CN109461939B - 一种NiCo/TiO2纳米管电池电极及其制备方法 - Google Patents

一种NiCo/TiO2纳米管电池电极及其制备方法 Download PDF

Info

Publication number
CN109461939B
CN109461939B CN201811203755.6A CN201811203755A CN109461939B CN 109461939 B CN109461939 B CN 109461939B CN 201811203755 A CN201811203755 A CN 201811203755A CN 109461939 B CN109461939 B CN 109461939B
Authority
CN
China
Prior art keywords
tio
nanotube
methanol
nico
titanium plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811203755.6A
Other languages
English (en)
Other versions
CN109461939A (zh
Inventor
鞠剑峰
吴锦明
王淼
汪洋
姚勇
于雅楠
房鑫鑫
刘宴希
孟恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University Technology Transfer Center Co ltd
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN201811203755.6A priority Critical patent/CN109461939B/zh
Publication of CN109461939A publication Critical patent/CN109461939A/zh
Application granted granted Critical
Publication of CN109461939B publication Critical patent/CN109461939B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明公开了一种N,C掺杂的NiCo/TiO2纳米管直接甲醇燃料电池电极及其制备方法,属于电池电极技术领域。所述电池电极由钛板阳极氧化先在表面形成纳米管,然后复合纳米NiCo合金并掺杂N,C而成。钛板阳极氧化焙烧后在钛板表面形成一薄层高比表面的TiO2纳米管,TiO2纳米管表面复合的纳米NiCo合金和掺杂N,C能提高TiO2纳米管的导电性,NiCo合金和N,C的掺杂对TiO2的协同作用提高TiO2对甲醇的催化氧化性能,可以提高催化剂的抗CO毒化能力,大大降低催化剂的成本,N,C掺杂的NiCo/TiO2纳米管电极用作直接甲醇燃料电池阳极,可以提高电池性能。

Description

一种NiCo/TiO2纳米管电池电极及其制备方法
技术领域
本发明涉及一种NiCo/TiO2纳米管电池电极及其制备方法,具体涉及一种N,C掺杂的 NiCo/TiO2纳米管直接甲醇燃料电池电极及其制备方法,属于电池电极技术领域。
背景技术
直接甲醇燃料电池(Direct Methanol Fuel Cell,DMFC)具有能耗少、能量密度高、甲醇来源丰富、价格便宜、系统简单、运行便捷和噪声低等优点,被认为是未来汽车动力和其它交通工具最有希望的化学电源,引起人们的广泛关注。DMFC最关键的材料之一是电极催化剂,它直接影响电池的性能、稳定性、使用寿命及制造成本。贵金属Pt在低温条件下(小于 80℃)具有优异的催化性能,目前DMFC的电极催化剂均以Pt为主要成分,其中PtRu催化剂比纯Pt具有更强的抗CO中毒性能和更高的催化活性,被认为是目前DMFC最佳的催化剂,但是由于其价格昂贵、Ru易溶等缺陷,在DMFC中的利用率还达不到商业化的要求。
人们进行了大量研究制备多元复合催化剂以提高其催化活性,提高抗CO毒化能力。TiO2掺杂如PtRuTiOX/C和Au/TiO2PtRu催化剂或作为载体制备如PtNi/TiO2、PdAg/TiO2、PdNi/TiO2等,可以减少催化剂中贵金属Pt的用量或制备非铂催化剂,降低催化剂制造成本,提高催化性能和抗CO毒化能力,具有应用前景。但是TiO2为半导体,导电性不太理想,使用时催化剂需掺C,影响其性能及应用。
发明内容
发明目的:本发明提供了一种NiCo/TiO2纳米管电池电极及其制备方法,具体涉及一种 N,C掺杂的NiCo/TiO2纳米管直接甲醇燃料电池电极及其制备方法,以降低直接甲醇燃料电池催化剂成本,提高其催化活性和抗CO毒化能力。
技术方案:为了实现上述发明目的,本发明采用的技术方案如下:
本发明提供的一种NiCo/TiO2纳米管电池电极,所述纳米管电池电极由钛板经阳极氧化形成TiO2纳米管/Ti,然后复合纳米NiCo合金并掺杂N,C形成。
所述纳米管电池电极用作直接甲醇燃料电池电极。
本发明还提供了一种NiCo/TiO2纳米管电池电极的制备方法,其特征在于:所述制备方法具体包括如下步骤:
(1)钛板的预处理
将金相砂纸打磨后的钛板放在有机除油液中进行超声除油15分钟,然后将经过除油的钛板用甲醇或乙醇清洗,并用浓度为1mol/L的HF处理10分钟,在蒸馏水中进行超声清洗3 次,最后将清洗后的钛板进行烘干则完成钛板的预处理;
(2)钛板的阳极氧化
将预处理后的钛板在电解液中进行阳极氧化,电解电位为20V,电解时间30~120分钟;用去离子水洗涤氧化后的钛板并烘干,500℃温度下马弗炉空气氛焙烧3小时,即形成TiO2纳米管/Ti;
(3)配制溶液
将NiSO4溶解到甲醇中,配制成10-20mg/mL的NiSO4/甲醇溶液;将CoSO4溶解到甲醇中,配制成10-20mg/mL的CoSO4/甲醇溶液;将2-甲基咪唑溶解到甲醇中,形成50-100mg/mL的2-甲基咪唑/甲醇溶液;
(4)TiO2纳米管/Ti吸附Ni2+和Co2+
将步骤(2)制得的TiO2纳米管/Ti浸渍于Ni、Co的摩尔比为7:3~3:7的NiSO4/甲醇溶液和CoSO4/甲醇溶液的混合液中,并搅拌溶液至NiCo/TiO2纳米管中NiCo的含量达到1~3%,用甲醇进行洗涤,烘干;
(5)形成Ni2+Co2+配合物-TiO2纳米管/Ti
将步骤(4)中得到的吸附了Ni2+和Co2+的TiO2纳米管/Ti浸渍于2-甲基咪唑/甲醇溶液中,搅拌溶液至形成Ni2+Co2+配合物-TiO2纳米管/Ti,其中2-甲基咪唑的摩尔数为步骤(4)中NiSO4和CoSO4摩尔数和的5倍,浸渍4小时,用甲醇洗涤,烘干后得到得到Ni2+Co2+配合物-TiO2纳米管/Ti;2-甲基咪唑的作用是与吸附的离子形成配合物。
(6)形成NiCo-TiO2纳米管/Ti和掺杂N,C
将步骤(5)得到的Ni2+Co2+配合物-TiO2纳米管/Ti在Ar氛中马弗炉或管式炉600℃焙烧 3小时即得NiCo/TiO2纳米管直接甲醇燃料电池电极。其中,NiCo合金是配合物配体(2-甲基咪唑)焙烧时焙烧产物C还原反应形成,N,C的来源是配体(2-甲基咪唑)的惰性气体氛焙烧。
作为进一步的限定,步骤(1)中钛板的尺寸为长×宽×厚=20mm×20mm×0.3mm。
作为进一步的限定,步骤(1)中进行预处理后的钛板的纯度为99.5%。
作为进一步的限定,步骤(1)中钛板放在有机除油液中进行超声除油时使用的有机除油液为丙酮。
作为进一步的限定,步骤(2)中钛板在电解液中进行阳极氧化时所用电解液中含有质量分数为0.5%-1%的HF和浓度为1mol/L的H2SO4
有益效果:本发明钛板阳极氧化焙烧后在钛板表面形成一薄层高比表面的TiO2纳米管, TiO2纳米管复合的纳米NiCo合金和掺杂的N,C能提高TiO2纳米管的导电性,NiCo合金和 N,C的掺杂对TiO2的协同作用提高TiO2对甲醇的催化氧化性能。同时,甲醇氧化产生的CO等中间产物被吸附、转移到N,C掺杂的NiCo/TiO2纳米管表面,并被深度氧化为最终产物CO2,可以提高催化剂的抗CO毒化能力,由于NiCo的价格远低于Pt、Ru等贵金属,且在N,C掺杂的NiCo/TiO2纳米管中量较小,因此可以大大降低催化剂的成本,N,C掺杂的NiCo/TiO2 纳米管电极用作直接甲醇燃料电池阳极,可以提高电池性能。
具体实施方式
下面结合具体实施例,进一步阐明本发明,实施例在以本发明技术方案为前提下进行实施,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围。
实施例1:
(1)钛板的前处理:钛板用金相砂纸打磨,丙酮中超声除油15分钟,甲醇或乙醇清洗, 1mol/L的HF处理10分钟,二次蒸馏水超声清洗3次,烘干;
(2)TiO2纳米管/Ti的制备:将处理好的钛板在电解液中进行阳极氧化;电解液的组成: 0.5%-1%的HF,1mol/L的H2SO4;电解电位20V,电解时间30-120分钟;电解完毕,去离子水洗涤,烘干,马弗炉中500℃空气氛焙烧3小时得TiO2纳米管/Ti;
(3)将NiSO4溶解到甲醇中,形成10-20mg/mL的NiSO4/甲醇溶液;
(4)将CoSO4溶解到甲醇中,形成10-20mg/mL的CoSO4/甲醇溶液;
(5)将2-甲基咪唑溶解到甲醇中,形成50-100mg/mL的2-甲基咪唑/甲醇溶液;
(6)搅拌下将步骤(2)制得的TiO2纳米管/Ti浸渍摩尔比nNi:nCo=7:3的NiSO4/甲醇溶液和CoSO4/甲醇溶液,至NiCo/TiO2纳米管中WNiCo=1%,甲醇洗涤,烘干;
(7)将步骤(6)得到的吸附了Ni2+和Co2+的TiO2纳米管/Ti搅拌下浸渍2-甲基咪唑/甲醇溶液,形成Ni2+Co2+配合物-TiO2纳米管/Ti,其中2-甲基咪唑的摩尔数为步骤(6)中NiSO4和CoSO4摩尔数和的5倍,浸渍时间4小时,甲醇洗涤,烘干;
(8)将步骤(7)得到的Ni2+Co2+配合物-TiO2纳米管/Ti在Ar氛中马弗炉或管式炉600℃焙烧3小时得N,C掺杂的NiCo/TiO2纳米管直接甲醇燃料电池电极。
实施例2:
(1)钛板的前处理:钛板用金相砂纸打磨,丙酮中超声除油15分钟,甲醇或乙醇清洗, 1mol/L的HF处理10分钟,二次蒸馏水超声清洗3次,烘干;
(2)TiO2纳米管/Ti的制备:将处理好的钛板在电解液中进行阳极氧化;电解液的组成: 0.5%-1%的HF,1mol/L的H2SO4;电解电位20V,电解时间30-120分钟;电解完毕,去离子水洗涤,烘干,马弗炉中500℃空气氛焙烧3小时得TiO2纳米管/Ti;
(3)将NiSO4溶解到甲醇中,形成10-20mg/mL的NiSO4/甲醇溶液;
(4)将CoSO4溶解到甲醇中,形成10-20mg/mL的CoSO4/甲醇溶液;
(5)将2-甲基咪唑溶解到甲醇中,形成50-100mg/mL的2-甲基咪唑/甲醇溶液;
(6)搅拌下将步骤(2)制得的TiO2纳米管/Ti浸渍摩尔比nNi:nCo=1:1的NiSO4/甲醇溶液和CoSO4/甲醇溶液,至NiCo/TiO2纳米管中WNiCo=2%,甲醇洗涤,烘干;
(7)将步骤(6)得到的吸附了Ni2+和Co2+的TiO2纳米管/Ti搅拌下浸渍2-甲基咪唑/甲醇溶液,形成Ni2+Co2+配合物-TiO2纳米管/Ti,其中2-甲基咪唑的摩尔数为步骤(6)中NiSO4和CoSO4摩尔数和的5倍,浸渍时间4小时,甲醇洗涤,烘干;
(8)将步骤(7)得到的Ni2+Co2+配合物-TiO2纳米管/Ti在Ar氛中马弗炉或管式炉600℃焙烧3小时得N,C掺杂的NiCo/TiO2纳米管直接甲醇燃料电池电极。
实施例3:
(1)钛板的前处理:钛板用金相砂纸打磨,丙酮中超声除油15分钟,甲醇或乙醇清洗, 1mol/L的HF处理10分钟,二次蒸馏水超声清洗3次,烘干;
(2)TiO2纳米管/Ti的制备:将处理好的钛板在电解液中进行阳极氧化;电解液的组成: 0.5%-1%的HF,1mol/L的H2SO4;电解电位20V,电解时间30-120分钟;电解完毕,去离子水洗涤,烘干,马弗炉中500℃空气氛焙烧3小时得TiO2纳米管/Ti;
(3)将NiSO4溶解到甲醇中,形成10-20mg/mL的NiSO4/甲醇溶液;
(4)将CoSO4溶解到甲醇中,形成10-20mg/mL的CoSO4/甲醇溶液;
(5)将2-甲基咪唑溶解到甲醇中,形成50-100mg/mL的2-甲基咪唑/甲醇溶液;
(6)搅拌下将步骤(2)制得的TiO2纳米管/Ti浸渍摩尔比nNi:nCo=3:7的NiSO4/甲醇溶液和CoSO4/甲醇溶液,至NiCo/TiO2纳米管中WNiCo=3%,甲醇洗涤,烘干;
(7)将步骤6得到的吸附了Ni2+和Co2+的TiO2纳米管/Ti搅拌下浸渍2-甲基咪唑/甲醇溶液,形成Ni2+Co2+配合物-TiO2纳米管/Ti,其中2-甲基咪唑的摩尔数为步骤6中NiSO4和CoSO4摩尔数和的5倍,浸渍时间4小时,甲醇洗涤,烘干;
(8)将步骤7得到的Ni2+Co2+配合物-TiO2纳米管/Ti在Ar氛中马弗炉或管式炉600℃焙烧3小时得N,C掺杂的NiCo/TiO2纳米管直接甲醇燃料电池电极。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种NiCo/TiO2纳米管电池电极的制备方法,其特征在于:所述制备方法具体包括如下步骤:
(1)钛板的预处理
将金相砂纸打磨后的钛板放在有机除油液中进行超声除油15分钟,然后将经过除油的钛板用甲醇或乙醇清洗,并用浓度为1mol/L的HF处理10分钟,在蒸馏水中进行超声清洗3次,最后将清洗后的钛板进行烘干则完成钛板的预处理;
(2)钛板的阳极氧化
将预处理后的钛板在电解液中进行阳极氧化,电解电位为20V,电解时间30~120分钟;用去离子水洗涤氧化后的钛板并烘干,500℃温度下马弗炉空气氛焙烧3小时,即形成TiO2纳米管/Ti;
(3)配制溶液
将NiSO4溶解到甲醇中,配制成浓度为10-20mg/mL的NiSO4/甲醇溶液;将CoSO4溶解到甲醇中,配制成浓度为10-20mg/mL的CoSO4/甲醇溶液;将2-甲基咪唑溶解到甲醇中,形成浓度为50-100mg/mL的2-甲基咪唑/甲醇溶液;
(4)TiO2纳米管/Ti吸附Ni2+和Co2+
将步骤(2)制得的TiO2纳米管/Ti浸渍于Ni、Co的摩尔比为7:3~3:7的NiSO4/甲醇溶液和CoSO4/甲醇溶液的混合液中,并搅拌溶液至NiCo/TiO2纳米管中NiCo的质量含量达到1~3%,用甲醇进行洗涤,烘干;
(5)形成Ni2+Co2+配合物-TiO2纳米管/Ti
将步骤(4)中得到的吸附了Ni2+和Co2+的TiO2纳米管/Ti搅拌下浸渍于2-甲基咪唑/甲醇溶液中,浸渍4小时,形成Ni2+Co2+配合物-TiO2纳米管/Ti,其中2-甲基咪唑的摩尔数为步骤(4)中NiSO4和CoSO4摩尔数和的5倍,用甲醇洗涤,烘干后得到Ni2+Co2+配合物-TiO2纳米管/Ti;
(6)形成NiCo-TiO2纳米管/Ti和掺杂N,C
将步骤(5)得到的Ni2+Co2+配合物-TiO2纳米管/Ti在Ar氛中马弗炉或在Ar氛中管式炉600℃焙烧3小时即得NiCo/TiO2纳米管直接甲醇燃料电池电极。
2.根据权利要求1 所述的一种NiCo/TiO2纳米管电池电极的制备方法,其特征在于:步骤(2)中钛板在电解液中进行阳极氧化时所用电解液中含有质量分数为0.5%-1%的HF和浓度为1mol/L的H2SO4
CN201811203755.6A 2018-10-16 2018-10-16 一种NiCo/TiO2纳米管电池电极及其制备方法 Active CN109461939B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811203755.6A CN109461939B (zh) 2018-10-16 2018-10-16 一种NiCo/TiO2纳米管电池电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811203755.6A CN109461939B (zh) 2018-10-16 2018-10-16 一种NiCo/TiO2纳米管电池电极及其制备方法

Publications (2)

Publication Number Publication Date
CN109461939A CN109461939A (zh) 2019-03-12
CN109461939B true CN109461939B (zh) 2021-11-05

Family

ID=65607678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811203755.6A Active CN109461939B (zh) 2018-10-16 2018-10-16 一种NiCo/TiO2纳米管电池电极及其制备方法

Country Status (1)

Country Link
CN (1) CN109461939B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111141788B (zh) * 2019-12-31 2021-08-03 南通大学 一种黑磷-TiO2纳米管/Ti敏感电极硫化氢传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728545A (zh) * 2009-11-13 2010-06-09 上海理工大学 一种直接甲醇燃料电池阳极纳米合金催化剂及其制备方法
CN104022292A (zh) * 2014-05-07 2014-09-03 南通大学 一种TiO2@C负载PdAg直接甲醇燃料电池阳极催化剂及制备方法
CN104022297A (zh) * 2014-05-07 2014-09-03 南通大学 一种直接甲醇燃料电池PdNi/TiO2纳米管电极及其制备方法
CN106669765A (zh) * 2017-01-20 2017-05-17 中国科学院过程工程研究所 一种金属含碳催化剂及其制备方法和用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130054008A (ko) * 2011-11-16 2013-05-24 삼성전자주식회사 연료전지용 전극, 그의 제조방법, 촉매 슬러리, 및 상기 전극을 구비하는 연료전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728545A (zh) * 2009-11-13 2010-06-09 上海理工大学 一种直接甲醇燃料电池阳极纳米合金催化剂及其制备方法
CN104022292A (zh) * 2014-05-07 2014-09-03 南通大学 一种TiO2@C负载PdAg直接甲醇燃料电池阳极催化剂及制备方法
CN104022297A (zh) * 2014-05-07 2014-09-03 南通大学 一种直接甲醇燃料电池PdNi/TiO2纳米管电极及其制备方法
CN106669765A (zh) * 2017-01-20 2017-05-17 中国科学院过程工程研究所 一种金属含碳催化剂及其制备方法和用途

Also Published As

Publication number Publication date
CN109461939A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
CN110783577B (zh) 一种铂镍钴合金@碳纳米管复合材料、其制备和应用
Chen et al. Engineering the metal/oxide interface of Pd nanowire@ CuOx electrocatalysts for efficient alcohol oxidation reaction
US10549266B2 (en) Low-platinum catalyst based on nitride nanoparticles and preparation method thereof
Yan et al. Pt supported on Mo2C particles with synergistic effect and strong interaction force for methanol electro-oxidation
Lavacchi et al. Titanium dioxide nanomaterials in electrocatalysis for energy
Zhan et al. Platinum nanoparticles decorated robust binary transition metal nitride–carbon nanotubes hybrid as an efficient electrocatalyst for the methanol oxidation reaction
CN103022522B (zh) 三元碳负载钯锡铂纳米颗粒催化剂及其制备方法
WO2008040222A1 (fr) Catalyseur en poudre d'ordre de grandeur nanométrique, et son procédé de préparation
Sharifi et al. Enhanced photoelectrochemical water splitting of CrTiO 2 nanotube photoanodes by the decoration of their surface via the photodeposition of Ag and Au
CN101515648A (zh) 一种可用于燃料电池的新型膜电极组件,制备方法及其应用
Vo et al. Multifunctional ternary hydrotalcite-like nanosheet arrays as an efficient co-catalyst for vastly improved water splitting performance on bismuth vanadate photoanode
Chen et al. Enhanced Anti-CO poisoning of platinum on mesoporous carbon spheres by abundant hydroxyl groups in methanol electro-oxidation
Doğan Ethanol electro-oxidation in alkaline media on Pd/electrodeposited reduced graphene oxide nanocomposite modified nickel foam electrode
Ribeiro et al. Platinum nanoparticles supported on nitrogen-doped carbon for ammonia electro-oxidation
CN104022295B (zh) 一种直接甲醇燃料电池PdAg/TiO2纳米管电极的制备方法
CN104022289B (zh) 一种直接甲醇燃料电池RuNi/TiO2纳米管电极及制备方法
WO2018070149A1 (ja) 固体高分子形燃料電池用の触媒及びその製造方法
Chai et al. Heterogeneous Ir3Sn–CeO2/C as alternative Pt-free electrocatalysts for ethanol oxidation in acidic media
CN109244485B (zh) 一种NiCo/TiO2电池阳极催化剂及其制备方法
Mohanapriya et al. Mesoporous Pt–Ni catalyst and their electro catalytic activity towards methanol oxidation
Sun et al. Synthesis of Nitrogen-doped Niobium Dioxide and its co-catalytic effect towards the electrocatalysis of oxygen reduction on platinum
CN109461939B (zh) 一种NiCo/TiO2纳米管电池电极及其制备方法
CN114045515A (zh) 一种将银纳米颗粒负载到析氧电催化剂的通用制备方法
Zhou et al. Low carbon alcohol fuel electrolysis of hydrogen generation catalyzed by a novel and effective Pt–CoTe/C bifunctional catalyst system
TW201020205A (en) Electroplating solution for manufacturing nanometer platinum and platinum based alloy particles and method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190312

Assignee: NANTONG HAOYOU FOOD ADDITIVES Co.,Ltd.

Assignor: NANTONG University

Contract record no.: X2023320000033

Denomination of invention: A NiCo/TiO2nanotube battery electrode and its preparation method

Granted publication date: 20211105

License type: Common License

Record date: 20230111

EE01 Entry into force of recordation of patent licensing contract
TR01 Transfer of patent right

Effective date of registration: 20230820

Address after: 226000 No. 9 Siyuan Road, Chongchuan District, Nantong City, Jiangsu Province

Patentee after: Nantong University Technology Transfer Center Co.,Ltd.

Address before: 226019 Jiangsu city of Nantong province sik Road No. 9

Patentee before: NANTONG University

TR01 Transfer of patent right