CN109448127B - 一种基于无人机遥感的农田高精度导航地图生成方法 - Google Patents

一种基于无人机遥感的农田高精度导航地图生成方法 Download PDF

Info

Publication number
CN109448127B
CN109448127B CN201811104500.4A CN201811104500A CN109448127B CN 109448127 B CN109448127 B CN 109448127B CN 201811104500 A CN201811104500 A CN 201811104500A CN 109448127 B CN109448127 B CN 109448127B
Authority
CN
China
Prior art keywords
farmland
ndvi
image
remote sensing
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811104500.4A
Other languages
English (en)
Other versions
CN109448127A (zh
Inventor
张玉成
万忠政
李莹玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luoyang Zhongke Longwang Innovation Technology Co ltd
Original Assignee
Luoyang Zhongke Longwang Innovation Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luoyang Zhongke Longwang Innovation Technology Co ltd filed Critical Luoyang Zhongke Longwang Innovation Technology Co ltd
Priority to CN201811104500.4A priority Critical patent/CN109448127B/zh
Publication of CN109448127A publication Critical patent/CN109448127A/zh
Application granted granted Critical
Publication of CN109448127B publication Critical patent/CN109448127B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/003Navigation within 3D models or images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于无人机遥感的农田高精度导航地图生成方法,先通过无人机拍摄获得多幅农田遥感图像,对多幅图像采用坐标正向变换或者坐标反向变换的几何校正得出每幅图像在地面坐标系下的图像边界,然后各个图像拼接成农田全景图像,通过几何精校正后生成农田全景图的正射图像,然后采用算法对农田全景图的正射图像进行分割,最终得出最优化的分割结果,最后在分割结果基础上,采用NDVI(即植被覆盖指数)提取农田区域,并将提取后的各个农田区域进行合并,最终完成农田导航地图的生成。本发明不仅能精确的提取农田信息生成农田导航地图,而且有效提高导航地图的生成速度,便于农田导航的应用。

Description

一种基于无人机遥感的农田高精度导航地图生成方法
技术领域
本发明涉及一种导航地图生成方法,具体是一种基于无人机遥感的农田高精度导航地 图生成方法。
背景技术
随着社会经济的发展和现代科学技术的进步,农业改革的步伐也在不断加大,农业机 械自动化发展进程也在逐渐加快。目前,全球农业的发展都面临着较为严峻的形式,因而 国内外都十分注重加大科技投入,推动农业机械自动化的进步。
拖拉机作为重要的农业机械之一,是实现各种各样机械化作业的动力。然而,通常情 况下,拖拉机组在恶劣环境下作业时,由于工作情况的复杂多变,操作人员技术水平差异, 很难达到高精度的要求。在拖拉机驾驶方面,很难保证作业方向和行距问题,造成漏播或 重复,土地利用率极低,化肥浪费严重,并且长时间作业给作业人员造成重负荷。无人驾驶拖拉机便可以避免这类问题的发生,其能达到节省人力,节省资源,提高工作效率的目的。要想实现无人驾驶,就需要生成高精度导航地图,目前遥感技术在农业上也具有越来越广泛的应用,我们很容易通过无人机遥感来获取自己所关注区域的高精度地图并进行分析处理获取农田耕地的具体信息。
在现有的农田遥感提取技术中,主要有如下两种方法:1)人工目视解译;2)基于分类的农田提取,前者能够较精确提取农田信息,但存在生成速度慢、成本过高的不足。后 者虽然提取信息速度较快、成本较低,但只能得到农田的大范围统计结果而无法完成农田 信息的精确提取。
发明内容
针对上述现有技术存在的问题,本发明提供一种基于无人机遥感的农田高精度导航地 图生成方法,不仅能精确的提取农田信息生成农田导航地图,而且有效提高导航地图的生 成速度,便于农田导航的应用。
为了实现上述目的,本发明采用的技术方案是:一种基于无人机遥感的农田高精度导 航地图生成方法,具体步骤为:
步骤A:操控无人机处于所需生成导航地图的农田上空,无人机航飞测绘采用差分GPS 定位法进行测量,航飞路线为航向重叠度高于60%,旁向重叠在35%-45%之间,旋偏角控制 在12度以下,对农田进行航拍获取多幅高分辨率的农田遥感图像;
步骤B:对得到的每幅高分辨率农田遥感图像采用坐标正向变换进行几何校正,具体过 程为:像素坐标正向变换;以遥感图像的阵列为基础,按行列的顺序依次对每个遥感像素 点位求其在地面坐标系(也是输出图像坐标系)中的正确位置;对于简单的旋转、偏移和 缩放变形,可以使用最基本的放射变换公式进行纠正:
X=a0+a1x’+a2y’
Y=b0+b1x’+b2y’
其中,X、Y为矫正后影像中的坐标,x’、y’为矫正前影像中坐标;a0、a1、a2及b0、 b1、b2均为多项式系数;可根据实际情况进行系数调整;
步骤C:将经过几何校正后多幅高分辨率的农田遥感图像拼接成农田全景图像;
步骤D:将农田全景图像通过几何精校正后生成农田全景图的正射图像;几何精校正为 已知方法,具体为利用地面控制点数据对遥感图像的几何畸变本身进行数学模拟,选择地 图投影,确定先关的投影参数;地面控制点和相应的像素应为同名地物点,从而准确地进 行匹配;并可借助一些已知特定的算法进行半自动的匹配;
步骤E:采用面向对象的图像分析法对农田全景图进行自动化解译,具体过程为:利用 KMeans非监督分类算法和Fisher标准估算农田全景图中各个波段的权值,并将估算的波段 权值应用到光谱合并计算中,能够较好地提高农田区域的分割精度,实现基于全局最优合 并的区域生长算法.最终得到最优化的分割结果;
步骤F:采用NDVI(即植被覆盖指数)从分割后的区域中提取农田区域:设定NDVI阈值(即用于区分农田和背景的阈值),在分割结果中,依次将各个区域的NDVI值与设定 的NDVI阈值进行比较,若区域中的NDVI值大于设定的NDVI阈值,则确定该区域为农 田,否则为其他区域(即背景区域);最终将确定后的各个区域中相邻的农田区域和非农田 区域分别合并,然后将农田区域提取完成农田导航地图的生成。
进一步,所述步骤B中的坐标正向变换采用坐标反向变换替代,坐标反向变换的具体 过程为:对得到的每幅高分辨率农田遥感图像采用坐标反向变换进行几何校正,具体过程 为:像素坐标反向变换;以空白的输出图像阵列为基础,按行列的顺序依次对每个输出像 素点位反求遥感图像坐标中的位置;
X’=a0+a1x+a2y
Y’=b0+b1x+b2y
其中,X’、Y’为矫正后影像中的坐标,x、y为矫正前影像中的坐标。
3.根据权利要求1所述的一种基于无人机遥感的农田高精度导航地图生成方法,其特 征在于,所述步骤E的具体算法过程为:
①波段权重估算
基于RG的图像分割算法都需要设置合理的区域合并标准,以衡量待合并区域适合合并 的程度。HSWO和HSeg都采用了波段均值误差平方和作为区域合并标准:
Figure BDA0001807473560000031
