CN109400433A - 合成二苯基乙烯的方法 - Google Patents

合成二苯基乙烯的方法 Download PDF

Info

Publication number
CN109400433A
CN109400433A CN201710704291.6A CN201710704291A CN109400433A CN 109400433 A CN109400433 A CN 109400433A CN 201710704291 A CN201710704291 A CN 201710704291A CN 109400433 A CN109400433 A CN 109400433A
Authority
CN
China
Prior art keywords
nano particle
catalyst
activated carbon
diphenylethlene
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710704291.6A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jing Oak Business Consulting Co Ltd
Original Assignee
Shanghai Jing Oak Business Consulting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jing Oak Business Consulting Co Ltd filed Critical Shanghai Jing Oak Business Consulting Co Ltd
Priority to CN201710704291.6A priority Critical patent/CN109400433A/zh
Publication of CN109400433A publication Critical patent/CN109400433A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/861Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only halogen as hetero-atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种合成二苯基乙烯的方法,该方法使用的催化剂为活性炭负载的Pd纳米颗粒。该方法可以获得较高的顺式二苯乙烯选择性,并且合成方法环境友好。

Description

合成二苯基乙烯的方法
技术领域
本发明属于有机合成技术领域,具体涉及一种使用负载型钯催化剂合成二苯基乙烯的方法,更具体地,涉及使用负载型钯催化剂合成1,2-二苯基乙烯的方法。
背景技术
1,2-二苯基乙烯是一类重要的化工中间体和化学试剂。目前常采用的方法是使用sharpless方法进行1,2-二苯基乙烯。
负载型Pd催化剂在很多领域具有广泛应用,尤其是在化工和石油以及有机合成领域有着广泛的应用。在现有的负载型Pd催化剂的制备中,通过是采用浸渍-还原方法进行制备,但是这种制备方法难以控制Pd颗粒的形貌,载体的物理形态例如孔隙结构会影响Pd颗粒的形貌,从而导致其形貌变得不可控。这种可控形貌给负载型Pd纳米颗粒催化性能带来特别良好的改善。
另外,已知有许多方法用于钯、特别是纳米钯的合成,其中一类常用的方法包括化学还原。然而,在现有的还原方法中,需要用到还原剂,尤其是强还原剂。在大规模工业化生产中,这些还原剂例如有毒的肼化合物有可能对操作者或环境造成严重不良影响。这种常规的方法与当前的绿色化学理念不符。
CN101693642A公开了一种合成1,2-二苯乙烯类化合物的新方法,采用的是在非质子性有机溶剂中,于氮气保护下,以Lewis酸为催化剂,将芳香醛与双苄基锌试剂以1∶1~2.5∶1的摩尔比,在-80℃~80℃的温度下加成反应2~16小时,加酸淬灭,分离即得目标化合物。
CN103333674A公开了一种具有电场调制功能的二芳基乙烯类光致变色化合物及合成方法,该方法包括以下步骤:首先合成含有电子传输基团的芳杂环中间体;然后合成含有电荷传输基团的芳杂环中间体;将所述这两部份中间体分别结合到一个八氟环戊烯分子的两个双键碳上的氟原子上,形成含两种不同类型电荷传输基团的不对称型二芳基乙烯类光致变色化合物;含电子传输基团的中间体化合物则须先制成单取代的全氟环戊烯中间体才能顺利得到目标产物。
CN101481300A公开了一种反式多羟基二苯乙烯的制备方法,该方法以羟基取代苯甲醛和羟基取代苯乙酸为原料,利用Perkin反应构建顺式二苯乙烯骨架,再经脱羧及异构化反应得到反式多羟基二苯乙烯。
CN103301852A公开了一种钯炭催化剂的制备方法,该方法包括步骤为:在钯中添加金属元素并进行混合反应制得钯合金;将所述钯合金在吸附液中浸渍和还原,取出后干燥得到高分散型的钯炭催化剂。
CN105126831A公开了一种纳米级的钯催化剂的制备方法,该方法是以室温离子液体与水所形成的微乳液体系为介质,通过氯化钯滴加的方式使其与微乳液介质原位合成钯纳米颗粒,从而制备形成一种纳米级钯催化剂。
CN103357401A公开了一种钯基催化剂的制备方法,包括以下步骤:A)将载体、钯源与Keggin型杂多酸在溶液中混合,得到悬浮液;B)用碱性溶液调节所述悬浮液的pH值,再加入还原剂进行反应,得到催化剂;C)将所述催化剂在氧气气氛中煅烧,得到钯基催化剂。
CN103657643A公开了一种制备纳米钯金属催化剂的方法,该方法包括:将载体与功能助剂在有机溶剂中进行接枝反应,再加入钯盐或钯盐的有机溶液,使钯盐与功能助剂发生配位反应的同时也被载体所捕获,再使用还原剂将钯盐还原成金属钯纳米颗粒,然后加入包埋剂,进行分隔包覆反应,最终得到稳定的固载型的纳米钯金属催化剂。
CN102423704A公开了一种直接甲酸燃料电池用钯纳米催化剂的制备方法,包括以下步骤:将炭载体分散于水中,得到悬浮液;向所述悬浮液加入胍盐离子液体和钯金属前驱体,将所述胍盐离子液体和钯金属前驱体发生配位反应形成含钯络合物;将所述含钯络合物与还原剂反应形成钯纳米粒子并沉积在所述炭载体表面,洗涤、干燥后得到直接甲酸燃料电池用钯纳米催化剂。
WO2007/094903A1公开了负载的钯-金催化剂的制备方法,所述方法包括(a)使二氧化钛载体硫酸化;(b)煅烧该硫酸化的载体;(c)用钯盐、金盐和碱金属或铵化合物浸渍该经煅烧的载体;(d)煅烧该经浸渍的载体;和(e)将步骤(d)的经煅烧的载体还原而形成负载的钯-金催化剂。
“液相原位还原法制备钯基催化剂”,张雨等,工业催化,2015年04期,公开了采用液相原位还原法制备Pd/α-Al2O3催化剂,并应用于CO氧化偶联合成草酸二甲酯反应,对比实验发现,甲醛液相原位还原法制得的Pd基催化剂具有优异的催化活性,当Pd负载质量分数低至0.1%时,催化剂仍表现出较高的活性和稳定性。
“对位取代的1,2-二苯基乙烯的合成及其不对称二羟基化反应”,张生勇,《高等学校化学学报》,1998,19(gd):1277-1279,探讨了对位取代的(E)-1,2-二苯乙烯类化合物的合成,并采用改进了的Sharpless方法进行不对称二羟基化反应,取得了良好的结果。
在上述文献和其它现有技术中,缺乏一种以高的顺式选择性合成1,2-二苯基乙烯的方法,在现有的合成方法中通常是具有比较高的反式选择性。另外,本领域中使用的Pd催化剂形貌难以控制且合成不环保、不经济。本领域需要一种能够以高的顺式选择性合成1,2-二苯基乙烯并且使用的Pd催化剂的合成经济、环保且Pd纳米颗粒形貌可控的方法。
发明内容
为了同时解决上述问题,本发明人经过深入研究和大量实验,提供了以下技术方案。
在本发明的一方面,提供了一种合成二苯基乙烯的方法,该方法包括在活性炭负载型钯催化剂存在下,使碘苯和苯乙烯反应合成二苯基乙烯。
所述反应溶剂可以为二甲基乙酰胺。优选地,在反应中还加入三乙胺。
就本发明而言,顺式二苯乙烯的选择性大于20.0%,优选地,顺式二苯乙烯的选择性为25.0%-32.0%。
优选地,所述催化剂为活性炭负载的Pd纳米颗粒,所述Pd纳米催化剂颗粒的晶粒尺寸为2nm-20nm。
优选地,所述活性炭负载Pd纳米颗粒中Pd的负载量为1.0wt%-5.0wt%。
所述具体合成方法如下:在氮气保护下,将碘苯溶解在二甲基乙酰胺溶剂中,之后加入活性炭负载的Pd纳米颗粒,然后加热到80-120℃,在搅拌条件下滴加苯乙烯和三乙胺,反应结束后过滤,将滤液放置过夜,然后过滤出结晶物,洗涤,减压干燥,即得1,2-二苯基乙烯
优选地,反应条件如下:碘苯:100mmol;苯乙烯:160mmol;三乙胺:180mmol;溶剂:DMAC;温度:120℃;催化剂:0.075g(在所有情况下);氮气反应;反应时间:2小时。
可以通过HP 6890 GC(配有HP-5毛细管柱)对产物进行分析,以分析产物的纯度和选择性。
在本发明的另一方面,还提供了一种制备上述催化剂的方法,其中先制得Pd纳米颗粒,再将所述Pd纳米颗粒负载在活性炭上。
优选地,所述Pd纳米颗粒在制备过程中使用天然还原剂即茉莉花精油提取物(茉莉花精油提取中的副产物)。优选进一步地,再将Pd纳米颗粒分散在己烷溶剂中,制得Pd纳米颗粒的分散体,然后加入活性炭,混合均匀,制得活性炭负载的Pd纳米颗粒。
在本发明中,对茉莉花精油提取中的副产物成分进行深入分析,尝试将其作为还原剂用于钯催化剂的制备。在符合环保理念和要求的同时,提高所述工艺的综合经济效益,同时可以有效控制Pd纳米颗粒的形貌。这也充分满足了当前的绿色合成化学理念。
本发明人经研究发现,茉莉花精油提取副产物中含有的3,4,5-三羟基苯甲酸和抗坏血酸或它们的类似物,例如鞣花酸,所述化合物由于其羟基结构的存在而可以转化成允许电荷转移并因此作为还原剂的形式。所述物质中很多例如鞣花酸还可以起到表面活性剂的作用。这些物质因而可以同时起到稳定剂和还原剂的作用。
在此基础上,在本发明的一方面,提供了一种负载型钯催化剂,该催化剂为活性炭负载的Pd纳米颗粒,所述Pd纳米催化剂颗粒的晶粒尺寸为2nm-20nm。
优选地,所述Pd的负载量为1.0wt%-6.0wt%。更优选地,所述Pd的负载量为4.0wt%。
所述Pd纳米颗粒优选呈单峰分布。所述Pd纳米颗粒优选呈多晶结构。
优选地,所述催化剂的Pd纳米颗粒的粒径的标准偏差小于5%,优选小于3%。在现有的Pd催化剂中鲜见如此粒度均匀的Pd纳米颗粒。
优选地,所述Pd的合成前体为Pd(acac)2。研究发现,与硝酸钯相比,Pd(acac)2可以提供最佳的还原后Pd纳米颗粒形貌。
在本发明的另一方面,提供了一种制备上述催化剂的方法,其中先制得Pd纳米颗粒,再将所述Pd纳米颗粒负载在活性炭上。
优选地,所述Pd纳米颗粒在制备过程中使用天然还原剂。优选地,在还原过程中加入共还原剂。更优选地,所述共还原剂为硼烷-三丁胺络合物。所述共还原剂的加入,可以缩短还原时间。在一个特别优选的实施方案中,在Pd纳米颗粒的制备过程中不额外加入表面活性剂和/或稳定剂。
在所述制备方法中,具体地,将制备的Pd纳米颗粒分散在己烷溶剂中,制得Pd纳米颗粒的分散体,然后加入活性炭,混合均匀,制得活性炭负载的Pd纳米颗粒。
具体地,Pd纳米颗粒制备方法包括:取0.01-0.1mol/mL的Pd(acac)2(SigmaAldrich),将其加热到40-60℃,然后在搅拌的同时向其中加入有效还原量的茉莉花提取物,使用0.01-0.08M的氢氧化钠溶液调节pH至6.0-11.0,反应30-60min,得到Pd纳米颗粒悬浮液,然后进行离心分离、洗涤和干燥,即得Pd纳米颗粒。
研究发现,所述茉莉花提取物同时起到了还原剂和稳定剂的作用。在以前的文献中未发现这样的报导。
优选地,在该方法加入共还原剂。所述共还原剂优选为硼烷-三丁胺络合物。硼烷-三丁胺络合物的摩尔量为Pd(acac)2的1/10-1/5。
更具体地,所述制备方法包括:取100mL的0.025mol/mL的Pd(acac)2,将其加热到50℃,然后在搅拌的同时向其中加入茉莉花提取物2.0g,使用0.05M的氢氧化钠溶液调节pH至9.0,反应60min,得到Pd纳米颗粒悬浮液,然后进行离心分离、洗涤和干燥,即得Pd纳米颗粒。
本发明人经研究发现,如何在茉莉花提取物中保持足够的有效量的3,4,5-三羟基苯甲酸和抗坏血酸或它们的类似物非常重要,这也是本发明方法的关键所在。一般的茉莉花精油提取方法中,其提取步骤和参数仅仅关注茉莉花精油香料的获得,而所述物质遭受到严重破坏。为此,本发明提供了获得所述茉莉花提取物的如下方法,该方法包括以下步骤:(1)采摘新鲜茉莉花花朵,放入微波炉中干燥至失重60~80%,然后储藏在冰箱中,储藏温度为-5℃~-10℃;(2)将花朵剪碎,按照花与水1∶3~1∶5的比例混合,然后进行蒸馏,从冷凝器收集到冷凝液流出开始计时,每隔1~2小时取出花渣,同时重新放入鲜花,连续蒸馏5-10次后,收集馏出液;(3)向馏出液中加入碳酸氢钠(优选为0.01-0.1mol/L),调节pH值至9.0-12.0,然后加入为馏出液体积的1/3-1/5的石油醚进行萃取,可重复上述操作2-5次,合并水相和有机相(即石油醚相);(4)向所述水相中加入稀盐酸(优选为0.01-0.1mol/L),调节pH至3.0-6.0,然后用氯仿进行萃取,收集有机相,在低于60℃的温度下减压浓缩,将浓缩物冻干,即得茉莉花提取物。
所述石油醚相可以用于茉莉花芳香精油的制备。
在所述方法中,优选地,新鲜茉莉花在失重后在冰箱中的储存时间小于30天。
本发明人研究发现,在常温存储过程中,花朵中的多种物质,尤其是温度敏感物质(很多都是在Pd纳米颗粒制备中的有效还原物质和稳定剂),在花朵富含水分的情况下,容易发生结构变化或降解。因此,本发明选择使用微波炉将其干燥至失重60~80%,优选75%。微波加热与传统的加热方式不同,不需热传导过程,它可以使被加热物料本身成为加热体,因此即使是热传导性较差的物料,也可以在极短的时间内达到加热温度。对于花朵加热而言,水分子在微波电磁场中被极化,具有偶极子特性,并随着电磁场的频率不断地改变极性方向,分子作高速振动,产生摩擦热,使花朵从内部深层升温,并且各处温度一致,微波加热的这一特性能够使花朵快速升温,达到其中钝化酶的临界点温度,加速花朵结构水的迁移,从而使温度敏感物质损失最少。快速失水后的花朵再进行低温储存,可以储存很长时间而温度敏感物质(包括精油和抗坏血酸)几乎不会发生减少或劣化,存储期可高达1年甚至更长。如果不进行微波快速失水而直接进行低温储存,则1年后会损失约30%以上的可用于钯盐还原的有效物质例如抗坏血酸。
就本发明而言,在步骤(2)中,所述水为含有NaCl的水。优选地,NaCl的浓度为0.1-1.0重量%。
进一步优选地,所述水中还含有0.1-0.5重量%的提取稳定剂(或蒸馏稳定剂)。蒸馏提取的温度可能会导温度敏感物质的分解。基于所述问题,目前采取的措施是致力于改进蒸馏设备,例如采用加压串蒸、连续蒸馏、复馏柱蒸馏、以及蜗轮式快速水蒸气蒸馏等形式。这些方式花费较大,需要较大的投资。为此,本发明在蒸馏过程中加入了稳定剂,在一定程度上可以减少温度敏感物质的热分解。所述稳定剂优选为油酰二胺稳定剂。更优选地,所述提取稳定剂为下式(I)所示的油酰二胺化合物:
实验表明,当加入该化合物时,该在蒸馏过程中能够有效提高易被氧化物质如抗坏血酸的稳定性,例如即使蒸馏提取温度提高20℃,易被氧化物质的稳定性也基本保持不变。
优选地,本发明方法的Pd纳米颗粒具有(100)和(111)晶面。更优选地,每个Pd纳米颗粒中的晶体域具有0.228nm的界面距离,(111)面的晶格间距为0.223nm。这样的晶体结构使得在很多催化剂应用中都具有特别好的催化活性。
在所述活性炭负载的Pd纳米颗粒催化剂制备中,优选包括以下步骤:将制备的Pd纳米颗粒分散在己烷溶剂中,其中Pd纳米颗粒与己烷的比例为1:10-50(g/ml),制得Pd纳米颗粒的分散体,然后加入活性炭,其中活性炭与己烷的量为1∶5-1∶10(g/ml),混合均匀,然后蒸发掉己烷,用乙醇洗涤、真空干燥,制得活性炭负载的Pd纳米颗粒。
在一个特别优选的实施方案中,在所述己烷中加入基于己烷重量计0.5%-5.0%的N,N-二壬基乙酰胺,在该情况下,蒸发掉己烷后,将固体产物浸泡在冰乙酸中2-6h,然后再用乙醇洗涤、真空干燥,制得活性炭负载的Pd纳米颗粒。研究发现,N,N-二壬基乙酰胺对于Pd纳米颗粒的分散特别有利,特别活性炭的表明发生一定的胺官能化,使得Pd纳米颗粒负载的更为牢固。通过浸沥析出试验发现,通过使用N,N-二壬基乙酰胺,Pd纳米颗粒的脱负载率降低约20%。
附图说明
图1是根据本发明实施例2获得的Pd纳米颗粒的XRD图;
图2是根据本发明实施例2获得的活性炭负载的Pd纳米颗粒的TEM图。
具体实施方案
下面结合以下实施例和对比例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
采摘新鲜茉莉花花朵,放入微波炉中干燥至失重70%,然后储藏在冰箱中,储藏温度为-5℃,将花朵剪碎,按照花与水1∶4的比例混合,然后进行蒸馏,从冷凝器收集到冷凝液流出开始计时,每隔1.5小时取出花渣,同时重新放入鲜花,连续蒸馏6次后,收集馏出液,向馏出液中加入0.01mol/L碳酸氢钠,调节pH值至9.0,然后加入为馏出液体积的1/4的石油醚进行萃取,可重复上述操作3次,合并水相和石油醚相,向所述水相中加入0.01mol/L稀盐酸,调节pH至4.0,然后用氯仿进行萃取,收集有机相,在50℃的温度下减压浓缩,将浓缩物冻干,即得茉莉花提取物。
实施例2
取100mL 0.025mol/mL的Pd(acac)2(购自Sigma Aldrich),将其加热到50℃,然后在搅拌的同时向其中加入实施例1制得的茉莉花提取物2.0g,使用0.05M的氢氧化钠溶液调节pH至9.0,反应60min,得到Pd纳米颗粒悬浮液,然后进行离心分离、洗涤和干燥,即得Pd纳米颗粒。将制备的Pd纳米颗粒分散在己烷溶剂中,其中Pd纳米颗粒与己烷的比例为1∶30(g/ml),制得Pd纳米颗粒的分散体,然后加入活性炭,其中活性炭与己烷的量为1∶5(g/ml),混合均匀,然后蒸发掉己烷,用乙醇洗涤、室温下真空干燥,制得活性炭负载的Pd纳米颗粒。
实施例3
使用实施例2的催化剂进行1,2-二苯基乙烯的合成,合成操作如下:在氮气的200mL烧瓶中,在搅拌条件下将碘苯溶解在二甲基乙酰胺溶剂中,之后加入活性炭负载的Pd纳米颗粒,然后加热到80-120℃,提高搅拌速度,同时滴加苯乙烯和三乙胺,反应结束后过滤,将滤液放置过夜,然后过滤出结晶物,洗涤,减压干燥,即得1,2-二苯基乙烯,其中反应条件如下:碘苯:100mmol;苯乙烯:160mmol;三乙胺:180mmol;溶剂:DMAC 100mL;温度:393K;催化剂:0.075g;氮气反应;反应时间:2小时。经HP 6890GC检测和计算,反应转化率为96.81,顺式1,2-二苯基乙烯的选择性为28.6%。
对比例1
该对比例与实施例2的区别仅在于将茉莉花提取物替换为水合肼或硼酸。由于水合肼的毒性,需要特殊的操作设备和防护措施,另外反应混合物要经过特殊的后处理才能排放。硼酸反应产物也需要经过特殊的后处理才能够允许排放。
对比例2
该对比例与实施例3的区别仅在于使用的催化剂为市售Pd/C催化剂(购自宝鸡市瑞科有限责任公司),该催化剂为使用浸渍-还原法制得的催化剂。经HP 6890GC检测和计算,反应转化率为95.44,顺式1,2-二苯基乙烯的选择性为10.2%。
由上述实施例和对比例清楚地可以看出,与现有技术中的催化合成方法相比,本发明在反应转化率相当的情况下,能够获得明显更高的顺式1,2-二苯基乙烯选择性。推测其原因,可能是由于本发明的催化剂的Pd纳米颗粒形貌引起的,本发明的Pd纳米颗粒非常均匀、可控,纳米颗粒非常细小,其嵌入活性炭所产生的催化微环境(例如空间环境)对顺式1,2-二苯基乙烯的产生较为有利,这是常规的浸渍-还原法所难以实现的。另外,还可以看出的是,本发明的方法特别环境友好,不需要特殊的设备与后处理,降低了合成或生产成本,另外在获得还原Pd前体所需的提取物的同时,还能够同时制得茉莉花芳香精油,从而极大地提高了综合利用价值。
本书面描述使用实例来公开本发明,包括最佳模式,且还使本领域技术人员能够制造和使用本发明。本发明的可授予专利的范围由权利要求书限定,且可以包括本领域技术人员想到的其它实例。如果这种其它实例具有不异于权利要求书的字面语言的结构元素,或者如果这种其它实例包括与权利要求书的字面语言无实质性差异的等效结构元素,则这种其它实例意图处于权利要求书的范围之内。在不会造成不一致的程度下,通过参考将本文中参考的所有引用之处并入本文中。

Claims (10)

1.一种合成二苯基乙烯的方法,该方法包括在活性炭负载型钯催化剂存在下,使碘苯和苯乙烯反应合成二苯基乙烯。
2.根据权利要求1的方法,其中反应溶剂为二甲基乙酰胺。
3.根据权利要求2的方法,其中在反应中还加入三乙胺。
4.根据前述权利要求中任一项的方法,其中顺式二苯乙烯的选择性大于20.0%。
5.根据权利要求4的方法,其中顺式二苯乙烯的选择性为25.0%-32.0%。
6.根据前述权利要求中任一项的方法,其中所述催化剂为活性炭负载的Pd纳米颗粒,所述Pd纳米催化剂颗粒的晶粒尺寸为2nm-20nm。
7.根据权利要求6所述的方法,其中活性炭负载Pd纳米颗粒中Pd的负载量为1.0wt%-5.0wt%。
8.一种制备权利要求1-7任一项所述催化剂的方法,其中先制得Pd纳米颗粒,再将所述Pd纳米颗粒负载在活性炭上。
9.根据权利要求8的方法,其中所述Pd纳米颗粒在制备过程中使用天然还原剂。
10.根据权利要求8或9的方法,其中再将Pd纳米颗粒分散在己烷溶剂中,制得Pd纳米颗粒的分散体,然后加入活性炭,混合均匀,制得活性炭负载的Pd纳米颗粒。
CN201710704291.6A 2017-08-16 2017-08-16 合成二苯基乙烯的方法 Pending CN109400433A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710704291.6A CN109400433A (zh) 2017-08-16 2017-08-16 合成二苯基乙烯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710704291.6A CN109400433A (zh) 2017-08-16 2017-08-16 合成二苯基乙烯的方法

Publications (1)

Publication Number Publication Date
CN109400433A true CN109400433A (zh) 2019-03-01

Family

ID=65454720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710704291.6A Pending CN109400433A (zh) 2017-08-16 2017-08-16 合成二苯基乙烯的方法

Country Status (1)

Country Link
CN (1) CN109400433A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115722218A (zh) * 2022-12-07 2023-03-03 四川轻化工大学 一种用于氟代烷烃加氢脱氯催化剂的制备方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536867A (zh) * 2015-12-18 2016-05-04 浙江省冶金研究院有限公司 一种包覆型钯碳催化剂的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536867A (zh) * 2015-12-18 2016-05-04 浙江省冶金研究院有限公司 一种包覆型钯碳催化剂的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CORMA, AVELINO等: "《Catalytic activity of palladium supported on single wall carbon nanotubes compared to palladium supported on activated carbon. Study of the Heck and Suzuki couplings》", 《JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL》 *
LI, YONG等: "《Controllable synthesis of palladium nanoparticles and their catalytic abilities in Heck and Suzuki reactions》", 《INORGANICA CHIMICA ACTA》 *
LIU, YANG和BAI, XUEFENG: "《Argon glow discharge plasma-reduced palladium nanoparticles supported on activated carbon for Suzuki and Heck coupling reactions》", 《APPLIED ORGANOMETALLIC CHEMISTRY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115722218A (zh) * 2022-12-07 2023-03-03 四川轻化工大学 一种用于氟代烷烃加氢脱氯催化剂的制备方法及其应用

Similar Documents

Publication Publication Date Title
Zhou et al. Pd@ ZIF-67 derived recyclable Pd-based catalysts with hierarchical pores for high-performance heck reaction
Chaemchuen et al. Robust and efficient catalyst derived from bimetallic Zn/Co zeolitic imidazolate frameworks for CO2 conversion
Yang et al. Highly selective oxidation of cyclohexene to 2-cyclohexene-1-one in water using molecular oxygen over Fe–Co–gC 3 N 4
Pourkhosravani et al. Palladium nanoparticles supported on zirconium metal organic framework as an efficient heterogeneous catalyst for the Suzuki–Miyaura coupling reaction
Liu et al. MOFs-Derived Co@ CN bi-functional catalysts for selective transfer hydrogenation of α, β-unsaturated aldehydes without use of base additives
Kim et al. Single-atom Pd catalyst anchored on Zr-based metal-organic polyhedra for Suzuki-Miyaura cross coupling reactions in aqueous media
Karimi et al. Palladium on ionic liquid derived nanofibrillated mesoporous carbon: A recyclable catalyst for the Ullmann homocoupling reactions of aryl halides in water
CN109453819B (zh) 咔唑基多孔有机物聚合物负载过渡金属氧化物催化及应用
Saadati et al. KCC-1 supported ruthenium-salen-bridged ionic networks as a reusable catalyst for the cycloaddition of propargylic amines and CO 2
Dohade et al. Efficient method for cyclopentanone synthesis from furfural: understanding the role of solvents and solubility in a bimetallic catalytic system
Qi et al. Solvent-free aerobic oxidation of alcohols over palladium supported on MCM-41
Liu et al. Synergistic catalysis of Pd nanoparticles with both Lewis and Bronsted acid sites encapsulated within a sulfonated metal–organic frameworks toward one-pot tandem reactions
Ashraf et al. Trisaminomethane–cobalt complex supported on Fe3O4 magnetic nanoparticles as an efficient recoverable nanocatalyst for oxidation of sulfides and C–S coupling reactions
Tong et al. Improvement of catalytic activity in selective oxidation of styrene with H2O2 over spinel Mg–Cu ferrite hollow spheres in water
Song et al. Highly active palladium nanoparticles immobilized on knitting microporous organic polymers as efficient catalysts for Suzuki–Miyaura cross-coupling reaction
Xu et al. Fabrication of ZIF-8 based on lignin with high yield for dye removal from water
Liu et al. Hollow MOF capsule encapsulated amino-functionalized ionic liquid for excellent CO2 catalytic conversion
CN109400433A (zh) 合成二苯基乙烯的方法
CN105214734A (zh) 伊利石介孔复合材料和负载型催化剂及其制备方法和应用以及环己酮甘油缩酮的制备方法
Mu et al. Post-modified acid-base bifunctional MIL-101 (Cr) for one-pot deacetalization-Knoevenagel reaction
CN105693490A (zh) 一种氧化制备2,3,5-三甲基苯醌的方法
Kiani et al. Pd nanoparticles catalyst supported on TMU-16-NH2 metal-organic framework for Sonogashira cross-coupling reaction
He et al. Porous polymeric metalloporphyrin obtained through Sonogashira coupling: Catalytic performance at CO2 cycloaddition to epoxides
Naeim et al. Palladium nanoparticles stabilized on the amino acids-functionalized Fe3O4 as the magnetically recoverable nanocatalysts for Heck and Suzuki reactions
CN113070096B (zh) 一种基于改性H-Beta分子筛的生物质氧化裂解催化剂及制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190301