CN109471411B - 综合能效监控方法 - Google Patents

综合能效监控方法 Download PDF

Info

Publication number
CN109471411B
CN109471411B CN201811065204.8A CN201811065204A CN109471411B CN 109471411 B CN109471411 B CN 109471411B CN 201811065204 A CN201811065204 A CN 201811065204A CN 109471411 B CN109471411 B CN 109471411B
Authority
CN
China
Prior art keywords
energy efficiency
target
transformer
motor
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811065204.8A
Other languages
English (en)
Other versions
CN109471411A (zh
Inventor
钱伟杰
郑伟军
刘维亮
倪瞬
姜维
周浩
俞涯
赵俊
施海峰
冯振宇
顾曦华
陈冰晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Zhejiang Electric Power Co Ltd
Jiaxing Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Haining Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Original Assignee
State Grid Zhejiang Electric Power Co Ltd
Jiaxing Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Haining Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Zhejiang Electric Power Co Ltd, Jiaxing Power Supply Co of State Grid Zhejiang Electric Power Co Ltd, Haining Power Supply Co of State Grid Zhejiang Electric Power Co Ltd filed Critical State Grid Zhejiang Electric Power Co Ltd
Priority to CN201811065204.8A priority Critical patent/CN109471411B/zh
Publication of CN109471411A publication Critical patent/CN109471411A/zh
Application granted granted Critical
Publication of CN109471411B publication Critical patent/CN109471411B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32252Scheduling production, machining, job shop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

本发明涉及一种综合能效监控方法,解决了现有技术的不足,技术方案为:包括以下步骤:步骤一,获取各个运行设备的运行参数,步骤二,计算目标设备的能效数据,步骤三,对目标设备的能效数据进行分析,判断得出目标设备是否需要改进。在步骤一中对各个设备的相关性进行设定,在步骤二中,还对具有相关性的目标设备进行隶属度换算,在步骤三中,对具有相关性的目标设备的能效数据进行整合后进行分析,判断得出具有相关性的目标设备是否需要改进。

Description

综合能效监控方法
技术领域
本发明涉及一种能效监控方法,具体涉及一种综合能效监控方法。
背景技术
我国制定节约能源发展战略。在我国,能源资源供需紧张已成为制约国家经济发展的主要问题。国家开始实施节约与开发并举、把节约放在首位的能源发展战略。浙江省是一次能源严重缺乏的省份,节能和可再生能源工作对于浙江省经济和社会发展具有十分重要的意义。为了响应国家政策,浙江省政府迈出了先行步伐,采取加强节能法规建设、加大节能技术改造力度、积极推广节能新产品、新设备等措施,深化节能减排工作。因此需要开发一种能效控制平台及其控制方法,实现对城市用电数据的采集、监测、分析、挖掘,使政府能及时了解电能供应、配送及用电情况,掌握电能消耗情况与用电趋势等,对整个城市能源能够进行合理的管理与调配,实现合理用电,降低用能成本,同时为能源政策制定、节能减排指标管理及宏观经济运行分析提供决策支持;通过延伸到用户内部的广覆盖、细粒度的数据采集网络,实时掌握用户用能情况,实现电网与用户间耗能数据的在线互动,使电力公司调控城市区域负荷,优化城市负荷曲线,实现削峰填谷,减少设备维护频率,保障电网稳定经济运行,促进城市经济发展,实现节能降耗,响应国家能源战略要求。
发明内容
本发明的目的在于解决上述现有技术缺少一种综合能效监控方法的问题,提供一种综合能效监控方法。
本发明解决其技术问题所采用的技术方案是:一种综合能效监控方法,包括以下步骤:
步骤一,获取各个运行设备的运行参数,
步骤二,计算目标设备的能效数据,
步骤三,对目标设备的能效数据进行分析,判断得出目标设备是否需要改进。
作为优选,在步骤一中对各个设备的相关性进行设定,在步骤二中,还对具有相关性的目标设备进行隶属度换算,在步骤三中,对具有相关性的目标设备的能效数据进行整合后进行分析,判断得出具有相关性的目标设备是否需要改进。本发明采用了相关的加隶属度综合的方式来判断设备能效的优劣,杜绝了单独设备单独对比的情况,综合考虑了生产实际,能够根据能效隶属度综合判定整体设备及其相关设备的能效综合情况。
作为优选,在步骤一中,针对具有相关性的目标设备构建一个秩为n的矩阵方阵f(h/t),f(h/t)的相关性函数如下:
f(h/t)=f(h/t)/max[f(h/t),f(t/h)],h,t=1,2,....,n.;
f(h/t)表示目标设备h被目标设备t的支持程度,h,t=1,2,....,n;
通过以下公式计算各个目标设备被其他具有相关性的设备之间相关的程度:
Figure BDA0001797622950000021
其中,
Figure BDA0001797622950000022
表示第h个目标设备被其他目标设备相关的程度;
在步骤二中,根据目标设备的种类建立对应的能效隶属度函数,将经过能效数据进行分析后的目标设备的能效数据代入能效隶属度函数,根据能效隶属度函数的计算结果获得能效隶属度,计算所有与目标设备具有相关性设备的能效隶属度,并与目标设备相关的程度相乘,获得能效分析值E,在步骤三中,若能效分析值E小于设定值则判断为需要改进。
本发明中,针对每个不同的设备确定有一个用于对比能效分析指E的设定值,这个设定值由人工设定,一般大于1,也就是在考虑当前设备的能效时,综合考虑多个相关设备的能效,即使当前设备的能效并不是最理想的,但是综合多个具有相关性的能效设备后,依然能够在整体上获得较优的能效数据,则认为此设备的能效数据是合理的,但是如果此能效设备虽然自身单独检测具有较好的运行效率,无需改进,但是涉及到相关设备的时候会影响到相关设备的能效,则需要在改进时依然对其进行整改;杜绝了单独设备单独对比的情况,综合考虑了生产实际,能够根据能效隶属度综合判定整体设备及其相关设备的能效综合情况。
作为优选,在步骤一中,所述运行设备包括变压器、电动机、电加热设备和/或空调制冷设备。
作为优选,在目标设备为变压器时,
在步骤一中,获得目标变压器的实测运行数据和铭牌数据,
在步骤二中,执行以下变压器能效计算子步骤:
变压器能效计算子步骤一,计算获得变压器日均负载率β(%);
变压器能效计算子步骤二,根据日变压器投入运行的工作时间T、变压器的空载损耗Po、变压器的负载损耗PN和额定容量SN通过以下计算公式:
ΔAp=(Po2PN)T
计算得出变压器日均有功电能损耗ΔAp
变压器能效计算子步骤三,根据变压器日均有功电能损耗ΔAp和变压器日的输出电量AZ,通过以下计算公式:
Figure BDA0001797622950000041
计算得出变压器实际运行效率ηd
变压器能效计算子步骤三,计算压器的最佳负荷率
Figure BDA0001797622950000042
和变压器的最大效率
Figure BDA0001797622950000043
在步骤三中,以
Figure BDA0001797622950000044
时判断为目标变压器的能效隶属度为1;
若在设定时长内变压器的负载率均低于30%,则判断为需要改用符合
Figure BDA0001797622950000045
的计算结果的变压器,上式中S为实际使用负荷;
若变压器的运行效率
Figure BDA0001797622950000046
时,则以能效隶属度
Figure BDA0001797622950000047
作为目标变压器的能效隶属度。
作为优选,在目标设备为电动机时,
在步骤一中,获得目标电动机的实测运行数据和铭牌数据,
在步骤二中,执行以下电动机能效计算子步骤:
电动机能效计算子步骤一,根据获取的实测电动机的输入线电流I1、实测电动机的输入线电压U、电动机的额定电流IN、电动机的额定电压UN、电动机的额定效率ηN、电动机的空载有功损耗PO和电动机的额定空载电流ION通过以下计算公式:
Figure BDA0001797622950000051
计算得出电动机运行负载率β,上式中,IO为电动机输入线电压为非额定值时的空载电流,IO的计算公式如下:
Figure BDA0001797622950000052
电动机能效计算子步骤二,通过以下计算公式:
Figure BDA0001797622950000053
计算得出电动机运行效率ηc
在步骤三中,若β位于60%~80%之间,则判断目标电动机的能效隶属度为1,ηc≥0.6时,则判断为目标电动机的能效隶属度e为1,
目标电动机的能效隶属度e根据以下公式计算得出:
e=1/(1+g(0.6-ηc)k),g和k由人工设定。
作为优选,在目标设备为电加热设备时,
在步骤一中,获得目标电加热设备的实测运行数据和铭牌数据,
在步骤二中,执行以下电加热设备能效计算子步骤:
电加热设备能效计算子步骤一:根据获取的实际生产耗电量W和产品的实际质量mi通过以下计算公式:
Figure BDA0001797622950000061
计算测试周期内的合格产品的可比用电单耗bk,上式中,M2--测试周期的总折合质量,i=1,2,3,....,n,为产品或工件品种,K1为产品或工件单件质量折算系数,K2为产品或工件类别折算系数,K3为热处理温度折算系数,K4为热处理工艺折算系数;
电加热设备能效计算子步骤二:用温度测量仪表测量电炉最高工作温度下的热稳定状态时炉体外表面任意测量点的温度与特定环境温度之差Δθ;
在步骤三中,若bk≤0.600kwh/kg且Δθ符合设定值,则目标电加热设备的隶属度为1,否则目标电加热设备的能效隶属度e由以下计算式计算得出:
e=1/(1+c(bk-0.6)d),上式中,c和d由人工设定。
作为优选,所述的单价质量折算系数符合以下要求,
单件产品或工件质量>0.3kg/件时,K1=1.0,
单件产品或工件质量<0.1kg/件时,K1=1.5,
单件产品或工件质量≥0.1kg/件且≤0.3kg/件时,K1=1.2;
产品或工件类别折算系数符合以下要求,
当产品或工件类别为工模具类时,K2=1.2,否则K2=1.0;
热处理温度折算系数符合以下要求,
热处理温度>1000℃时,K3=1.5,
热处理温度≥700℃且≤1000℃时,K3=1.0,
热处理温度≥500℃且<700℃时,K3=0.7,
热处理温度≥350℃且<500℃时,K3=0.5,
热处理温度<350℃时,K3=0.3;
热处理工艺折算系数符合以下要求,
渗碳渗氮的折算系数K4=2.0,
盐浴工艺的折算系数K4=1.5,
铝合金淬火工艺的折算系数K4=1.1,
钢材淬火工艺的折算系数K4=1.1,
退火保温工艺的时间>20h时的折算系数K4=1.7,
退火保温工艺的时间10~20h时的折算系数K4=1.3,
正火工艺或退火保温工艺的时间<10h时折算系数K4=1.0。
作为优选,在目标设备为空调制冷设备时,
在步骤一中,获得目标空调制冷设备的实测运行数据和铭牌数据,
在步骤二中,执行以下空调制冷设备能效计算子步骤:
空调制冷设备能效计算子步骤一,根据获取的空调制冷设备运行时间T、冷水进口温度t1、冷水出口温度t2、冷水质量流量qm、平均温度下水的比热容C和制冷消耗电量AP,通过以下计算公式:
Qn=Cqm(t2-t1)T计算得出运行期间的制冷量Qn
通过以下计算公式:
Figure BDA0001797622950000081
计算得出运行平均能效比运行平均能效比COP;
在步骤三中,COP≥COPN则空调制冷设备的能效隶属度e为1,否则,目标空调制冷设备的能效隶属度e由以下计算式计算得出:
e=1/(1+c(COPN-COP)d),上式中,c和d由人工设定。
作为优选,能效分析值E由以下公式计算得出,
Figure BDA0001797622950000082
上式中,ei表示与目标设备具有相关性的第i个设备自身的能效隶属度,ci表示与目标设备具有相关性的第i个设备与目标设备之间的相关性,h为与目标设备具有相关性的设备的总数,在上式中,ci的值若小于设定值则直接取值为0。
本发明的实质性效果是:本发明中,针对每个不同的设备确定有一个用于对比能效分析指E的设定值,这个设定值由人工设定,一般大于1,也就是在考虑当前设备的能效时,综合考虑多个相关设备的能效,即使当前设备的能效并不是最理想的,但是综合多个具有相关性的能效设备后,依然能够在整体上获得较优的能效数据,则认为此设备的能效数据是合理的,但是如果此能效设备虽然自身单独检测具有较好的运行效率,无需改进,但是涉及到相关设备的时候会影响到相关设备的能效,则需要在改进时依然对其进行整改;杜绝了单独设备单独对比的情况,综合考虑了生产实际,能够根据能效隶属度综合判定整体设备及其相关设备的能效综合情况。
附图说明:
图1为本发明中硬件平台的示意图。
具体实施方式
下面通过具体实施例,结合附图,对本发明的技术方案作进一步的具体说明。
实施例1:
一种综合能效监控方法,用于一种设备能效综合控制平台(参见附图1),包括政府信息外网2、公众网络1、电力信息内部网和能效设备数据源5,电力信息内部网包括电力信息内网应用区3和电力信息外网应用区4,所述政府信息外网通过防火墙与所述公众网络通信连接,所述政府信息外网通过隔离装置9与所述电力信息内网应用区通信连接,电力信息内网应用区通过隔离装置与所述电力信息外网应用区通信连接,电力信息外网应用区通过防火墙与能效设备数据源连接,所述电力信息内网应用区包括由若干存贮节点和若干管理节点构成的云计算节点7、应用服务器集群、事物服务器和本地数据源6,所述的本地数据源通过防火墙8与所述云计算节点通信连接,云计算节点与所述应用服务器集群以及事物服务器连接。所述政府信息外网也包括由若干存贮节点和若干管理节点构成的云计算节点、应用服务器集群和事物服务器,云计算节点与所述应用服务器集群以及事物服务器连接。
包括以下步骤:
步骤一,获取各个运行设备的运行参数,
步骤二,计算目标设备的能效数据,
步骤三,对目标设备的能效数据进行分析,判断得出目标设备是否需要改进。
在步骤一中对各个设备的相关性进行设定,在步骤二中,还对具有相关性的目标设备进行隶属度换算,在步骤三中,对具有相关性的目标设备的能效数据进行整合后进行分析,判断得出具有相关性的目标设备是否需要改进。
在步骤一中,针对具有相关性的目标设备构建一个秩为n的矩阵方阵f(h/t),f(h/t)的相关性函数如下:
f(h/t)=f(h/t)/max[f(h/t),f(t/h)],h,t=1,2,....,n.;
f(h/t)表示目标设备h被目标设备t的支持程度,h,t=1,2,....,n;
通过以下公式计算各个目标设备被其他具有相关性的设备之间相关的程度:
Figure BDA0001797622950000101
其中,
Figure BDA0001797622950000102
表示第h个目标设备被其他目标设备相关的程度;
在步骤二中,根据目标设备的种类建立对应的能效隶属度函数,将经过能效数据进行分析后的目标设备的能效数据代入能效隶属度函数,根据能效隶属度函数的计算结果获得能效隶属度,计算所有与目标设备具有相关性设备的能效隶属度,并与目标设备相关的程度相乘,获得能效分析值E,在步骤三中,若能效分析值E小于设定值则判断为需要改进。
在步骤一中,所述运行设备包括变压器、电动机、电加热设备和/或空调制冷设备。
在目标设备为变压器时,
在步骤一中,获得目标变压器的实测运行数据和铭牌数据,
在步骤二中,执行以下变压器能效计算子步骤:
变压器能效计算子步骤一,计算获得变压器日均负载率β(%);
变压器能效计算子步骤二,根据日变压器投入运行的工作时间T、变压器的空载损耗Po、变压器的负载损耗PN和额定容量SN通过以下计算公式:
ΔAp=(Po2PN)T
计算得出变压器日均有功电能损耗ΔAp
变压器能效计算子步骤三,根据变压器日均有功电能损耗ΔAp和变压器日的输出电量AZ,通过以下计算公式:
Figure BDA0001797622950000111
计算得出变压器实际运行效率ηd
变压器能效计算子步骤三,计算压器的最佳负荷率
Figure BDA0001797622950000112
和变压器的最大效率
Figure BDA0001797622950000113
在步骤三中,以
Figure BDA0001797622950000114
时判断为目标变压器的能效隶属度为1;
若在设定时长内变压器的负载率均低于30%,则判断为需要改用符合
Figure BDA0001797622950000115
的计算结果的变压器,上式中S为实际使用负荷;
若变压器的运行效率
Figure BDA0001797622950000116
时,则以能效隶属度
Figure BDA0001797622950000121
作为目标变压器的能效隶属度。
在目标设备为电动机时,
在步骤一中,获得目标电动机的实测运行数据和铭牌数据,
在步骤二中,执行以下电动机能效计算子步骤:
电动机能效计算子步骤一,根据获取的实测电动机的输入线电流I1、实测电动机的输入线电压U、电动机的额定电流IN、电动机的额定电压UN、电动机的额定效率ηN、电动机的空载有功损耗PO和电动机的额定空载电流ION通过以下计算公式:
Figure BDA0001797622950000122
计算得出电动机运行负载率β,上式中,IO为电动机输入线电压为非额定值时的空载电流,IO的计算公式如下:
Figure BDA0001797622950000123
电动机能效计算子步骤二,通过以下计算公式:
Figure BDA0001797622950000124
计算得出电动机运行效率ηc
在步骤三中,若β位于60%~80%之间,则判断目标电动机的能效隶属度为1,ηc≥0.6时,则判断为目标电动机的能效隶属度e为1,
目标电动机的能效隶属度e根据以下公式计算得出:
e=1/(1+g(0.6-ηc)k),g和k由人工设定。
在目标设备为电加热设备时,
在步骤一中,获得目标电加热设备的实测运行数据和铭牌数据,
在步骤二中,执行以下电加热设备能效计算子步骤:
电加热设备能效计算子步骤一:根据获取的实际生产耗电量W和产品的实际质量mi通过以下计算公式:
Figure BDA0001797622950000131
计算测试周期内的合格产品的可比用电单耗bk,上式中,M2--测试周期的总折合质量,i=1,2,3,....,n,为产品或工件品种,K1为产品或工件单件质量折算系数,K2为产品或工件类别折算系数,K3为热处理温度折算系数,K4为热处理工艺折算系数;
电加热设备能效计算子步骤二:用温度测量仪表测量电炉最高工作温度下的热稳定状态时炉体外表面任意测量点的温度与特定环境温度之差Δθ;
在步骤三中,若bk≤0.600kwh/kg且Δθ符合设定值,则目标电加热设备的隶属度为1,否则目标电加热设备的能效隶属度e由以下计算式计算得出:e=1/(1+c(bk-0.6)d),上式中,c和d由人工设定。
单件产品或工件质量>0.3kg/件时,K1=1.0,
单件产品或工件质量<0.1kg/件时,K1=1.5,
单件产品或工件质量≥0.1kg/件且≤0.3kg/件时,K1=1.2;
产品或工件类别折算系数符合以下要求,
当产品或工件类别为工模具类时,K2=1.2,否则K2=1.0;
热处理温度折算系数符合以下要求,
热处理温度>1000℃时,K3=1.5,
热处理温度≥700℃且≤1000℃时,K3=1.0,
热处理温度≥500℃且<700℃时,K3=0.7,
热处理温度≥350℃且<500℃时,K3=0.5,
热处理温度<350℃时,K3=0.3;
热处理工艺折算系数符合以下要求,
渗碳渗氮的折算系数K4=2.0,
盐浴工艺的折算系数K4=1.5,
铝合金淬火工艺的折算系数K4=1.1,
钢材淬火工艺的折算系数K4=1.1,
退火保温工艺的时间>20h时的折算系数K4=1.7,
退火保温工艺的时间10~20h时的折算系数K4=1.3,
正火工艺或退火保温工艺的时间<10h时折算系数K4=1.0。
在目标设备为空调制冷设备时,
在步骤一中,获得目标空调制冷设备的实测运行数据和铭牌数据,
在步骤二中,执行以下空调制冷设备能效计算子步骤:
空调制冷设备能效计算子步骤一,根据获取的空调制冷设备运行时间T、冷水进口温度t1、冷水出口温度t2、冷水质量流量qm、平均温度下水的比热容C和制冷消耗电量AP,通过以下计算公式:
Qn=Cqm(t2-t1)T计算得出运行期间的制冷量Qn
通过以下计算公式:
Figure BDA0001797622950000151
计算得出运行平均能效比运行平均能效比COP;
在步骤三中,COP≥COPN则空调制冷设备的能效隶属度e为1,否则,目标空调制冷设备的能效隶属度e由以下计算式计算得出:
e=1/(1+c(COPN-COP)d),上式中,c和d由人工设定。
能效分析值E由以下公式计算得出,
Figure BDA0001797622950000152
上式中,ei表示与目标设备具有相关性的第i个设备自身的能效隶属度,ci表示与目标设备具有相关性的第i个设备与目标设备之间的相关性,h为与目标设备具有相关性的设备的总数,在上式中,ci的值若小于设定值则直接取值为0。
本实施例中,针对每个不同的设备确定有一个用于对比能效分析指E的设定值,这个设定值由人工设定,一般大于1,也就是在考虑当前设备的能效时,综合考虑多个相关设备的能效,即使当前设备的能效并不是最理想的,但是综合多个具有相关性的能效设备后,依然能够在整体上获得较优的能效数据,则认为此设备的能效数据是合理的,但是如果此能效设备虽然自身单独检测具有较好的运行效率,无需改进,但是涉及到相关设备的时候会影响到相关设备的能效,则需要在改进时依然对其进行整改;杜绝了单独设备单独对比的情况,综合考虑了生产实际,能够根据能效隶属度综合判定整体设备及其相关设备的能效综合情况。
针对根据变压器能效分析的情况,可以通过以下几点建议进行改善:
尽量选用低损耗、高效节能变压器。对于经济条件不允许的企业,可针对能耗高的老型变压器进行节能改造。平均负载系数经常小于30%时,应酌情调换小容量变压器。采用无功就地补偿,提高负载功率因数,以提高变压器输送有功功率的能力。
根据电动机能效分析的情况,可以通过以下几点建议进行改善:
对于老式能耗高的电动机,优先选用YX、YE、YD、YZ等系列的高效电机,经济条件不允许的情况下可对电机进行节能改造。对于负载率长期低于40%,但是负荷又较为稳定的电动机,可酌情更换小容量的高效电动机。对于轻载、空载或周期性负载条件下使用的电动机,进行无功就地补偿或安装节能控制器,提高电动机的使用效率。对于经常处于轻载、空载或周期性变动负载下运行的电动机,采用异步电动机轻载调压节能装置,定子输入端加装Δ-Y转换串电抗器自动有级调压节电器以降低轻载运行时电动机的输入电压,提高电动机运行效率,减少电机损耗。根据生产机械负载特点,合理选用调速方式,实现电动机的调速运行,提高电动机的使用效率。
根据电加热设备能效分析的情况,可以通过以下几点建议进行改善:采用先进的电热元件,改善电炉炉壁的性能和形状,在技术和工艺条件允许的电炉中,应采用热容小、热导率低的耐火材料和保温材料。缩小和密封电加热设备的开口部分或开口处安装双层封盖、减少热损失。在加热或热处理的电炉中,要根据设备的构造、被加热物体的特性、加热或热处理工艺的要求,改进升温曲线。电加热设备要选择合理的装炉量,尽量集中生产,减少空载损失。
根据空调制冷设备能效分析的情况,可以通过以下几点建议进行改善:采用高效率节能型压缩机,可有效提高制冷设备的能效比,从而实现节能。定期清洗换热器(如蒸发器、冷凝器)。提高制冷设备冷水的出口温度,有助于提高制冷机组的效率和制冷量,从而降低电耗。定期检查冷凝效果有无下降,并进行强化,有利于降低耗电量。定期对冷却水进行适量排放,保持浓度。
根据企业总线损率能效分析的情况,可以通过以下几点建议进行改善:配电变压器尽量安排在负荷中心,缩短低压线路的长度。提高供电线路的功率因数,减少线路输送的无功电流,采用无功就地补偿。合理进行负荷分布。合理调度生产,减少负荷波动引起的附加线损。简化电压等级,合理提高输送电压。线路输送采用合理的经济电流密度。
以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

Claims (8)

1.一种综合能效监控方法,其特征在于,包括以下步骤:
步骤一,获取各个运行设备的运行参数,对各个设备的相关性进行设定;
步骤二,计算目标设备的能效数据,对具有相关性的目标设备进行隶属度换算;
步骤三,对具有相关性的目标设备的能效数据进行整合后进行分析,判断得出具有相关性的目标设备是否需要改进;
其中,在步骤一中,针对具有相关性的目标设备构建一个秩为n的矩阵方阵f(h/t),f(h/t)的相关性函数如下:
f(h/t)=f(h/t)/max[f(h/t),f(t/h)],h,t=1,2,....,n.;
f(h/t)表示目标设备h被目标设备t的支持程度,h,t=1,2,....,n;
通过以下公式计算各个目标设备被其他具有相关性的设备之间相关的程度:
Figure FDA0003461882400000011
其中,
Figure FDA0003461882400000012
表示第h个目标设备被其他目标设备相关的程度;
在步骤二中,根据目标设备的种类建立对应的能效隶属度函数,将经过能效数据进行分析后的目标设备的能效数据代入能效隶属度函数,根据能效隶属度函数的计算结果获得能效隶属度,计算所有与目标设备具有相关性设备的能效隶属度,并与目标设备相关的程度相乘,获得能效分析值E,在步骤三中,若能效分析值E小于设定值则判断为需要改进。
2.根据权利要求1所述的综合能效监控方法,其特征在于:在步骤一中,所述运行设备包括变压器、电动机、电加热设备和/或空调制冷设备。
3.根据权利要求2所述的综合能效监控方法,其特征在于:在目标设备为变压器时,
在步骤一中,获得目标变压器的实测运行数据和铭牌数据,
在步骤二中,执行以下变压器能效计算子步骤:
变压器能效计算子步骤一,计算获得变压器日均负载率β(%);
变压器能效计算子步骤二,根据日变压器投入运行的工作时间T、变压器的空载损耗Po、变压器的负载损耗PN和额定容量SN通过以下计算公式:
△Ap=(Po2PN)T
计算得出变压器日均有功电能损耗△Ap
变压器能效计算子步骤三,根据变压器日均有功电能损耗△Ap和变压器日的输出电量AZ,通过以下计算公式:
Figure FDA0003461882400000021
计算得出变压器实际运行效率ηd
变压器能效计算子步骤三,计算压器的最佳负荷率
Figure FDA0003461882400000022
和变压器的最大效率
Figure FDA0003461882400000023
在步骤三中,以
Figure FDA0003461882400000024
时判断为目标变压器的能效隶属度为1;
若在设定时长内变压器的负载率均低于30%,则判断为需要改用符合
Figure FDA0003461882400000025
的计算结果的变压器,上式中S为实际使用负荷;
若变压器的运行效率
Figure FDA0003461882400000031
时,则以能效隶属度
Figure FDA0003461882400000032
作为目标变压器的能效隶属度。
4.根据权利要求2所述的综合能效监控方法,其特征在于:在目标设备为电动机时,
在步骤一中,获得目标电动机的实测运行数据和铭牌数据,
在步骤二中,执行以下电动机能效计算子步骤:
电动机能效计算子步骤一,根据获取的实测电动机的输入线电流I1、实测电动机的输入线电压U、电动机的额定电流IN、电动机的额定电压UN、电动机的额定效率ηN、电动机的空载有功损耗PO和电动机的额定空载电流ION通过以下计算公式:
Figure FDA0003461882400000033
计算得出电动机运行负载率β,上式中,IO为电动机输入线电压为非额定值时的空载电流,IO的计算公式如下:
Figure FDA0003461882400000034
电动机能效计算子步骤二,通过以下计算公式:
Figure FDA0003461882400000035
计算得出电动机运行效率ηc;
在步骤三中,若β位于60%~80%之间,则判断目标电动机的能效隶属度为1,ηc≥0.6时,则判断为目标电动机的能效隶属度e为1,
目标电动机的能效隶属度e根据以下公式计算得出:
e=1/(1+g(0.6-ηc)k),g和k由人工设定。
5.根据权利要求2所述的综合能效监控方法,其特征在于:在目标设备为电加热设备时,
在步骤一中,获得目标电加热设备的实测运行数据和铭牌数据,
在步骤二中,执行以下电加热设备能效计算子步骤:
电加热设备能效计算子步骤一:根据获取的实际生产耗电量W和产品的实际质量mi通过以下计算公式:
Figure FDA0003461882400000041
计算测试周期内的合格产品的可比用电单耗bk,上式中,M2--测试周期的总折合质量,i=1,2,3,....,n,为产品或工件品种,K1为产品或工件单件质量折算系数,K2为产品或工件类别折算系数,K3为热处理温度折算系数,K4为热处理工艺折算系数;
电加热设备能效计算子步骤二:用温度测量仪表测量电炉最高工作温度下的热稳定状态时炉体外表面任意测量点的温度与特定环境温度之差△θ;
在步骤三中,若bk≤0.600kwh/kg且△θ符合设定值,则目标电加热设备的隶属度为1,否则目标电加热设备的能效隶属度e由以下计算式计算得出:e=1/(1+c(bk-0.6)d),上式中,c和d由人工设定。
6.根据权利要求5所述的综合能效监控方法,其特征在于:
所述产品或工件单件质量折算系数K1,产品或工件类别折算系数K2,热处理温度折算系数K3,热处理工艺折算系数K4符合以下要求,
单件产品或工件质量>0.3kg/件时,K1=1.0,
单件产品或工件质量<0.1kg/件时,K1=1.5,
单件产品或工件质量≥0.1kg/件且≤0.3kg/件时,K1=1.2;
产品或工件类别折算系数符合以下要求,
当产品或工件类别为工模具类时,K2=1.2,否则K2=1.0;
热处理温度折算系数符合以下要求,
热处理温度>1000℃时,K3=1.5,
热处理温度≥700℃且≤1000℃时,K3=1.0,
热处理温度≥500℃且<700℃时,K3=0.7,
热处理温度≥350℃且<500℃时,K3=0.5,
热处理温度<350℃时,K3=0.3;
热处理工艺折算系数符合以下要求,
渗碳渗氮的折算系数K4=2.0,
盐浴工艺的折算系数K4=1.5,
铝合金淬火工艺的折算系数K4=1.1,
钢材淬火工艺的折算系数K4=1.1,
退火保温工艺的时间>20h时的折算系数K4=1.7,
退火保温工艺的时间10~20h时的折算系数K4=1.3,
正火工艺或退火保温工艺的时间<10h时折算系数K4=1.0。
7.根据权利要求2所述的综合能效监控方法,其特征在于:在目标设备为空调制冷设备时,
在步骤一中,获得目标空调制冷设备的实测运行数据和铭牌数据,
在步骤二中,执行以下空调制冷设备能效计算子步骤:
空调制冷设备能效计算子步骤一,根据获取的空调制冷设备运行时间T、冷水进口温度t1、冷水出口温度t2、冷水质量流量qm、平均温度下水的比热容C和制冷消耗电量AP,通过以下计算公式:
Qn=Cqm(t2-t1)T计算得出运行期间的制冷量Qn
通过以下计算公式:
Figure FDA0003461882400000061
计算得出运行平均能效比运行平均能效比COP;
在步骤三中,COP≥COPN则空调制冷设备的能效隶属度e为1,否则,目标空调制冷设备的能效隶属度e由以下计算式计算得出:
e=1/(1+c(COPN-COP)d),上式中,c和d由人工设定。
8.根据权利要求1所述的综合能效监控方法,其特征在于:能效分析值E由以下公式计算得出,
Figure FDA0003461882400000062
上式中,ei表示与目标设备具有相关性的第i个设备自身的能效隶属度,ci表示与目标设备具有相关性的第i个设备与目标设备之间的相关性,h为与目标设备具有相关性的设备的总数,在上式中,ci的值若小于设定值则直接取值为0。
CN201811065204.8A 2018-09-12 2018-09-12 综合能效监控方法 Active CN109471411B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811065204.8A CN109471411B (zh) 2018-09-12 2018-09-12 综合能效监控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811065204.8A CN109471411B (zh) 2018-09-12 2018-09-12 综合能效监控方法

Publications (2)

Publication Number Publication Date
CN109471411A CN109471411A (zh) 2019-03-15
CN109471411B true CN109471411B (zh) 2022-03-18

Family

ID=65664330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811065204.8A Active CN109471411B (zh) 2018-09-12 2018-09-12 综合能效监控方法

Country Status (1)

Country Link
CN (1) CN109471411B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111488685B (zh) * 2020-04-13 2023-06-27 国网河北省电力有限公司电力科学研究院 一种电热水器性能计算和使用能耗评估方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391091A (zh) * 2015-11-11 2016-03-09 云南电网有限责任公司电网规划研究中心 一种基于层次分析法和隶属度的分布式能量管理方法
CN105701554A (zh) * 2014-11-28 2016-06-22 国家电网公司 基于海量计量数据的用电设备能效混沌分析方法
CN106778883A (zh) * 2016-12-23 2017-05-31 贵州电网有限责任公司电力科学研究院 一种基于模糊集合的证据理论智能巡检信息融合方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0500315B1 (en) * 1991-02-18 1999-07-21 Sumitomo Cement Co. Ltd. Method of optical recognition and classification of pattern
CN103296685B (zh) * 2013-05-27 2015-06-10 国家电网公司 一种svc补偿策略最优化方法
CN104077489A (zh) * 2014-07-09 2014-10-01 国家电网公司 一种能耗设备能效分析方法及其分析系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105701554A (zh) * 2014-11-28 2016-06-22 国家电网公司 基于海量计量数据的用电设备能效混沌分析方法
CN105391091A (zh) * 2015-11-11 2016-03-09 云南电网有限责任公司电网规划研究中心 一种基于层次分析法和隶属度的分布式能量管理方法
CN106778883A (zh) * 2016-12-23 2017-05-31 贵州电网有限责任公司电力科学研究院 一种基于模糊集合的证据理论智能巡检信息融合方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《含分布式电源的智能配用电云平台关键技术及评估方法》;葛磊蛟;《中国优秀博硕士学位论文全文数据库(博士) 工程科技II辑》;20171215;摘要、正文第四、五章 *
葛磊蛟.《含分布式电源的智能配用电云平台关键技术及评估方法》.《中国优秀博硕士学位论文全文数据库(博士) 工程科技II辑》.2017, *

Also Published As

Publication number Publication date
CN109471411A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
CN109063925B (zh) 一种计及负荷聚合商的区域综合能源系统优化运行方法
CN103208085B (zh) 企业用电提高负荷率与降低最大需量的分析智能系统
CN110729726B (zh) 一种智慧社区能量优化调度方法和系统
CN110619110A (zh) 一种含热泵的综合能源系统协调运行优化方法
CN110661254A (zh) 一种区域综合能源系统冷热电互补效益量化方法
Wang et al. Optimal coordination control strategy of hybrid energy storage systems for tie-line smoothing services in integrated community energy systems
WO2023083235A1 (zh) 一种分散式预测电网的优化方法及系统
CN115164361A (zh) 一种数据中心控制方法、装置、电子设备和存储介质
CN109471411B (zh) 综合能效监控方法
CN111724045A (zh) 基于数据驱动的综合能源系统能效评价与提升方法
CN109460888B (zh) 能效监控报警方法
TW201027014A (en) Method for managing air conditioning power consumption
Li et al. Control method of multi-energy system based on layered control architecture
CN110019173B (zh) 大数据的设备能效控制方法
Tang et al. Multi-objective optimal dispatch for integrated energy systems based on a device value tag
CN111969602B (zh) 一种综合能源系统的日前随机优化调度方法及装置
CN109471381B (zh) 基于大数据融合的设备能效综合控制方法
CN109472437B (zh) 设备能效综合控制平台及其控制方法
Ma et al. Energy consumption analysis on a typical office building: Case study of the Tiejian tower, Tianjin
Gan et al. A method to evaluate the power dispatching potential of energy intensive steel enterprises
CN110112775B (zh) 一种含分布式储能的微能源网系统
CN112434861A (zh) 计及热力管网反馈调节的电热协调优化调度方法及装置
Molina et al. New approaches to model electric demand in aluminum smelter industry
Huang et al. The quantitative assessment method for flexibility adjustment of self-supplied power plants
Wentao et al. Economic Analysis of Energy Storage System Installation by Industrial Users

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant