CN109460888B - 能效监控报警方法 - Google Patents

能效监控报警方法 Download PDF

Info

Publication number
CN109460888B
CN109460888B CN201811065593.4A CN201811065593A CN109460888B CN 109460888 B CN109460888 B CN 109460888B CN 201811065593 A CN201811065593 A CN 201811065593A CN 109460888 B CN109460888 B CN 109460888B
Authority
CN
China
Prior art keywords
energy efficiency
target
transformer
calculating
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811065593.4A
Other languages
English (en)
Other versions
CN109460888A (zh
Inventor
唐锦江
陆竑
邵炜平
郑伟军
周浩
俞涯
赵俊
倪瞬
姜维
应杰耀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Zhejiang Electric Power Co Ltd
Jiaxing Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Haining Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Original Assignee
State Grid Zhejiang Electric Power Co Ltd
Jiaxing Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Haining Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Zhejiang Electric Power Co Ltd, Jiaxing Power Supply Co of State Grid Zhejiang Electric Power Co Ltd, Haining Power Supply Co of State Grid Zhejiang Electric Power Co Ltd filed Critical State Grid Zhejiang Electric Power Co Ltd
Priority to CN201811065593.4A priority Critical patent/CN109460888B/zh
Publication of CN109460888A publication Critical patent/CN109460888A/zh
Application granted granted Critical
Publication of CN109460888B publication Critical patent/CN109460888B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/82Energy audits or management systems therefor

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Feedback Control In General (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及一种能效监控报警方法,解决了现有技术的不足,技术方案为,包括以下步骤:步骤一,周期性获取各个运行设备的运行参数,并各个设备的相关性进行设定,建立目标设备的能效标准值E与时间相关的基准曲线,步骤二,计算目标设备的能效数据,并计算目标设备的能效隶属度换算,步骤三,根据目标设备的能效隶属度计算能效分析值E;步骤四,绘制并显示目标设备的能效分析值E与时间相关的分析曲线;步骤五,计算单位周期内分析曲线与基准曲线之间的差值的和,若大于设定值则判定为需要改进。

Description

能效监控报警方法
技术领域
本发明涉及一种能效监控方法,具体涉及一种能效监控报警方法。
背景技术
我国制定节约能源发展战略。在我国,能源资源供需紧张已成为制约国家经济发展的主要问题。国家开始实施节约与开发并举、把节约放在首位的能源发展战略。浙江省是一次能源严重缺乏的省份,节能和可再生能源工作对于浙江省经济和社会发展具有十分重要的意义。为了响应国家政策,浙江省政府迈出了先行步伐,采取加强节能法规建设、加大节能技术改造力度、积极推广节能新产品、新设备等措施,深化节能减排工作。因此需要开发一种能效控制平台及其控制方法,实现对城市用电数据的采集、监测、分析、挖掘,使政府能及时了解电能供应、配送及用电情况,掌握电能消耗情况与用电趋势等,对整个城市能源能够进行合理的管理与调配,实现合理用电,降低用能成本,同时为能源政策制定、节能减排指标管理及宏观经济运行分析提供决策支持;通过延伸到用户内部的广覆盖、细粒度的数据采集网络,实时掌握用户用能情况,实现电网与用户间耗能数据的在线互动,使电力公司调控城市区域负荷,优化城市负荷曲线,实现削峰填谷,减少设备维护频率,保障电网稳定经济运行,促进城市经济发展,实现节能降耗,响应国家能源战略要求。
发明内容
本发明的目的在于解决上述现有技术缺少一种综合能效监控方法的问题,提供一种能效监控报警方法。
本发明解决其技术问题所采用的技术方案是:一种能效监控报警方法,包括以下步骤:
步骤一,周期性获取各个运行设备的运行参数,并各个设备的相关性进行设定,建立目标设备的能效标准值E与时间相关的基准曲线,
步骤二,计算目标设备的能效数据,并计算目标设备的能效隶属度换算,
步骤三,根据目标设备的能效隶属度计算能效分析值E,
由以下公式计算得出,
Figure BDA0001797786810000021
上式中,ei表示与目标设备具有相关性的第i个设备自身的能效隶属度,ci表示与目标设备具有相关性的第i个设备与目标设备之间的相关性,h为与目标设备具有相关性的设备的总数;
步骤四,绘制并显示目标设备的能效分析值E与时间相关的分析曲线;
步骤五,计算单位周期内分析曲线与基准曲线之间的差值的和,若大于设定值则判定为需要改进。
本发明采用了相关的加隶属度综合的方式来判断设备能效的优劣,杜绝了单独设备单独对比的情况,综合考虑了生产实际,能够根据能效隶属度综合判定整体设备及其相关设备的能效综合情况。
作为优选,ci的值若小于设定值则直接取值为0。
在步骤一中,针对具有相关性的目标设备构建秩为n的矩阵方阵f(h/t),f(h/t)的相关性函数如下:
f(h/t)=f(h/t)/max[f(h/t),f(t/h)],h,t=1,2,....,n.;
f(h/t)表示目标设备h被目标设备t的支持程度,h,t=1,2,....,n;
通过以下公式计算各个目标设备被其他具有相关性的设备之间相关的程度:
Figure BDA0001797786810000031
其中,
Figure BDA0001797786810000032
表示第h个目标设备被其他目标设备相关的程度;
在步骤二中,根据目标设备的种类建立对应的能效隶属度函数,将经过能效数据进行分析后的目标设备的能效数据代入能效隶属度函数,根据能效隶属度函数的计算结果获得能效隶属度,计算所有与目标设备具有相关性设备的能效隶属度,并与目标设备相关的程度相乘,获得能效分析值E,在步骤三中,若能效分析值E小于设定值则判断为需要改进。
本发明中,针对每个不同的设备确定有一个用于对比能效分析指E的设定值,这个设定值由人工设定,一般大于1,也就是在考虑当前设备的能效时,综合考虑多个相关设备的能效,即使当前设备的能效并不是最理想的,但是综合多个具有相关性的能效设备后,依然能够在整体上获得较优的能效数据,则认为此设备的能效数据是合理的,但是如果此能效设备虽然自身单独检测具有较好的运行效率,无需改进,但是涉及到相关设备的时候会影响到相关设备的能效,则需要在改进时依然对其进行整改;杜绝了单独设备单独对比的情况,综合考虑了生产实际,能够根据能效隶属度综合判定整体设备及其相关设备的能效综合情况。
作为优选,在步骤一中,所述运行设备包括变压器、电动机、电加热设备和/或空调制冷设备。
作为优选,在目标设备为变压器时,
在步骤一中,获得目标变压器的实测运行数据和铭牌数据,
在步骤二中,执行以下变压器能效计算子步骤:
变压器能效计算子步骤一,计算获得变压器日均负载率β(%);
变压器能效计算子步骤二,根据日变压器投入运行的工作时间T、变压器的空载损耗Po、变压器的负载损耗PN和额定容量SN通过以下计算公式:
ΔAp=(Po2PN)T
计算得出变压器日均有功电能损耗ΔAp
变压器能效计算子步骤三,根据变压器日均有功电能损耗ΔAp和变压器日的输出电量AZ,通过以下计算公式:
Figure BDA0001797786810000041
计算得出变压器实际运行效率ηd
变压器能效计算子步骤三,计算压器的最佳负荷率
Figure BDA0001797786810000042
和变压器的最大效率
Figure BDA0001797786810000043
在步骤三中,以
Figure BDA0001797786810000044
时判断为目标变压器的能效隶属度为1;
若在设定时长内变压器的负载率均低于30%,则判断为需要改用符合
Figure BDA0001797786810000045
的计算结果的变压器,上式中S为实际使用负荷;
若变压器的运行效率
Figure BDA0001797786810000051
时,则以能效隶属度
Figure BDA0001797786810000052
作为目标变压器的能效隶属度。
作为优选,在目标设备为电动机时,
在步骤一中,获得目标电动机的实测运行数据和铭牌数据,
在步骤二中,执行以下电动机能效计算子步骤:
电动机能效计算子步骤一,根据获取的实测电动机的输入线电流I1、实测电动机的输入线电压U、电动机的额定电流IN、电动机的额定电压UN、电动机的额定效率ηN、电动机的空载有功损耗PO和电动机的额定空载电流ION通过以下计算公式:
Figure BDA0001797786810000053
计算得出电动机运行负载率β,上式中,IO为电动机输入线电压为非额定值时的空载电流,IO的计算公式如下:
Figure BDA0001797786810000054
电动机能效计算子步骤二,通过以下计算公式:
Figure BDA0001797786810000055
计算得出电动机运行效率ηc
在步骤三中,若β位于60%~80%之间,则判断目标电动机的能效隶属度为1,ηc≥0.6时,则判断为目标电动机的能效隶属度e为1,
目标电动机的能效隶属度e根据以下公式计算得出:
e=1/(1+g(0.6-ηc)k),g和k由人工设定。
作为优选,在目标设备为电加热设备时,
在步骤一中,获得目标电加热设备的实测运行数据和铭牌数据,
在步骤二中,执行以下电加热设备能效计算子步骤:
电加热设备能效计算子步骤一:根据获取的实际生产耗电量W和产品的实际质量mi通过以下计算公式:
Figure BDA0001797786810000061
计算测试周期内的合格产品的可比用电单耗bk,上式中,M2--测试周期的总折合质量,i=1,2,3,....,n,为产品或工件品种,K1为产品或工件单件质量折算系数,K2为产品或工件类别折算系数,K3为热处理温度折算系数,K4为热处理工艺折算系数;
电加热设备能效计算子步骤二:用温度测量仪表测量电炉最高工作温度下的热稳定状态时炉体外表面任意测量点的温度与特定环境温度之差Δθ;
在步骤三中,若bk≤0.600kwh/kg且Δθ符合设定值,则目标电加热设备的隶属度为1,否则目标电加热设备的能效隶属度e由以下计算式计算得出:
e=1/(1+c(bk-0.6)d),上式中,c和d由人工设定。
作为优选,所述的单价质量折算系数符合以下要求,
单件产品或工件质量>0.3kg/件时,K1=1.0,
单件产品或工件质量<0.1kg/件时,K1=1.5,
单件产品或工件质量≥0.1kg/件且≤0.3kg/件时,K1=1.2;
产品或工件类别折算系数符合以下要求,
当产品或工件类别为工模具类时,K2=1.2,否则K2=1.0;
热处理温度折算系数符合以下要求,
热处理温度>1000℃时,K3=1.5,
热处理温度≥700℃且≤1000℃时,K3=1.0,
热处理温度≥500℃且<700℃时,K3=0.7,
热处理温度≥350℃且<500℃时,K3=0.5,
热处理温度<350℃时,K3=0.3;
热处理工艺折算系数符合以下要求,
渗碳渗氮的折算系数K4=2.0,
盐浴工艺的折算系数K4=1.5,
铝合金淬火工艺的折算系数K4=1.1,
钢材淬火工艺的折算系数K4=1.1,
退火保温工艺的时间>20h时的折算系数K4=1.7,
退火保温工艺的时间10~20h时的折算系数K4=1.3,
正火工艺或退火保温工艺的时间<10h时折算系数K4=1.0。
作为优选,在目标设备为空调制冷设备时,
在步骤一中,获得目标空调制冷设备的实测运行数据和铭牌数据,
在步骤二中,执行以下空调制冷设备能效计算子步骤:
空调制冷设备能效计算子步骤一,根据获取的空调制冷设备运行时间T、冷水进口温度t1、冷水出口温度t2、冷水质量流量qm、平均温度下水的比热容C和制冷消耗电量AP,通过以下计算公式:
Qn=Cqm(t2-t1)T计算得出运行期间的制冷量Qn
通过以下计算公式:
Figure BDA0001797786810000081
计算得出运行平均能效比运行平均能效比COP;
在步骤三中,COP≥COPN则空调制冷设备的能效隶属度e为1,否则,目标空调制冷设备的能效隶属度e由以下计算式计算得出:
e=1/(1+c(COPN-COP)d),上式中,c和d由人工设定。
作为优选,各个设备的相关性与检测时间相关。本发明中,各个设备之间的相关性并不是一成不变的,而是动态相关的,对于不同的检测时间,各个设备之间的相关性并不一致,可以经由人工进行设定和调整,使得本发明更为符合生产实际。
本发明的实质性效果是:本发明中,针对每个不同的设备确定有一个用于对比能效分析指E的设定值,这个设定值由人工设定,一般大于1,也就是在考虑当前设备的能效时,综合考虑多个相关设备的能效,即使当前设备的能效并不是最理想的,但是综合多个具有相关性的能效设备后,依然能够在整体上获得较优的能效数据,则认为此设备的能效数据是合理的,但是如果此能效设备虽然自身单独检测具有较好的运行效率,无需改进,但是涉及到相关设备的时候会影响到相关设备的能效,则需要在改进时依然对其进行整改;杜绝了单独设备单独对比的情况,综合考虑了生产实际,能够根据能效隶属度综合判定整体设备及其相关设备的能效综合情况。
具体实施方式
下面通过具体实施例,对本发明的技术方案作进一步的具体说明。
实施例1:
一种能效监控报警方法,包括以下步骤:
步骤一,周期性获取各个运行设备的运行参数,并各个设备的相关性进行设定,建立目标设备的能效标准值E与时间相关的基准曲线,
步骤二,计算目标设备的能效数据,并计算目标设备的能效隶属度换算,
步骤三,根据目标设备的能效隶属度计算能效分析值E,
由以下公式计算得出,
Figure BDA0001797786810000091
上式中,ei表示与目标设备具有相关性的第i个设备自身的能效隶属度,ci表示与目标设备具有相关性的第i个设备与目标设备之间的相关性,h为与目标设备具有相关性的设备的总数;
步骤四,绘制并显示目标设备的能效分析值E与时间相关的分析曲线;
步骤五,计算单位周期内分析曲线与基准曲线之间的差值的和,若大于设定值则判定为需要改进。
ci的值若小于设定值则直接取值为0。
在步骤一中,针对具有相关性的目标设备构建秩为n的矩阵方阵f(h/t),f(h/t)的相关性函数如下:
f(h/t)=f(h/t)/max[f(h/t),f(t/h)],h,t=1,2,....,n.;
f(h/t)表示目标设备h被目标设备t的支持程度,h,t=1,2,....,n;
通过以下公式计算各个目标设备被其他具有相关性的设备之间相关的程度:
Figure BDA0001797786810000101
其中,
Figure BDA0001797786810000102
表示第h个目标设备被其他目标设备相关的程度;
在步骤二中,根据目标设备的种类建立对应的能效隶属度函数,将经过能效数据进行分析后的目标设备的能效数据代入能效隶属度函数,根据能效隶属度函数的计算结果获得能效隶属度,计算所有与目标设备具有相关性设备的能效隶属度,并与目标设备相关的程度相乘,获得能效分析值E,在步骤三中,若能效分析值E小于设定值则判断为需要改进。
在步骤一中,所述运行设备包括变压器、电动机、电加热设备和/或空调制冷设备。
在目标设备为变压器时,
在步骤一中,获得目标变压器的实测运行数据和铭牌数据,
在步骤二中,执行以下变压器能效计算子步骤:
变压器能效计算子步骤一,计算获得变压器日均负载率β(%);
变压器能效计算子步骤二,根据日变压器投入运行的工作时间T、变压器的空载损耗Po、变压器的负载损耗PN和额定容量SN通过以下计算公式:
ΔAp=(Po2PN)T
计算得出变压器日均有功电能损耗ΔAp
变压器能效计算子步骤三,根据变压器日均有功电能损耗ΔAp和变压器日的输出电量AZ,通过以下计算公式:
Figure BDA0001797786810000111
计算得出变压器实际运行效率ηd
变压器能效计算子步骤三,计算压器的最佳负荷率
Figure BDA0001797786810000112
和变压器的最大效率
Figure BDA0001797786810000113
在步骤三中,以
Figure BDA0001797786810000114
时判断为目标变压器的能效隶属度为1;
若在设定时长内变压器的负载率均低于30%,则判断为需要改用符合
Figure BDA0001797786810000115
的计算结果的变压器,上式中S为实际使用负荷;
若变压器的运行效率
Figure BDA0001797786810000116
时,则以能效隶属度
Figure BDA0001797786810000117
作为目标变压器的能效隶属度。
在目标设备为电动机时,
在步骤一中,获得目标电动机的实测运行数据和铭牌数据,
在步骤二中,执行以下电动机能效计算子步骤:
电动机能效计算子步骤一,根据获取的实测电动机的输入线电流I1、实测电动机的输入线电压U、电动机的额定电流IN、电动机的额定电压UN、电动机的额定效率ηN、电动机的空载有功损耗PO和电动机的额定空载电流ION通过以下计算公式:
Figure BDA0001797786810000121
计算得出电动机运行负载率β,上式中,IO为电动机输入线电压为非额定值时的空载电流,IO的计算公式如下:
Figure BDA0001797786810000122
电动机能效计算子步骤二,通过以下计算公式:
Figure BDA0001797786810000123
计算得出电动机运行效率ηc
在步骤三中,若β位于60%~80%之间,则判断目标电动机的能效隶属度为1,ηc≥0.6时,则判断为目标电动机的能效隶属度e为1,
目标电动机的能效隶属度e根据以下公式计算得出:
e=1/(1+g(0.6-ηc)k),g和k由人工设定。
在目标设备为电加热设备时,
在步骤一中,获得目标电加热设备的实测运行数据和铭牌数据,
在步骤二中,执行以下电加热设备能效计算子步骤:
电加热设备能效计算子步骤一:根据获取的实际生产耗电量W和产品的实际质量mi通过以下计算公式:
Figure BDA0001797786810000124
计算测试周期内的合格产品的可比用电单耗bk,上式中,M2--测试周期的总折合质量,i=1,2,3,....,n,为产品或工件品种,K1为产品或工件单件质量折算系数,K2为产品或工件类别折算系数,K3为热处理温度折算系数,K4为热处理工艺折算系数;
电加热设备能效计算子步骤二:用温度测量仪表测量电炉最高工作温度下的热稳定状态时炉体外表面任意测量点的温度与特定环境温度之差Δθ;
在步骤三中,若bk≤0.600kwh/kg且Δθ符合设定值,则目标电加热设备的隶属度为1,否则目标电加热设备的能效隶属度e由以下计算式计算得出:e=1/(1+c(bk-0.6)d),上式中,c和d由人工设定。
所述的单价质量折算系数符合以下要求,
单件产品或工件质量>0.3kg/件时,K1=1.0,
单件产品或工件质量<0.1kg/件时,K1=1.5,
单件产品或工件质量≥0.1kg/件且≤0.3kg/件时,K1=1.2;
产品或工件类别折算系数符合以下要求,
当产品或工件类别为工模具类时,K2=1.2,否则K2=1.0;
热处理温度折算系数符合以下要求,
热处理温度>1000℃时,K3=1.5,
热处理温度≥700℃且≤1000℃时,K3=1.0,
热处理温度≥500℃且<700℃时,K3=0.7,
热处理温度≥350℃且<500℃时,K3=0.5,
热处理温度<350℃时,K3=0.3;
热处理工艺折算系数符合以下要求,
渗碳渗氮的折算系数K4=2.0,
盐浴工艺的折算系数K4=1.5,
铝合金淬火工艺的折算系数K4=1.1,
钢材淬火工艺的折算系数K4=1.1,
退火保温工艺的时间>20h时的折算系数K4=1.7,
退火保温工艺的时间10~20h时的折算系数K4=1.3,
正火工艺或退火保温工艺的时间<10h时折算系数K4=1.0。
在目标设备为空调制冷设备时,
在步骤一中,获得目标空调制冷设备的实测运行数据和铭牌数据,
在步骤二中,执行以下空调制冷设备能效计算子步骤:
空调制冷设备能效计算子步骤一,根据获取的空调制冷设备运行时间T、冷水进口温度t1、冷水出口温度t2、冷水质量流量qm、平均温度下水的比热容C和制冷消耗电量AP,通过以下计算公式:
Qn=Cqm(t2-t1)T计算得出运行期间的制冷量Qn
通过以下计算公式:
Figure BDA0001797786810000141
计算得出运行平均能效比运行平均能效比COP;
在步骤三中,COP≥COPN则空调制冷设备的能效隶属度e为1,否则,目标空调制冷设备的能效隶属度e由以下计算式计算得出:
e=1/(1+c(COPN-COP)d),上式中,c和d由人工设定。
各个设备的相关性与检测时间相关。
本实施例中,针对每个不同的设备确定有一个用于对比能效分析指E的设定值,这个设定值由人工设定,一般大于1,也就是在考虑当前设备的能效时,综合考虑多个相关设备的能效,即使当前设备的能效并不是最理想的,但是综合多个具有相关性的能效设备后,依然能够在整体上获得较优的能效数据,则认为此设备的能效数据是合理的,但是如果此能效设备虽然自身单独检测具有较好的运行效率,无需改进,但是涉及到相关设备的时候会影响到相关设备的能效,则需要在改进时依然对其进行整改;杜绝了单独设备单独对比的情况,综合考虑了生产实际,能够根据能效隶属度综合判定整体设备及其相关设备的能效综合情况。本发明中,各个设备之间的相关性并不是一成不变的,而是动态相关的,对于不同的检测时间,各个设备之间的相关性并不一致,可以经由人工进行设定和调整,使得本发明更为符合生产实际。也就是在本实施例中,步骤一中,建立有若干个秩为n的矩阵方阵f(h/t),根据检测时间的不同调用不同的秩为n的矩阵方阵f(h/t)。
针对根据变压器能效分析的情况,可以通过以下几点建议进行改善:
尽量选用低损耗、高效节能变压器。对于经济条件不允许的企业,可针对能耗高的老型变压器进行节能改造。平均负载系数经常小于30%时,应酌情调换小容量变压器。采用无功就地补偿,提高负载功率因数,以提高变压器输送有功功率的能力。
根据电动机能效分析的情况,可以通过以下几点建议进行改善:
对于老式能耗高的电动机,优先选用YX、YE、YD、YZ等系列的高效电机,经济条件不允许的情况下可对电机进行节能改造。对于负载率长期低于40%,但是负荷又较为稳定的电动机,可酌情更换小容量的高效电动机。对于轻载、空载或周期性负载条件下使用的电动机,进行无功就地补偿或安装节能控制器,提高电动机的使用效率。对于经常处于轻载、空载或周期性变动负载下运行的电动机,采用异步电动机轻载调压节能装置,定子输入端加装Δ-Y转换串电抗器自动有级调压节电器以降低轻载运行时电动机的输入电压,提高电动机运行效率,减少电机损耗。根据生产机械负载特点,合理选用调速方式,实现电动机的调速运行,提高电动机的使用效率。
根据电加热设备能效分析的情况,可以通过以下几点建议进行改善:采用先进的电热元件,改善电炉炉壁的性能和形状,在技术和工艺条件允许的电炉中,应采用热容小、热导率低的耐火材料和保温材料。缩小和密封电加热设备的开口部分或开口处安装双层封盖、减少热损失。在加热或热处理的电炉中,要根据设备的构造、被加热物体的特性、加热或热处理工艺的要求,改进升温曲线。电加热设备要选择合理的装炉量,尽量集中生产,减少空载损失。
根据空调制冷设备能效分析的情况,可以通过以下几点建议进行改善:采用高效率节能型压缩机,可有效提高制冷设备的能效比,从而实现节能。定期清洗换热器(如蒸发器、冷凝器)。提高制冷设备冷水的出口温度,有助于提高制冷机组的效率和制冷量,从而降低电耗。定期检查冷凝效果有无下降,并进行强化,有利于降低耗电量。定期对冷却水进行适量排放,保持浓度。
根据企业总线损率能效分析的情况,可以通过以下几点建议进行改善:配电变压器尽量安排在负荷中心,缩短低压线路的长度。提高供电线路的功率因数,减少线路输送的无功电流,采用无功就地补偿。合理进行负荷分布。合理调度生产,减少负荷波动引起的附加线损。简化电压等级,合理提高输送电压。线路输送采用合理的经济电流密度。
以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

Claims (9)

1.一种能效监控报警方法,其特征在于,包括以下步骤:
步骤一,周期性获取各个运行设备的运行参数,并对各个设备的相关性进行设定,建立目标设备的能效标准值与时间相关的基准曲线,
针对具有相关性的目标设备构建秩为n的矩阵方阵f(h/t),f(h/t)的相关性函数如下:
f(h/t)=f(h/t)/max[f(h/t),f(t/h)],h,t=1,2,....,n;
f(h/t)表示目标设备h被目标设备t的支持程度,h,t=1,2,....,n;
通过以下公式计算各个目标设备被其他具有相关性的设备之间相关的程度:
Ch=min f(h/A),A=1,2,...,n;
其中,Ch表示第h个目标设备被其他目标设备相关的程度;
步骤二,计算目标设备的能效数据,并计算目标设备的能效隶属度换算,根据目标设备的种类建立对应的能效隶属度函数,将经过能效数据进行分析后的目标设备的能效数据代入能效隶属度函数,根据能效隶属度函数的计算结果获得能效隶属度,计算所有与目标设备具有相关性设备的能效隶属度,并与目标设备相关的程度相乘,获得能效分析值E;
步骤三,根据目标设备的能效隶属度计算能效分析值E,若能效分析值E小于设定值则判断为需要改进;
能效分析值E由以下公式计算得出,
Figure FDA0003457920940000011
上式中,ei表示与目标设备具有相关性的第i个设备自身的能效隶属度,ci表示与目标设备具有相关性的第i个设备与目标设备之间的相关性,h为与目标设备具有相关性的设备的总数;
步骤四,绘制并显示目标设备的能效分析值E与时间相关的分析曲线;
步骤五,计算单位周期内分析曲线与基准曲线之间的差值的和,若大于设定值则判定为需要改进。
2.根据权利要求1所述的能效监控报警方法,其特征在于:ci的值若小于设定值则直接取值为0。
3.根据权利要求1所述的能效监控报警方法,其特征在于:在步骤一中,所述运行设备包括变压器、电动机、电加热设备和/或空调制冷设备。
4.根据权利要求3所述的能效监控报警方法,其特征在于:在目标设备为变压器时,
在步骤一中,获得目标变压器的实测运行数据和铭牌数据,
在步骤二中,执行以下变压器能效计算子步骤:
变压器能效计算子步骤一,计算获得变压器日均负载率β;
变压器能效计算子步骤二,根据日变压器投入运行的工作时间T、变压器的空载损耗Po、变压器的负载损耗PN和额定容量SN通过以下计算公式:
ΔAp=(Po2PN)T
计算得出变压器日均有功电能损耗ΔAp
变压器能效计算子步骤三,根据变压器日均有功电能损耗ΔAp和变压器日均的输出电量AZ,通过以下计算公式:
Figure FDA0003457920940000031
计算得出变压器实际运行效率ηd
变压器能效计算子步骤四,计算变压器的最佳负荷率
Figure FDA0003457920940000032
和变压器的最大效率
Figure FDA0003457920940000033
在步骤三中,以
Figure FDA0003457920940000034
时判断为目标变压器的能效隶属度为1;
若在设定时长内变压器的负载率均低于30%,则判断为需要改用符合
Figure FDA0003457920940000035
的计算结果的变压器,上式中S为实际使用负荷;
若变压器的运行效率
Figure FDA0003457920940000036
时,则以能效隶属度
Figure FDA0003457920940000037
作为目标变压器的能效隶属度。
5.根据权利要求3所述的能效监控报警方法,其特征在于:在目标设备为电动机时,
在步骤一中,获得目标电动机的实测运行数据和铭牌数据,
在步骤二中,执行以下电动机能效计算子步骤:
电动机能效计算子步骤一,根据获取的实测电动机的输入线电流I1、实测电动机的输入线电压U、电动机的额定电流IN、电动机的额定电压UN、电动机的额定效率ηN、电动机的空载有功损耗PO和电动机的额定空载电流ION通过以下计算公式:
Figure FDA0003457920940000041
计算得出电动机运行负载率β,上式中,IO为电动机输入线电压为非额定值时的空载电流,IO的计算公式如下:
Figure FDA0003457920940000042
电动机能效计算子步骤二,通过以下计算公式:
Figure FDA0003457920940000043
计算得出电动机运行效率ηc
在步骤三中,若β位于60%~80%之间,则判断目标电动机的能效隶属度为1,ηc≥0.6时,则判断为目标电动机的能效隶属度e为1,
目标电动机的能效隶属度e根据以下公式计算得出:
e=1/(1+g(0.6-ηc)k),g和k由人工设定。
6.根据权利要求3所述的能效监控报警方法,其特征在于:在目标设备为电加热设备时,
在步骤一中,获得目标电加热设备的实测运行数据和铭牌数据,
在步骤二中,执行以下电加热设备能效计算子步骤:
电加热设备能效计算子步骤一:根据获取的实际生产耗电量W和产品的实际质量mi通过以下计算公式:
Figure FDA0003457920940000044
计算测试周期内的合格产品的可比用电单耗bk,上式中,M2为测试周期的总折合质量,i=1,2,3,....,n,为产品或工件品种,K1为产品或工件单件质量折算系数,K2为产品或工件类别折算系数,K3为热处理温度折算系数,K4为热处理工艺折算系数;
电加热设备能效计算子步骤二:用温度测量仪表测量电炉最高工作温度下的热稳定状态时炉体外表面任意测量点的温度与特定环境温度之差Δθ;
在步骤三中,若bk≤0.600kwh/kg且Δθ符合设定值,则目标电加热设备的隶属度为1,否则目标电加热设备的能效隶属度e由以下计算式计算得出:e=1/(1+c(bk-0.6)d),上式中,c和d由人工设定。
7.根据权利要求6所述的能效监控报警方法,其特征在于:
所述的单件质量折算系数符合以下要求,
单件产品或工件质量>0.3kg/件时,K1=1.0,
单件产品或工件质量<0.1kg/件时,K1=1.5,
单件产品或工件质量≥0.1kg/件且≤0.3kg/件时,K1=1.2;
产品或工件类别折算系数符合以下要求,
当产品或工件类别为工模具类时,K2=1.2,否则K2=1.0;
热处理温度折算系数符合以下要求,
热处理温度>1000℃时,K3=1.5,
热处理温度≥700℃且≤1000℃时,K3=1.0,
热处理温度≥500℃且<700℃时,K3=0.7,
热处理温度≥350℃且<500℃时,K3=0.5,
热处理温度<350℃时,K3=0.3;
热处理工艺折算系数符合以下要求,
渗碳渗氮的折算系数K4=2.0,
盐浴工艺的折算系数K4=1.5,
铝合金淬火工艺的折算系数K4=1.1,
钢材淬火工艺的折算系数K4=1.1,
退火保温工艺的时间>20h时的折算系数K4=1.7,
退火保温工艺的时间10~20h时的折算系数K4=1.3,
正火工艺或退火保温工艺的时间<10h时折算系数K4=1.0。
8.根据权利要求3所述的能效监控报警方法,其特征在于:在目标设备为空调制冷设备时,
在步骤一中,获得目标空调制冷设备的实测运行数据和铭牌数据,
在步骤二中,执行以下空调制冷设备能效计算子步骤:
空调制冷设备能效计算子步骤一,根据获取的空调制冷设备运行时间T、冷水进口温度t1、冷水出口温度t2、冷水质量流量qm、平均温度下水的比热容C和制冷消耗电量AP,通过以下计算公式:
Qn=Cqm(t2-t1)T计算得出运行期间的制冷量Qn
通过以下计算公式:
Figure FDA0003457920940000061
计算得出运行平均能效比COP;
在步骤三中,COP≥COPN则空调制冷设备的能效隶属度e为1,否则,目标空调制冷设备的能效隶属度e由以下计算式计算得出:
e=1/(1+c(COPN-COP)d),上式中,c和d由人工设定。
9.根据权利要求1所述的能效监控报警方法,其特征在于:各个设备的相关性与检测时间相关。
CN201811065593.4A 2018-09-12 2018-09-12 能效监控报警方法 Active CN109460888B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811065593.4A CN109460888B (zh) 2018-09-12 2018-09-12 能效监控报警方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811065593.4A CN109460888B (zh) 2018-09-12 2018-09-12 能效监控报警方法

Publications (2)

Publication Number Publication Date
CN109460888A CN109460888A (zh) 2019-03-12
CN109460888B true CN109460888B (zh) 2022-03-15

Family

ID=65606615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811065593.4A Active CN109460888B (zh) 2018-09-12 2018-09-12 能效监控报警方法

Country Status (1)

Country Link
CN (1) CN109460888B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110009263A (zh) * 2019-04-28 2019-07-12 河北建投能源投资股份有限公司 基于发电数据的监控方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104375035A (zh) * 2014-11-11 2015-02-25 国家电网公司 一种节能设备能效测试方法
CN105701554A (zh) * 2014-11-28 2016-06-22 国家电网公司 基于海量计量数据的用电设备能效混沌分析方法
CN108233358A (zh) * 2016-12-21 2018-06-29 云南电网有限责任公司 基于均衡状态设备利用系数和负荷曲线的利用率评价方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI628425B (zh) * 2016-03-22 2018-07-01 新湧科技股份有限公司 冷凍空調主機之能源效率比值(eer)量測驗證及分析的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104375035A (zh) * 2014-11-11 2015-02-25 国家电网公司 一种节能设备能效测试方法
CN105701554A (zh) * 2014-11-28 2016-06-22 国家电网公司 基于海量计量数据的用电设备能效混沌分析方法
CN108233358A (zh) * 2016-12-21 2018-06-29 云南电网有限责任公司 基于均衡状态设备利用系数和负荷曲线的利用率评价方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
配电网变压器的功率损耗问题及实现其经济运行的关键技术研究;周洁;《山东工业技术》;20130525(第05期);41-42页 *

Also Published As

Publication number Publication date
CN109460888A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
CN109063925B (zh) 一种计及负荷聚合商的区域综合能源系统优化运行方法
CN106251079B (zh) 基于年均冷却能效比和优化运行的工业循环冷却水系统优化方法
CN103208085B (zh) 企业用电提高负荷率与降低最大需量的分析智能系统
CN110729726B (zh) 一种智慧社区能量优化调度方法和系统
CN111950808B (zh) 基于综合需求响应的综合能源系统随机鲁棒优化运行方法
JP2010068704A (ja) 直接負荷制御システム
CN111342459B (zh) 一种电力需量决策分析系统及方法
WO2023083235A1 (zh) 一种分散式预测电网的优化方法及系统
CN109460888B (zh) 能效监控报警方法
CN108365637B (zh) 一种送电计划与抽水储能发电计划优化方法及系统
CN109471411B (zh) 综合能效监控方法
Zhou et al. Demand response control strategy of groups of central air-conditionings for power grid energy saving
CN111030101A (zh) 一种基于多元化大数据清洁能源消纳联动调控方法及系统
CN110019173B (zh) 大数据的设备能效控制方法
CN109471381B (zh) 基于大数据融合的设备能效综合控制方法
CN109472437B (zh) 设备能效综合控制平台及其控制方法
CN117151398A (zh) 一种基于虚拟电厂的中央空调调控方法及系统
Ma et al. Energy consumption analysis on a typical office building: Case study of the Tiejian tower, Tianjin
CN107909293B (zh) 一种冷热电三联供系统综合效益评估方法
CN110850831A (zh) 一种玻璃基板生产水足迹核算与在线控制方法
Gan et al. A method to evaluate the power dispatching potential of energy intensive steel enterprises
CN115483692A (zh) 一种基于电解铝与多晶硅负荷聚合的协调控制方法和系统
CN115411741A (zh) 一种热电机组群负荷动态分配方法和设备
Molina et al. New approaches to model electric demand in aluminum smelter industry
Li Research on Energy Saving Control of Building Central Air Conditioning Based on Neural Network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant