CN109455767A - γ-Fe2O3掺杂中空碳纳米纤维膜材料的制备方法 - Google Patents

γ-Fe2O3掺杂中空碳纳米纤维膜材料的制备方法 Download PDF

Info

Publication number
CN109455767A
CN109455767A CN201811462194.1A CN201811462194A CN109455767A CN 109455767 A CN109455767 A CN 109455767A CN 201811462194 A CN201811462194 A CN 201811462194A CN 109455767 A CN109455767 A CN 109455767A
Authority
CN
China
Prior art keywords
hollow carbon
preparation
presoma
adulterated
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811462194.1A
Other languages
English (en)
Inventor
吕仁江
蔡人浩
李英杰
高立娣
秦世丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qiqihar University
Original Assignee
Qiqihar University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qiqihar University filed Critical Qiqihar University
Priority to CN201811462194.1A priority Critical patent/CN109455767A/zh
Publication of CN109455767A publication Critical patent/CN109455767A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明涉及一种γ‑Fe2O3掺杂中空碳纳米纤维膜材料的制备方法,其具体步骤为:(1)前驱体的制备;(2)有前驱体的阳极氧化铝AAO模板的制备;(3)将组装有前驱体的阳极氧化铝AAO模板进行煅烧,在模板纳米孔道内得到γ‑Fe2O3掺杂中空碳纳米纤维,将煅烧后的AAO模板放在NaOH溶液中除去阳极氧化铝模板;(4)γ‑Fe2O3掺杂中空碳纳米纤维的制备;(5)将制备好的γ‑Fe2O3掺杂中空碳纳米纤维分散于乙醇溶液中,使用进样针抽取,滴于裸玻碳电极表面,室温下风干成膜,即可得到γ‑Fe2O3掺杂中空碳纳米纤维膜材料。本申请的中空纤维内部均匀分散着金属纳米颗粒,形貌笔直,与模板孔道形貌一致,且中空纤维彼此独立,有较好的石墨化程度,中空纤维内部分散的金属颗粒晶型完善。

Description

γ-Fe2O3掺杂中空碳纳米纤维膜材料的制备方法
技术领域
本发明涉及无机纳米材料的制备领域,特别是一种由内部均匀分散γ-Fe2O3金属颗粒的碳纳米中空纤维制备成的膜材料。
背景技术
碳纳米材料是一种新型碳材料,具有很好的物理化学性质及机械性质,已成为当前物理、化学、材料等诸多学科领域的研究热点。也由于这些性质,使它们在催化、传感、电子、医疗和能源等更多领域有着更加广阔的应用前景。在碳纳米材料中,一维碳纳米材料是一种重要的纳米材料,现有的研究工作致力于不同方法的制备及机理研究,并探索其电学、光学、机械等性能。而在一维碳纳米材料的研究中,还存在许多有待解决的问题,阻碍一维碳纳米材料的基础研究及实际应用的主要障碍在其可控制备。一维碳纳米材料特殊的微观形貌及微观结构极大地影响着其电学、力学等性能,调控微观结构、形貌便能有效改变其性能。一维碳纳米材料的可控制备包括纯度控制、结晶控制、排列控制、长度控制、直径控制等。一维碳纳米材料可控制备的关键是找到一种简便有效、重复性好的控制方法。
一维碳纳米材料现已合成多种形貌,如碳纳米纤维、碳纳米管、碳纳米带、碳纳米棒等。其制备方法多为气相沉积法、水热法和溶剂热法。据文献报道,海滇等(纺织学报,2016,37,1-5.)用一种高分子聚丙烯腈基制备了碳纳米纤维,获得的碳纳米材料力学性能较好,呈多孔结构。刘赞等(Iet Micro&Nano Letters,2017,12,236-238.)采用水热纳米浇筑法成功制备出碳纳米棒,通过一系列表征表明具有一维棒状结构的碳纳米棒有着高的比表面积和介孔特征。李绍秀(环境科学与技术,2017,40,124-130.)等人通过化学共沉淀法制备Fe3O4和γ-Fe2O3修饰的多壁碳纳米管用于去除水中红霉素,结果表明:磁性铁氧化物修饰后显著提高MWCNTs对红霉素的去除效果,30min红霉素去除率达到87.23%。吸附过程是以物理吸附为主,化学吸附为辅的吸热反应。吸附红霉素的磁性MWCNTs通过微波辐射可实现再生循环使用,具有应用前景。陈一萍等(纺织学报,2016,37,89-93.)使用氧化沉淀方法制备了Fe3O4颗粒修饰的多壁碳纳米管,测试结果表明复合吸附材料与原始碳纳米管相比,表面官能团含量明显增加,这是其吸附能力显著提高的主要原因。冯春梁等人(平顶山学院学报,2016,31(05):42-47.)在环己烷、乙醇和水的混合溶液中,采用共沉淀法制备四氧化三铁-碳纳米管复合材料,将复合材料水相分散液滴涂到磁性碳糊电极(MCPE)表面,制备出一种新型电化学苯酚传感器,实验结果表明所制备的苯酚传感器响应迅速、稳定、灵敏度高,可用于对微量苯酚的检测,在环境监测领域具有潜在的应用价值。中国专利公开号为CN107803181A的专利文献公开了一种磁性四氧化三铁纳米粒子修饰碳纳米管复合材料的制备方法,该方法使用二价和三价铁盐、NH3·H2O为原料经过水浴,离心分离,干燥研磨,得到磁性Fe3O4纳米粒子,将Fe3O4纳米粒子与纯化后的碳纳米管置于三甘醇溶液中搅拌加热,保温后冷却,分离产物,真空烘干,制得磁性Fe3O4纳米粒子修饰碳纳米管复合材料。中国专利公开号为CN106047290A的专利文献公开了一种纳米四氧化三铁磁性粒子均匀包覆碳纳米管的方法,通过多元醇法制备,操作方法如下:以碳纳米管、铁盐、醇为反应原料,氢氧化钠或氨水提供碱性环境,最后向其中加入乙醇和去离子水反复洗涤,得到四氧化三铁包覆的碳纳米管。公开号为CN108257793A的专利文献公开了一种碳纳米管/三氧化二铁复合材料的制备方法,通过共沉淀法制备,操作方法如下:将碳纳米管超声后的分散液中加入高铁酸钾,经过热处理,离心分离,水洗醇洗即可得到碳纳米管/三氧化二铁复合材料。中国专利公开号为CN108039257A的专利文献公开了一种三维多孔片层状四氧化三铁/碳纳米电磁波吸收材料的制备方法,该方法将三价无机铁盐、尿素作为合成四氧化三铁的前驱体,和表面活性剂按一定的质量比溶于溶剂中,在密闭条件下反应,对产物进行洗涤、干燥,制得羟基氧化铁;将制得的羟基氧化铁进行煅烧处理,得到三氧化二铁粉体;将三氧化二铁粉体与碳源混合,然后在密闭条件下反应,即得三维多孔片层状四氧化三铁/碳纳米电磁波吸收材料,该电磁波吸收材料饱和磁化率高、矫顽力大、轻质、抗氧化能力强、电磁波吸收性能优异。
上述文献中提供的制备金属掺杂或包覆的一维碳纳米材料制备方法,形貌依然遵循碳纳米管的卷曲形貌,且只在碳纳米管的外部进行修饰或包覆,易团聚,缺少良好的分散性。因此,从生产工艺控制和形貌控制方面方面考虑,亟需寻求一种简便的合成金属修饰的一维中空碳纳米材料的制备方法。
发明内容
本发明的目的在于克服现有技术的不足,提供一种γ-Fe2O3掺杂中空碳纳米纤维膜材料的制备方法。以针对于制备一维金属掺杂碳基材料,制备过程复杂、材料形貌不理想,易团聚的难题,掺杂的金属纳米粒子分散不均匀,并且是一步完成金属掺杂和合成一维碳基材料,提供了一种工艺简单的金属掺杂中空碳纳米纤维膜材料的制备方法,利用产品制备出γ-Fe2O3掺杂碳纳米中空纤维膜。
本发明的目的是通过以下技术方案来实现的:
一种γ-Fe2O3掺杂中空碳纳米纤维膜材料的制备方法,其具体步骤为:
(1)将葡萄糖酸亚铁固体以及去离子水加入小烧杯中溶解,在超声清洗器中超声20~30min让固体颗粒完全溶解混合均匀,放置待用,得到前驱体;
葡萄糖酸亚铁固体与去离子水的质量比1∶10~1∶12;
(2)将干燥的阳极氧化铝AAO模板放在自制真空实验装置里,通过真空压力诱导方式,将前驱体组装到模板纳米孔道中,后将实验装置放在超声波清洗器中超声20~30min,用镊子将组装后的模板取出,放在表面皿中,每半小时补加1mL前驱体,室温下静置陈化4~5h小时,之后将模板放在烘箱中以50℃干燥24~36h;得到有前驱体的阳极氧化铝AAO模板;
前驱体与阳极氧化铝AAO模板的质量比为1∶5~1∶7;
(3)将组装有前驱体的阳极氧化铝AAO模板放在管式炉中N2保护下进行煅烧;500~700℃煅烧3h,在模板纳米孔道内得到γ-Fe2O3掺杂中空碳纳米纤维,将煅烧后的AAO模板放在3~6mol·L-1的NaOH溶液中除去阳极氧化铝模板,以保证中空碳纳米纤维被完全释放出来;
阳极氧化铝AAO模板与NaOH溶液的质量比为1∶10~1∶12;
(4)对溶液进行离心分离,用去离子水洗涤五次,乙醇洗涤三次,最后得到γ-Fe2O3掺杂中空碳纳米纤维;
(5)将制备好的γ-Fe2O3掺杂中空碳纳米纤维分散于乙醇溶液中,使用进样针抽取,滴于裸玻碳电极表面,室温下风干成膜,即可得到γ-Fe2O3掺杂中空碳纳米纤维膜材料。
γ-Fe2O3掺杂中空碳纳米纤维与乙醇溶液的质量比为1∶50~1∶55。
其中所述的碳纳米中空纤维的直径大约为200nm,与阳极氧化铝模板孔径一致,该中空纤维内部均匀分散着金属纳米颗粒,形貌笔直,与模板孔道形貌一致,且中空纤维彼此独立,有较好的石墨化程度,中空纤维内部分散的金属颗粒晶型完善。
与现有技术相比,本发明的积极效果是:
(1)所制得的γ-Fe2O3掺杂中空碳纳米纤维具有良好的分散性,不易团聚;由于实验中使用阳极氧化铝模板制备材料,阳极氧化铝模板中每个孔道相互独立,因此制备材料也是单独的个体,具有良好的分散性。
(2)所制得的γ-Fe2O3掺杂中空碳纳米纤维碳化程度高;具体的是因为在实验中对含有前躯体的模板高温煅烧处理,同时氮气保护,因此材料具有较好的碳化程度
(3)所制得的γ-Fe2O3掺杂中空碳纳米纤维,掺杂的金属纳米粒子分散均匀,并且是一步完成金属掺杂。本实验采用葡萄糖酸铁作为金属源与碳源,高温下,金属离子的原位反应和葡萄糖碳化同时进行,一步即可合成材料。
(4)葡萄糖酸铁不但作为金属源,而且作为碳化催化剂,有助于材料合成前驱体中葡萄糖酸铁其中铁离子作为金属源,同时铁本身可作为葡萄糖碳化催化剂有助于γ-Fe2O3掺杂中空碳纳米纤维的合成。
(5)所制得的γ-Fe2O3掺杂中空碳纳米纤维膜材料性能稳定,在空气中不易变性。碳基材料本身性质稳定,不易变性,而材料中的金属颗粒晶型完善,是稳定的氧化物,因此性能稳定不易变性。
(6)工艺简单,对设备要求低,原材料易得到,费用低廉,可以进行大批量生产。
本发明制备的γ-Fe2O3掺杂中空碳纳米纤维膜材料有利于加强碳纳米材料本身独特的性能和应用。在碳基材料基础上,进行γ-Fe2O3掺杂,使其作为探针分子加强材料的应用性能。
附图说明
图1为γ-Fe2O3掺杂中空碳纳米纤维的制备流程图。
图2为γ-Fe2O3掺杂中空碳纳米纤维的透射电镜照片。
图3为γ-Fe2O3掺杂中空碳纳米纤维膜材料的扫描电镜照片。
图4为实施例3的γ-Fe2O3掺杂中空碳纳米纤维的X-射线衍射谱图。
图5为采用本方法制备的在不同温度煅烧时γ-Fe2O3掺杂中空碳纳米纤维的Raman分析谱图。
图6为实施例3的γ-Fe2O3掺杂中空碳纳米纤维的VSM分析谱图。
具体实施方式
以下提供本发明一种高性能椰壳助剂的制备方法及其在纺织材料中应用的具体实施方式。
实施例1
(1)用分析天平称量10.00g葡萄糖酸亚铁固体,放入小烧杯中,加入100.00mL去离子水,放在超声清洗器中超声30min让固体颗粒完全溶解混合均匀,放置待用;
(2)将干燥的阳极氧化模板放在自制真空实验装置里,通过真空压力诱导方式,将步骤(1)中制备的前驱体组装到模板纳米孔道中,后将实验装置放在超声波清洗器中超声30min,用镊子将组装后的模板取出,放在表面皿中,每半小时补加一次前驱体,室温下静置陈化4~5h,之后将模板放在烘箱中以50℃干燥24h。
(3)将组装有前驱体的阳极氧化铝模板放在管式炉中N2保护下进行煅烧。500℃煅烧3h,将煅烧后的AAO模板放在6mol·L-1的NaOH溶液中除去阳极氧化铝模板。
(4)对溶液进行离心分离,用去离子水洗涤五次,乙醇洗涤三次,最后得到γ-Fe2O3掺杂中空碳纳米纤维。
(5)将制备好的γ-Fe2O3掺杂中空碳纳米纤维分散于乙醇溶液中,使用进样针抽取,滴于裸玻碳电极表面,室温下风干成膜,即可得到γ-Fe2O3掺杂中空碳纳米纤维膜材料。
实施例2
(1)用分析天平称量10.00g葡萄糖酸亚铁固体,放入小烧杯中,加入100.00mL去离子水,放在超声清洗器中超声30min让固体颗粒完全溶解混合均匀,放置待用;
(2)将干燥的阳极氧化模板放在自制真空实验装置里,通过真空压力诱导方式,将步骤(1)中制备的前驱体组装到模板纳米孔道中,后将实验装置放在超声波清洗器中超声30min,用镊子将组装后的模板取出,放在表面皿中,每半小时补加一次前驱体,室温下静置陈化4~5h,之后将模板放在烘箱中以50℃干燥24h。
(3)将组装有前驱体的阳极氧化铝模板放在管式炉中N2保护下进行煅烧。600℃煅烧3h,将煅烧后的AAO模板放在6mol·L-1的NaOH溶液中除去阳极氧化铝模板。
(4)对溶液进行离心分离,用去离子水洗涤五次,乙醇洗涤三次,最后得到γ-Fe2O3掺杂中空碳纳米纤维。
(5)将制备好的γ-Fe2O3掺杂中空碳纳米纤维分散于乙醇溶液中,使用进样针抽取,滴于裸玻碳电极表面,室温下风干成膜,即可得到γ-Fe2O3掺杂中空碳纳米纤维膜材料。
实施例3
(1)用分析天平称量10.00g葡萄糖酸亚铁固体,放入小烧杯中,加入100.00mL去离子水,放在超声清洗器中超声30min让固体颗粒完全溶解混合均匀,放置待用;
(2)将干燥的阳极氧化模板放在自制真空实验装置里,通过真空压力诱导方式,将步骤(1)中制备的前驱体组装到模板纳米孔道中,后将实验装置放在超声波清洗器中超声30min,用镊子将组装后的模板取出,放在表面皿中,每半小时补加一次前驱体,室温下静置陈化4~5h,之后将模板放在烘箱中以50℃干燥24h。
(3)将组装有前驱体的阳极氧化铝模板放在管式炉中N2保护下进行煅烧。700℃煅烧3h,将煅烧后的AAO模板放在6mol·L-1的NaOH溶液中除去阳极氧化铝模板。
(4)对溶液进行离心分离,用去离子水洗涤五次,乙醇洗涤三次,最后得到γ-Fe2O3掺杂中空碳纳米纤维。
(5)将制备好的γ-Fe2O3掺杂中空碳纳米纤维分散于乙醇溶液中,使用进样针抽取,滴于裸玻碳电极表面,室温下风干成膜,即可得到γ-Fe2O3掺杂中空碳纳米纤维膜材料。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明构思的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围内。

Claims (6)

1.一种γ-Fe2O3掺杂中空碳纳米纤维膜材料的制备方法,其特征在于,其具体步骤为:
(1)将葡萄糖酸亚铁固体以及去离子水加入小烧杯中溶解,在超声清洗器中超声20~30min让固体颗粒完全溶解混合均匀,放置待用,得到前驱体;
(2)将干燥的阳极氧化铝AAO模板放在自制真空实验装置里,通过真空压力诱导方式,将前驱体组装到模板纳米孔道中,后将实验装置放在超声波清洗器中超声20~30min,用镊子将组装后的模板取出,放在表面皿中,每半小时补加1mL前驱体,室温下静置陈化4~5h小时,之后将模板放在烘箱中以50℃干燥24~36h;得到有前驱体的阳极氧化铝AAO模板;
(3)将组装有前驱体的阳极氧化铝AAO模板放在管式炉中N2保护下进行煅烧,在500~700℃煅烧3h,在模板纳米孔道内得到γ-Fe2O3掺杂中空碳纳米纤维,将煅烧后的AAO模板放在3~6mol·L-1的NaOH溶液中除去阳极氧化铝模板,以保证中空碳纳米纤维被完全释放出来;
(4)对溶液进行离心分离,用去离子水洗涤五次,乙醇洗涤三次,最后得到γ-Fe2O3掺杂中空碳纳米纤维;
(5)将制备好的γ-Fe2O3掺杂中空碳纳米纤维分散于乙醇溶液中,使用进样针抽取,滴于裸玻碳电极表面,室温下风干成膜,即可得到γ-Fe2O3掺杂中空碳纳米纤维膜材料。
2.如权利要求1所述的一种γ-Fe2O3掺杂中空碳纳米纤维膜材料的制备方法,其特征在于,葡萄糖酸亚铁固体与去离子水的质量比1∶10~1∶12。
3.如权利要求1所述的一种γ-Fe2O3掺杂中空碳纳米纤维膜材料的制备方法,其特征在于,前驱体与阳极氧化铝AAO模板的质量比为1∶5~1∶7。
4.如权利要求1所述的一种γ-Fe2O3掺杂中空碳纳米纤维膜材料的制备方法,其特征在于,阳极氧化铝AAO模板与NaOH溶液的质量比为1∶10~1∶12。
5.如权利要求1所述的一种γ-Fe2O3掺杂中空碳纳米纤维膜材料的制备方法,其特征在于,γ-Fe2O3掺杂中空碳纳米纤维与乙醇溶液的质量比为1∶50~1∶55。
6.如权利要求1所述的一种γ-Fe2O3掺杂中空碳纳米纤维膜材料的制备方法,其特征在于,所述的碳纳米中空纤维的直径大约为200nm,与阳极氧化铝模板孔径一致,该中空纤维内部均匀分散着金属纳米颗粒,形貌笔直,与模板孔道形貌一致,且中空纤维彼此独立,有较好的石墨化程度,中空纤维内部分散的金属颗粒晶型完善。
CN201811462194.1A 2018-11-26 2018-11-26 γ-Fe2O3掺杂中空碳纳米纤维膜材料的制备方法 Pending CN109455767A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811462194.1A CN109455767A (zh) 2018-11-26 2018-11-26 γ-Fe2O3掺杂中空碳纳米纤维膜材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811462194.1A CN109455767A (zh) 2018-11-26 2018-11-26 γ-Fe2O3掺杂中空碳纳米纤维膜材料的制备方法

Publications (1)

Publication Number Publication Date
CN109455767A true CN109455767A (zh) 2019-03-12

Family

ID=65612165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811462194.1A Pending CN109455767A (zh) 2018-11-26 2018-11-26 γ-Fe2O3掺杂中空碳纳米纤维膜材料的制备方法

Country Status (1)

Country Link
CN (1) CN109455767A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985774A (zh) * 2010-11-09 2011-03-16 北京大学 单晶纳米线阵列的合成方法
US8557345B2 (en) * 2008-08-26 2013-10-15 Xerox Corporation Process for making CNT/PFA composite coatings for fuser applications
CN105463380A (zh) * 2015-11-19 2016-04-06 山西师范大学 高饱和磁化强度氧化物稀磁半导体纳米点阵列的制备方法
CN106047290A (zh) * 2016-06-24 2016-10-26 中国科学院理化技术研究所 一种纳米四氧化三铁磁性粒子均匀包覆碳纳米管的方法
CN108257793A (zh) * 2018-01-16 2018-07-06 南昌航空大学 一种碳纳米管/三氧化二铁复合材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557345B2 (en) * 2008-08-26 2013-10-15 Xerox Corporation Process for making CNT/PFA composite coatings for fuser applications
CN101985774A (zh) * 2010-11-09 2011-03-16 北京大学 单晶纳米线阵列的合成方法
CN105463380A (zh) * 2015-11-19 2016-04-06 山西师范大学 高饱和磁化强度氧化物稀磁半导体纳米点阵列的制备方法
CN106047290A (zh) * 2016-06-24 2016-10-26 中国科学院理化技术研究所 一种纳米四氧化三铁磁性粒子均匀包覆碳纳米管的方法
CN108257793A (zh) * 2018-01-16 2018-07-06 南昌航空大学 一种碳纳米管/三氧化二铁复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BYUNGCHUL JANG ET AL: ""Facile Synthesis of One-Dimensional Iron-Oxide/Carbon Hybrid Nanostructures as Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media"", 《JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY》 *

Similar Documents

Publication Publication Date Title
Zhang et al. Fabrication of Co3O4 nanowires assembled on the surface of hollow carbon spheres for acetone gas sensing
Gao et al. Porous corundum-type In 2 O 3 nanoflowers: controllable synthesis, enhanced ethanol-sensing properties and response mechanism
Liang et al. Synthesis of In2O3 hollow nanofibers and their application in highly sensitive detection of acetone
Iqbal et al. Highly flexible NiCo2O4/CNTs doped carbon nanofibers for CO2 adsorption and supercapacitor electrodes
Liu et al. Core–shell α–Fe 2 O 3@ SnO 2/Au hybrid structures and their enhanced gas sensing properties
Xu et al. Preparation of mesoporous SnO2 by solvothermal method using Stahlianthus involucratus leaves and application to n-butanol sensor
Jia et al. Synthesis and characterization of Ag/α-Fe2O3 microspheres and their application to highly sensitive and selective detection of ethanol
CN107176598A (zh) 一种氮掺杂介孔碳负载钴-氧化钴纳米复合材料及其制备方法和应用
Xu et al. Mesoporous WO3 nanofibers with crystalline framework for high-performance acetone sensing
CN106252090B (zh) 一种高褶皱石墨烯材料及其制备方法
Wu et al. Hydrothermal synthesis of SnO2 nanocorals, nanofragments and nanograss and their formaldehyde gas-sensing properties
Wang et al. Magnetic mesoporous carbon for efficient removal of organic pollutants
CN104451952B (zh) 一种还原性石墨烯包裹四氧化三钴复合纳米纤维及其制备工艺
CN103031618A (zh) 一种氧化石墨烯和石墨烯中空纤维的制备方法
Guo et al. Controllable construction of Ho 2 O 3 nanomaterials with different dimensions (1D, 2D, and 3D) for real-time monitoring human breathing and body surface humidity detection
CN103864031B (zh) 一种具有高比表面积和孔体积的纳米材料的制备方法
CN107151834A (zh) 一种磁性Fe3O4纳米纤维材料、制备方法及其在类过氧化物酶催化反应中的应用
Gao et al. Synthesis of multifarious hierarchical flower-like NiO and their gas-sensing properties
Cai et al. Hierarchical spheres In2S3-based cataluminescence sensor for ammonium sulfide
Fu et al. High anti-humidity exhaled acetone sensor based on Co3O4 derived from MOF-74
Marimuthu et al. NiCo 2 O 4 functionalized with rGO catalyst as an active layer for ammonia sensing
Wu et al. Controlled synthesis of porous Co 3 O 4 nanofibers by spiral electrospinning and their application for formaldehyde oxidation
CN112537764A (zh) 一种基于天然丝瓜络的碳基多孔复合吸波剂及其制备方法
CN105460916B (zh) 一种空心纳米碳球组装介孔碳纤维材料的制备方法
Nie et al. NiO hollow nanospheres with different surface by a bubble-template approach and its gas sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190312