其中i、j分别表示待合并的两个区域,行是区域的像素数目,B是波段数,u是区域的 灰度均值;在实际情况中,不同波段对地物的区分能力不同。所以,在农业遥感图像分割中,需要考虑各个波段对地物的区分能力,来对各个波段赋予相应的权重,以增大区分能力强的波段的作用,减少区分能力弱的波段的贡献。考虑了各个波段区分能力的BSMSE 值具体公式如下,其中,各个波段权重和为1;
Figure BDA0001807473560000032
Fisher标准可以衡量图像中不同类别的区分能力,因此,要计算农田多光谱影像中各个 波段的权重,可以首先计算各自波段的Fisher标准,根据Fisher标准确定不同区域的权重 值,其计算公式如下:
Figure BDA0001807473560000041
其中,m,n分别代表图像中的两个不同的类别,L是类别总数;μ,δ分别是图像中 某个类别的均值和标准差;此时,各个波段的权重可以由下式计算:
Figure BDA0001807473560000042
其中Jb是第b个波段的Fisher标准;
②光谱合并
在光谱合并中,根据式(2)对图像中所有的相邻区域计算其BSMSE值,并按照BSMSE值由小到大排序,优先合并BSMSE值最小的一对邻域。但在合并过程中,一次合并会影响 其他邻域对的BSMSE值。
因此定义了如下操作,以处理上述问题:
1)初始化:计算所有邻域对的BSMSE值,并从小到大排序,得到有序集合D;
2)在有序集合D中找到最小的一对邻域Pair(Ri,Rj),若其BSMSE小于阈值Tspec,将其合并得到Rk;否则进行4);
3)重新计算Rk;与其邻域的BSMSE值,并更新其在有序集合D中的位置,使有序集合D依旧保持有序;
4)若有序集合D不为空,返回2),否则输出结果;
在以上的操作中,有序集合D的操作包括插入(初始化)、删除(例如图2中的D14)、排序等。在插入、删除操作中,维持有序集合D的有序是关键。为了高效的实现这一过程, 本文采用了二叉搜索树来实现有序集合D。
在步骤2)中的阈值Tspec,实际上定义了分割算法的结束条件;Tspec越小,则区域合并 的次数越少,算法结束越快,结果中区域的面积越小;相反,区域的合并次数越多,算法收敛越慢,结果的区域面积越大;最终完成区域的分割情况。
4.根据权利要求1所述的一种基于无人机遥感的农田高精度导航地图生成方法,其特 征在于,所述步骤F的具体过程为:
1)设定NDVI阈值TNDVI,对于每一个区域Ri,在其邻域中寻找与其最相似的区域Rj
2)若(NDVI(Ri)<TNDVI且NDVI(Rj)<TNDVI)或者(NDVI(Ri)≥TNDVI且NDVI(Rj)≥TNDVI),则合并Ri和Rj,否则不合并;
3)若所有区域都访问后,执行4),否则回到1),访问下一个区域;
4)若1)至3)没有合并产生,结束并输出结果,否则返回1);
步骤1)中之所以要搜索与当前区域最为相似的邻域,是为了提高算法精度,避免错误 的合并。
与现有技术相比,本发明先通过无人机拍摄获得多幅农田遥感图像,对多幅图像采用 坐标正向变换或者坐标反向变换的几何校正得出每幅图像在地面坐标系下的图像边界,然 后各个图像拼接成农田全景图像,通过几何精校正后生成农田全景图的正射图像,然后采 用算法对农田全景图的正射图像进行分割,最终得出最优化的分割结果,最后在分割结果 基础上,采用NDVI(即植被覆盖指数)提取农田区域,并将提取后的各个农田区域进行合 并,最终完成农田导航地图的生成。本发明不仅能精确的提取农田信息生成农田导航地图, 而且有效提高导航地图的生成速度,便于农田导航的应用。
附图说明
图1是本发明的整体流程图;
图2是本发明实施例中区域R1和R2合并前后的BSMSE情况图。
具体实施方式
下面将对本发明做进一步说明。
如图所示,本发明的具体步骤为:
步骤A:操控无人机处于所需生成导航地图的农田上空,无人机的飞行范围在以操控者 为中心的目视距离半径500米内且相对高度低于120米内,对农田进行航拍获取多幅高分 辨率的农田遥感图像;
步骤B:对得到的每幅高分辨率农田遥感图像采用坐标正向变换进行几何校正,具体过 程为:像素坐标正向变换;以遥感图像的阵列为基础,按行列的顺序依次对每个遥感像素 点位求其在地面坐标系(也是输出图像坐标系)中的正确位置;对于简单的旋转、偏移和 缩放变形,可以使用最基本的放射变换公式进行纠正:
X=a0+a1x’+a2y’
Y=b0+b1x’+b2y’
其中,X、Y为矫正后影像中的坐标,x’、y’为矫正前影像中坐标;
步骤C:将经过几何校正后多幅高分辨率的农田遥感图像拼接成农田全景图像;
步骤D:将农田全景图像通过几何精校正后生成农田全景图的正射图像;几何精校正为 已知方法,具体为利用地面控制点数据对遥感图像的几何畸变本身进行数学模拟,选择地 图投影,确定先关的投影参数;地面控制点和相应的像素应为同名地物点,从而准确地进 行匹配;并可借助一些已知特定的算法进行半自动的匹配;
步骤E:采用面向对象的图像分析法对农田全景图进行自动化解译,具体过程为:利用 KMeans非监督分类算法和Fisher标准估算农田全景图中各个波段的权值,并将估算的波段 权值应用到光谱合并计算中,能够较好地提高农田区域的分割精度,实现基于全局最优合 并的区域生长算法.最终得到最优化的分割结果;
步骤F:采用NDVI(即植被覆盖指数)从分割后的区域中提取农田区域:设定NDVI阈值,在分割结果中,依次将各个区域的NDVI值与设定的NDVI阈值进行比较,若区域 中的NDVI值大于设定的NDVI阈值,则确定该区域为农田,否则为其他区域(或背景区域); 最终将确定后的各个区域中相邻的农田区域和非农田区域分别合并,然后将农田区域提取 完成农田导航地图的生成。
进一步,所述步骤B中的坐标正向变换采用坐标反向变换替代,坐标反向变换的具体 过程为:对得到的每幅高分辨率农田遥感图像采用坐标反向变换进行几何校正,具体过程 为:像素坐标反向变换;以空白的输出图像阵列为基础,按行列的顺序依次对每个输出像 素点位反求遥感图像坐标中的位置;
X’=a0+a1x+a2y
Y’=b0+b1x+b2y
其中,X’、Y’为矫正后影像中的坐标,x、y为矫正前影像中的坐标。
进一步,所述步骤E的具体算法过程为:
①波段权重估算
基于RG的图像分割算法都需要设置合理的区域合并标准,以衡量待合并区域适合合并 的程度。HSWO和HSeg都采用了波段均值误差平方和作为区域合并标准:
Figure BDA0001807473560000071
其中i、j分别表示待合并的两个区域,行是区域的像素数目,B是波段数,u是区域的 灰度均值;在实际情况中,不同波段对地物的区分能力不同。所以,在农业遥感图像分割中,需要考虑各个波段对地物的区分能力,来对各个波段赋予相应的权重,以增大区分能力强的波段的作用,减少区分能力弱的波段的贡献。考虑了各个波段区分能力的BSMSE 值具体公式如下,其中,各个波段权重和为1;
Figure BDA0001807473560000072
Fisher标准可以衡量图像中不同类别的区分能力,因此,要计算农田多光谱影像中各个 波段的权重,可以首先计算各自波段的Fisher标准,根据Fisher标准确定不同区域的权重 值,其计算公式如下:
Figure BDA0001807473560000073
其中,m,n分别代表图像中的两个不同的类别,L是类别总数;μ,δ分别是图像中 某个类别的均值和标准差;此时,各个波段的权重可以由下式计算:
Figure BDA0001807473560000074
其中Jb是第b个波段的Fisher标准;
②光谱合并
在光谱合并中,根据式(2)对图像中所有的相邻区域计算其BSMSE值,并按照BSMSE值由小到大排序,优先合并BSMSE值最小的一对邻域。但在合并过程中,一次合并会影响 其他邻域对的BSMSE值。如图2显示了合并区域R1、R2会对其他邻域的BSMSE值产 生影响:在合并R1、R2之后,D16、D23、D15均可能发生变化,D14与D24在合并后为D17
因此定义了如下操作,以处理上述问题:
1)初始化:计算所有邻域对的BSMSE值,并从小到大排序,得到有序集合D;
2)在有序集合D中找到最小的一对邻域Pair(Ri,Rj),若其BSMSE小于阈值Tspec,将其合并得到Rk;否则进行4);
3)重新计算Rk;与其邻域的BSMSE值,并更新其在有序集合D中的位置,使有序集合D依旧保持有序;
4)若有序集合D不为空,返回2),否则输出结果;
在以上的操作中,有序集合D的操作包括插入(初始化)、删除(例如图2中的D14)、排序等。在插入、删除操作中,维持有序集合D的有序是关键。为了高效的实现这一过程, 本文采用了二叉搜索树来实现有序集合D。
在步骤2)中的阈值Tspec,实际上定义了分割算法的结束条件;Tspec越小,则区域合并 的次数越少,算法结束越快,结果中区域的面积越小;相反,区域的合并次数越多,算法收敛越慢,结果的区域面积越大;最终完成区域的分割情况。
进一步,所述步骤F的具体过程为:
1)设定NDVI阈值TNDVI,对于每一个区域Ri,在其邻域中寻找与其最相似的区域Rj
2)若(NDVI(Ri)<TNDVI且NDVI(Rj)<TNDVI)或者(NDVI(Ri)≥TNDVI且NDVI(Rj)≥TNDVI),则合并Ri和Rj,否则不合并;
3)若所有区域都访问后,执行4),否则回到1),访问下一个区域;
4)若1)至3)没有合并产生,结束并输出结果,否则返回1);
步骤1)中之所以要搜索与当前区域最为相似的邻域,是为了提高算法精度,避免错误 的合并。

Claims (4)

1.一种基于无人机遥感的农田高精度导航地图生成方法,其特征在于,具体步骤为:
步骤A:操控无人机处于所需生成导航地图的农田上空,无人机航飞测绘采用差分GPS定位法进行测量,航飞路线为航向重叠度高于60%,旁向重叠在35%-45%之间,旋偏角控制在12度以下,对农田进行航拍获取多幅高分辨率的农田遥感图像;
步骤B:对得到的每幅高分辨率农田遥感图像采用坐标正向变换进行几何校正,具体过程为:像素坐标正向变换;以遥感图像的阵列为基础,按行列的顺序依次对每个遥感像素点位求其在地面坐标系中的正确位置;
x=a0+a1x'+a2y'
y=b0+b1x'+b2y'
其中,x,y为矫正后影像中的坐标,x',y'为矫正前影像中坐标,a0、a1、a2及b0、b1、b2均为多项式系数;
步骤C:将经过几何校正后多幅高分辨率的农田遥感图像拼接成农田全景图像;
步骤D:将农田全景图像通过几何精校正后生成农田全景图的正射图像;
步骤E:采用面向对象的图像分析法对农田全景图进行自动化解译,具体过程为:利用KMeans非监督分类算法和Fisher标准估算农田全景图中各个波段的权值,并将估算的波段权值应用到光谱合并计算中,实现基于全局最优合并的区域生长算法.最终得到最优化的分割结果;
步骤F:采用NDVI从分割后的区域中提取农田区域:设定NDVI阈值,在分割结果中,依次将各个区域的NDVI值与设定的NDVI阈值进行比较,若区域中的NDVI值大于设定的NDVI阈值,则确定该区域为农田,否则为其他区域;最终将确定后的各个区域中相邻的农田区域和非农田区域分别合并,然后将农田区域提取完成农田导航地图的生成。
2.根据权利要求1所述的一种基于无人机遥感的农田高精度导航地图生成方法,其特征在于,所述步骤B中的坐标正向变换采用坐标反向变换替代,坐标反向变换的具体过程为:对得到的每幅高分辨率农田遥感图像采用坐标反向变换进行几何校正,具体过程为:像素坐标反向变换;以空白的输出图像阵列为基础,按行列的顺序依次对每个输出像素点位反求遥感图像坐标中的位置;
X’=a0+a1x+a2y
Y’=b0+b1x+b2y
其中,X’、Y’为矫正后影像中的坐标,x、y为矫正前影像中的坐标。
3.根据权利要求1所述的一种基于无人机遥感的农田高精度导航地图生成方法,其特征在于,所述步骤E的具体算法过程为:
①波段权重估算
计算农田多光谱影像中各个波段的权重,首先计算各自波段的Fisher标准,根据Fisher标准确定不同区域的权重值,其计算公式如下:
Figure FDA0001807473550000021
其中,m,n分别代表图像中的两个不同的类别,L是类别总数;μ,δ分别是图像中某个类别的均值和标准差;此时,各个波段的权重可以由下式计算:
Figure FDA0001807473550000022
其中Jb是第b个波段的Fisher标准;
②光谱合并
在光谱合并中,根据式(2)对图像中所有的相邻区域计算其BSMSE值,并按照BSMSE值由小到大排序,优先合并BSMSE值最小的一对邻域;但在合并过程中,一次合并会影响其他邻域对的BSMSE值;因此定义如下操作:
1)初始化:计算所有邻域对的BSMSE值,并从小到大排序,采用二叉搜索树的方式得到有序集合D;
2)在有序集合D中找到最小的一对邻域Pair(Ri,Rj),若其BSMSE小于阈值Tspec,将其合并得到Rk;否则进行4);
3)重新计算Rk;与其邻域的BSMSE值,并更新其在有序集合D中的位置,使有序集合D依旧保持有序;
4)若有序集合D不为空,返回2),否则输出结果。
在步骤2)中的阈值Tspec,定义为分割算法的结束条件;Tspec越小,则区域合并的次数越少,算法结束越快,结果中区域的面积越小;相反,区域的合并次数越多,算法收敛越慢,结果的区域面积越大;最终完成区域的分割情况。
4.根据权利要求1所述的一种基于无人机遥感的农田高精度导航地图生成方法,其特征在于,所述步骤F的具体过程为:
1)设定NDVI阈值TNDVI,对于每一个区域Ri,在其邻域中寻找与其最相似的区域Rj
2)若NDVI(Ri)<TNDVI且NDVI(Rj)<TNDVI或者NDVI(Ri)>TNDVI且NDVI(Rj)>TNDVI,则合并Ri和Rj,否则不合并;
3)若所有区域都访问后,执行4),否则回到1),访问下一个区域;
4)若1)至3)没有合并产生,结束并输出结果,否则返回1)。
CN201811104500.4A 2018-09-21 2018-09-21 一种基于无人机遥感的农田高精度导航地图生成方法 Active CN109448127B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811104500.4A CN109448127B (zh) 2018-09-21 2018-09-21 一种基于无人机遥感的农田高精度导航地图生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811104500.4A CN109448127B (zh) 2018-09-21 2018-09-21 一种基于无人机遥感的农田高精度导航地图生成方法

Publications (2)

Publication Number Publication Date
CN109448127A CN109448127A (zh) 2019-03-08
CN109448127B true CN109448127B (zh) 2022-11-18

Family

ID=65530836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811104500.4A Active CN109448127B (zh) 2018-09-21 2018-09-21 一种基于无人机遥感的农田高精度导航地图生成方法

Country Status (1)

Country Link
CN (1) CN109448127B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110533052B (zh) * 2019-09-16 2020-09-18 贵州省草业研究所 一种协同遥感影像的航拍相片植被信息提取方法
CN111445544A (zh) * 2020-02-24 2020-07-24 东莞职业技术学院 一种基于路线实况检测的地图绘制方法
CN111882573B (zh) * 2020-07-31 2023-08-18 北京师范大学 一种基于高分辨率影像数据的耕地地块提取方法及系统
CN113063375B (zh) * 2021-03-16 2022-04-08 成都理工大学 一种直线型耕作田埂的无人机遥感提取方法
CN113222980A (zh) * 2021-06-01 2021-08-06 安徽建筑大学 一种基于无人机平台的洪涝灾害查勘方法
CN113920441A (zh) * 2021-08-30 2022-01-11 广东海洋大学 一种高精度的农田植被信息提取方法
WO2023097494A1 (zh) * 2021-11-30 2023-06-08 深圳市大疆创新科技有限公司 全景图像拍摄方法、装置、无人机、系统及存储介质
CN117788351B (zh) * 2024-02-27 2024-05-03 杨凌职业技术学院 一种农业遥感图像校正方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8737694B2 (en) * 2011-02-07 2014-05-27 Southern Minnesota Beet Sugar Cooperative Organic matter mapping using remotely sensed images
CN106845360A (zh) * 2016-12-27 2017-06-13 郑州大学 基于无人机遥感的高分辨率农作物表面模型构造方法
CN107563413B (zh) * 2017-08-09 2020-10-16 千寻位置网络有限公司 无人机航拍影像农田块对象精准提取方法

Also Published As

Publication number Publication date
CN109448127A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
CN109448127B (zh) 一种基于无人机遥感的农田高精度导航地图生成方法
CN111738165B (zh) 一种从高分辨率无人机可见光遥感影像中提取单株植物冠层的方法
Wang et al. Automated crop yield estimation for apple orchards
CN109146948B (zh) 基于视觉的作物长势表型参数量化与产量相关性分析方法
JP5360989B2 (ja) 地理情報生成システム及び地理情報生成方法
CN104866820A (zh) 一种基于遗传算法的农机导航线提取方法及装置
Jang et al. Road lane semantic segmentation for high definition map
CN114627380A (zh) 一种基于光学影像与sar时序数据融合的水稻识别方法
CN115331100A (zh) 耕地种植属性的空间分布监测方法及系统
De Silva et al. Deep learning‐based crop row detection for infield navigation of agri‐robots
CN116739739A (zh) 一种贷款额度评估方法、装置、电子设备及存储介质
CN115451965B (zh) 基于双目视觉的插秧机插植系统相对航向信息检测方法
CN110414384A (zh) 智能稻麦收获机导航线跟踪方法
CN114463642A (zh) 一种基于深度学习的耕地地块提取方法
CN115280960A (zh) 一种基于田间视觉slam的联合收获机转向控制方法
CN111179303B (zh) 基于粒子滤波的谷物收获机器人视觉导航方法及其应用
CN113870278A (zh) 基于改进的Mask R-CNN模型的卫星遥感图像农田块分割方法
CN102708386A (zh) 光学/sar异类影像匹配方法
CN113221788A (zh) 一种田块垄作特征提取方法及装置
CN111127525A (zh) 带约束点集配准的增量式农田边界精度校准方法及装置
CN114485612B (zh) 路线生成方法、装置、无人作业车、电子设备及存储介质
CN117274844B (zh) 利用无人机遥感影像的大田花生出苗情况快速提取方法
CN117333758B (zh) 基于大数据分析的田地路线识别系统
CN115294562B (zh) 一种植保机器人作业环境智能感知方法
Liao et al. Tobacco Information Extraction Based on UAV High Resolution Images

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant