329 A CN109475329 A CN 109475329A CN 201580077553 A CN201580077553 A CN 201580077553A CN 109475329 A CN109475329 A CN 109475329A
Authority
CN
China
Prior art keywords
blood
present
concentration
glucose
light absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580077553.XA
Other languages
English (en)
Inventor
亚辛·马奈
赛福·阿尔海索尼
阿德南·阿拉马迪
阿尤伯·阿尔左马雅
阿尼斯·阿简贵
穆罕默德·伊萨姆·阿雅里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN109475329A publication Critical patent/CN109475329A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4343Pregnancy and labour monitoring, e.g. for labour onset detection
    • A61B5/4362Assessing foetal parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4845Toxicology, e.g. by detection of alcohol, drug or toxic products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4872Body fat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Artificial Intelligence (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Emergency Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Diabetes (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Toxicology (AREA)

Abstract

本发明涉及一种检测血液中葡萄糖及其他指标的高精度非侵入性的方法。所述方法基于TS模糊模型,以实现血液中每一指标的模型化。所述模型确定每一指标的吸收度,以更精确地检测葡萄糖浓度。所述方法采用蒙特卡洛模拟法,以检测不同组织中光子路径长度。本发明基于TS模糊模型开发了一种改进的蒙特卡洛算法。采用所述方法可确定血液中几种指标的浓度。另一方面,本发明公开了一种检测不同血液指标浓度的新颖的激光二极管。所述二极管通过分解多工方法将入射光分解成多个波长,根据熊朗伯定律确定血液中各指标的浓度。这实现上述目的,本发明采用了两种方法:绝缘体上硅法及光子晶体法。本发明基于上述方法的一种开发了多工器/分解多工器以将入射光分解成系统所需的波长。本发明的第三方面涉及基于TS模糊模型的改进回归方法以更精确地检测血液中葡萄糖水平。所述回归法为线性回归和最小二乘回归。

Description

基于TS模糊控制的非侵入性医疗分析方法
发明背景
本发明领域为生物电子。基于吸收的非侵入式葡萄糖计的缺陷是精度不够,而替代条带仪精度是必需,确保检测结果准确和安全。本发明提供了问题的解决方案。实际上,本发明设计了一种新的二极管:光子晶体二极管,可将光分解成多个波长。因此,可以分配几个二极管来测量对糖尿病的医学分析所需的所有指标的浓度。
此外,可以利用多个波长以实现在血液中的葡萄糖浓度的测量的高精度。
本发明开发了基于模糊逻辑的光吸收的新数学模型,能够根据被吸收的波长的脆弱性以高精度测量血液浓度中各化学元素的比例。
详细说明
利用血液中化学元素的吸收特性,通过指纹进行医学分析,根据熊-朗伯定律来计算血液中这些元素的浓度。实际上,本发明通过光子晶体技术设计了新的光子晶体二极管或绝缘体上硅(绝缘体上硅)能够通过波长分散光。本技术的优点是通过吸收同时测量几种化学元素的浓度。此外,本发明公开了基于模糊逻辑控制的新的吸收数学模型。
所述模型通过使用一系列波长能够以高精度测量血液中的葡萄糖水平。该模型的优点是在降低了错误率的同时可检测血液中的一系列化学元素的和浓度。通过蒙特卡罗仿真确定组织中的光子路径长度实现葡萄糖水平检测的高精度。在所有步骤中采用吸收的模糊逻辑模型。此外,所述模型可确定在计算血液中葡萄糖水平时使用的线性或其它回归函数。
相应地,基于通过本方法自动获得的结果结合医生观察,根据血液中葡萄糖水平和血液中脂肪水平,确定对相关慢性病适当的医疗方案。
附图简要说明
图1示出了基于光子晶体技术或绝缘体上硅的所提出的二极管的原理。可以观察到如何将光分散在一组波长中,血液中的化学成分吸收经过处理的波长。
图1.光子晶体二极管分散光
图2示出了基于新光子晶体二极管的建议的系统检测和允许对血液中的每一成份的控制的所提出的模糊逻辑模型,以便对糖尿病和其他疾病进行中间分析
详细说明
根据熊朗伯定律,通过吸收规律进行中间分析,用于测量血液中化学元素浓度。实际上,本发明公开了一种允许在一组波长中分散入射光的新型光子晶体二极管。相应地,可以通过对每一成份吸收的相应波长进行测量以确定其在血液中的浓度。通过数学方法,本发明公开了基于TS模糊逻辑的吸收模型,以高精度测定血液中各元素的比例。此外,我们可以使用该模型或通过一组波长测量葡萄糖水平。为实现葡萄糖水平检测更高的精度,通过蒙特卡罗仿真确定组织中的光子路径长度。在所有步骤中均采用模糊逻辑模型。此外,本发明采用所述模型确定用于计算葡萄糖水平的线性或其它回归函数。

Claims (12)

1.一种基于TS模糊逻辑的吸收模型以根据熊朗伯定律实现高精度检测及控制血液中葡萄糖水平和其他成份的非侵入性仪器。
2.一种基于光子晶体技术或绝缘体上硅的新二极管,实现将光分散到一系列波长,以控制血液中各成份的吸收。
3.一种吸收的数学模型,以实现高精度地检测血液中各成份的水平,所述检测结果用于糖尿病和其他疾病的中间分析。所述模型通过一系列的波长测量血液中的葡萄糖水平。本方法的优点是采用非侵入性技术能高精度地检测葡萄糖水平或其他成份。此外,本发明可同时检测血液中几种成份。
4.一种采用蒙特卡洛仿真法检测组织内光子路径长度的方法。所述TS模糊模型可确定路径长度。
5.一种采用吸收技术通过指纹实现血液中基本和其他成份比例的必需检测和认定的方法。
6.一种基于上述方法的检测成份吸收并从而确定适当治疗方案的电子医生系统。
7.一种通过光吸收技术检测感染性疾病的方法。
8.一种通过光吸收技术检测血液中葡萄糖和脂肪水平的方法。
9.一种通过光吸收技术检测夫妻之间基因连接并通过性别兼容性在婚前确定婴儿可能出现的主要特征。
10.一种通过光吸收技术检测胎儿的方法。
11.一种通过光吸收技术进行孕期检测的方法。
12.一种通过光吸收技术发现注射毒品的方法。
CN201580077553.XA 2015-01-07 2015-01-07 基于ts模糊控制的非侵入性医疗分析方法 Pending CN109475329A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2015/050124 WO2016110745A1 (en) 2015-01-07 2015-01-07 Non-invasive medical analysis based on ts fuzzy control

Publications (1)

Publication Number Publication Date
CN109475329A true CN109475329A (zh) 2019-03-15

Family

ID=52462969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580077553.XA Pending CN109475329A (zh) 2015-01-07 2015-01-07 基于ts模糊控制的非侵入性医疗分析方法

Country Status (3)

Country Link
US (1) US20170340291A1 (zh)
CN (1) CN109475329A (zh)
WO (1) WO2016110745A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106297516A (zh) * 2016-09-28 2017-01-04 深圳先进技术研究院 一种血脂检测建模方法及装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5553616A (en) * 1993-11-30 1996-09-10 Florida Institute Of Technology Determination of concentrations of biological substances using raman spectroscopy and artificial neural network discriminator
CN1504765A (zh) * 2002-11-29 2004-06-16 Lg电子株式会社 光发射模块、光检测模块、光学拾取设备及其制造方法
CN1537333A (zh) * 2000-10-03 2004-10-13 国际商业机器公司 绝缘体上外延硅(soi)沟槽光电二极管及其形成方法
CN101002082A (zh) * 2004-07-27 2007-07-18 帕瑞萨森思公司 用于测量由样本在光信号中引起的相位偏移的方法和设备
CN101057132A (zh) * 2004-11-04 2007-10-17 Meso光子学有限公司 用于增强的拉曼光谱学的金属纳米孔光子晶体
CN101286187A (zh) * 2008-06-10 2008-10-15 华中科技大学 光在生物组织中传输特性的定量蒙特卡罗模拟方法
CN101677766A (zh) * 2007-03-12 2010-03-24 雷迪奥米特巴塞尔股份公司 传感器系统以及和传感器系统使用的采样单元组件
CN102349834A (zh) * 2011-06-20 2012-02-15 深圳职业技术学院 人体血糖浓度无创检测方法及其系统
CN102498583A (zh) * 2009-06-15 2012-06-13 茨瓦内科技大学 特定波长的硅光发射结构
CN102722753A (zh) * 2012-06-01 2012-10-10 江南大学 一种具有类人学习能力的tsk模糊系统建模方法
CN103201677A (zh) * 2010-09-14 2013-07-10 丹麦科技大学 具有波长转换器的激光器系统
CN103278556A (zh) * 2013-05-08 2013-09-04 中国科学院化学研究所 光子晶体材料在质谱分析检测中的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222496A (en) * 1990-02-02 1993-06-29 Angiomedics Ii, Inc. Infrared glucose sensor
EP3858651A1 (en) * 2011-08-29 2021-08-04 Automotive Coalition for Traffic Safety, Inc. System for non-invasive measurement of an analyte in a vehicle driver

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5553616A (en) * 1993-11-30 1996-09-10 Florida Institute Of Technology Determination of concentrations of biological substances using raman spectroscopy and artificial neural network discriminator
CN1537333A (zh) * 2000-10-03 2004-10-13 国际商业机器公司 绝缘体上外延硅(soi)沟槽光电二极管及其形成方法
CN1504765A (zh) * 2002-11-29 2004-06-16 Lg电子株式会社 光发射模块、光检测模块、光学拾取设备及其制造方法
CN101002082A (zh) * 2004-07-27 2007-07-18 帕瑞萨森思公司 用于测量由样本在光信号中引起的相位偏移的方法和设备
CN101057132A (zh) * 2004-11-04 2007-10-17 Meso光子学有限公司 用于增强的拉曼光谱学的金属纳米孔光子晶体
CN101677766A (zh) * 2007-03-12 2010-03-24 雷迪奥米特巴塞尔股份公司 传感器系统以及和传感器系统使用的采样单元组件
CN101286187A (zh) * 2008-06-10 2008-10-15 华中科技大学 光在生物组织中传输特性的定量蒙特卡罗模拟方法
CN102498583A (zh) * 2009-06-15 2012-06-13 茨瓦内科技大学 特定波长的硅光发射结构
CN103201677A (zh) * 2010-09-14 2013-07-10 丹麦科技大学 具有波长转换器的激光器系统
CN102349834A (zh) * 2011-06-20 2012-02-15 深圳职业技术学院 人体血糖浓度无创检测方法及其系统
CN102722753A (zh) * 2012-06-01 2012-10-10 江南大学 一种具有类人学习能力的tsk模糊系统建模方法
CN103278556A (zh) * 2013-05-08 2013-09-04 中国科学院化学研究所 光子晶体材料在质谱分析检测中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALEXEEV, VLADIMIR L ET AL.: "Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid", 《CLINICAL CHEMISTRY》 *

Also Published As

Publication number Publication date
WO2016110745A1 (en) 2016-07-14
US20170340291A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
Steinbrink et al. Determining changes in NIR absorption using a layered model of the human head
Kanick et al. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth
EP2460470A1 (en) Device for estimating blood sugar level
CN101981422B (zh) 介质温度的非侵入式光学确定方法
Duadi et al. Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study
Sircan-Kucuksayan et al. Diffuse reflectance spectroscopy for the measurement of tissue oxygen saturation
CN101612034A (zh) 重构混浊介质光学参数的时间分辨测量系统及方法
US20120253149A1 (en) Method and apparatus for non-invasive photometric blood constituent diagnosis
He et al. Spectral data quality assessment based on variability analysis: application to noninvasive hemoglobin measurement by dynamic spectrum
CN103282765A (zh) 用于关联的组织的光学分析的设备
CN109475329A (zh) 基于ts模糊控制的非侵入性医疗分析方法
Kleshnin et al. Evaluation of oxygenation in the surface layers of biological tissues based on diffuse optical spectroscopy with automated calibration of measurements
Rogatkin et al. Metrological support of methods and devices for noninvasive medical spectrophotometry
JP2003050200A (ja) 光学的成分測定方法および装置
WO2011068998A2 (en) Systems and methods for determining hemoglobin concentration utilizing diffuse reflectance at isosbestic wavelengths
US20210000397A1 (en) Method and apparatus for non-invasive photometric blood constituent diagnosis
Seong et al. Simultaneous blood flow and oxygenation measurements using an off-the-shelf spectrometer
Lee et al. Small separation frequency-domain near-infrared spectroscopy for the recovery of tissue optical properties at millimeter depths
JP2004138454A (ja) 光学的散乱特性推定方法および装置
Surkova et al. Low-cost optical sensor for real-time blood loss monitoring during transurethral surgery
Dong et al. Simultaneously fitting multiple parameters from one single autocorrelation function in diffuse correlation spectroscopy
Wegerich et al. An in vitro laboratory investigation on layer thickness-independent prediction of the hemoglobin concentration
Gunther et al. Combination of diffuse reflectance and transmittance
Youn Characterization of Diffuse Optical Tomography Scans using NIRFAST
Phillips et al. Simulation Studies for Noninvasive Optical Measurements of Blood-Scattering Changes in a Skin Model with a Large Blood Vessel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190315