CN109391154B - 功率转换器及其操作方法 - Google Patents
功率转换器及其操作方法 Download PDFInfo
- Publication number
- CN109391154B CN109391154B CN201810897488.0A CN201810897488A CN109391154B CN 109391154 B CN109391154 B CN 109391154B CN 201810897488 A CN201810897488 A CN 201810897488A CN 109391154 B CN109391154 B CN 109391154B
- Authority
- CN
- China
- Prior art keywords
- power
- switching device
- current
- measurements
- switching cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/3353—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/575—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4258—Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33561—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33592—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0025—Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0038—Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
- H02M1/123—Suppression of common mode voltage or current
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Dc-Dc Converters (AREA)
Abstract
公开了一种功率转换器及其操作方法。反激变换器包括连接至磁装置的初级侧绕组的初级侧开关和连接到磁装置的次级侧绕组的次级侧开关。反激转换器通过如下来操作:控制初级侧开关以在初级侧开关的接通时段期间将能量存储在磁装置中,与关断初级侧开关同步地接通次级侧开关以将能量从磁装置传输至次级侧开关,基于在初级侧开关接通时在次级侧绕组处测量的反射输入电压来确定次级侧开关的关断时间,在确定次级侧开关的关断时间时考虑反射输入电压的建立时间,使得建立时间对关断时间影响很小或没有影响,并且基于关断时间切断次级侧开关。
Description
技术领域
本发明涉及一种隔离式功率转换器,特别地,测量隔离式功率转换器的输出电流和输出功率中至少之一的方法和装置。
背景技术
具有隔离拓扑的转换器,例如反激转换器和正激转换器,广泛用于功率转换。正激转换器是DC/DC转换器,其增加或降低输出电压并为负载提供电流隔离。反激转换器可以用于在输入和输出之间进行电流隔离的情形下的AC/DC和DC/DC转换两者。在两种情况下,控制器响应于反馈信号生成切换信号以调节功率转换器的输出。切换信号驱动功率开关装置,用于切换诸如变压器的磁装置或共用公共芯的两个电感器。磁装置连接至功率转换器的输入电压。磁装置的能量通过整流器和电容器传递至功率转换器的输出。电阻器通常与功率开关装置串联连接,以响应于磁装置的切换电流来生成电流感测信号。电流感测信号被输入至控制器,用于控制功率转换器的操作。
当磁装置在下一个切换周期开始之前完全放电时,隔离式功率转换器可以以不连续电流模式(DCM)操作。如果在磁装置完全放电之前启用切换信号,则功率转换器可以以连续电流模式(CCM)操作。当隔离式功率转换器以CCM操作时,可以在磁装置中保持连续电流。在DCM和CCM这两种情况下,必须确定转换器系统的最大允许输出电流和/或最大允许功率,以确保转换器的正常操作。
当隔离式功率转换器以CCM操作时用于检测输出电流的常规方法需要对与磁装置的切换电流对应的电流感测信号的峰值进行峰值检测和采样保持。然而,峰值检测和采样保持电路具有固有延迟,并且所得到的由电路输出的采样保持电压高于电流感测信号的实际峰值电压,导致测量不准确。另外,在CCM中的每个切换周期的开始处,在电流感测信号中出现前沿尖峰,这使初始连续电流的测量模糊,该初始连续电流表示在切换周期开始处存储在磁装置中的能量。此外,常规的峰值检测和采样保持电路仅测量平均输出电流而不测量输出功率。
发明内容
根据功率转换器的实施方式,功率转换器包括耦接至磁装置和控制器的功率开关装置。控制器可操作以基于反馈信号和对应于磁装置的切换电流的电流感测信号来生成用于驱动功率开关装置的切换信号。控制器还可操作以基于在功率开关装置的接通时段期间获取的电流感测信号的至少两个测量来计算功率转换器的平均输出电流和最大输出功率中的至少之一。所述至少两个测量中的第一测量在从接通时段的开始起的第一时间延迟的结束处进行,并且所述至少两个测量中的第二测量在电流感测信号的幅值达到分配给功率开关装置的预定阈值电压时进行,功率开关装置被设计成在高于该预定阈值电压时关断。
根据操作具有耦接至磁装置的功率开关装置的功率转换器的方法的实施方式,该方法包括:基于反馈信号和对应与磁装置的切换电流的电流感测信号生成用于驱动功率开关装置的切换信号;捕获在从功率开关装置的接通时段的开始起的第一时间延迟的结束处进行的电流感测信号的第一测量;捕获在电流感测信号的幅值达到分配给功率开关装置的预定阈值电压时进行的电流感测信号的第二测量,功率开关装置被设计在高于该预定阈值电压时成关断;以及基于电流感测信号的至少捕获的第一测量和捕获的第二测量来计算功率转换器的平均输出电流和最大输出功率中的至少之一。
本领域的技术人员在阅读下面的详细描述以及查看附图时将认识到附加的特征和优点。
附图说明
附图的元件不一定相对于彼此按比例绘制。相同的附图标记表示相应的类似部件。可以组合各种所示实施方式的特征,除非它们彼此排斥。在附图中描绘了实施方式,并且在以下描述中详述。
图1示出了反激转换器的实施方式的框图,该反激转换器被设计成测量输出电流和输出功率中的至少一者。
图2和图3示出了与图1的反激转换器的操作相关联的各种波形。
图4示出了用于测量隔离式转换器的输出电流的电路的实施方式的电路图。
图5示出了用于测量隔离式转换器的输出电流的方法的实施方式的流程图。
图6示出了与测量图1的反激转换器的输出功率相关联的各种波形。
图7示出了用于测量隔离式转换器的输出功率的电路的实施方式的电路图。
图8示出了用于实现平方函数的电路的实施方式的电路图,该平方函数用于测量隔离式转换器的输出功率。
图9示出了用于测量隔离式转换器的输出功率的方法的实施方式的流程图。
具体实施方式
本文中描述的实施方式准确地测量诸如反激转换器和正激转换器等隔离式功率转换器的输出电流和输出功率中的至少一者。通过使用转换器的主功率开关装置的关断延迟时间作为用于产生采样和保持脉冲信号的前沿消隐时间,可以准确地计算平均输出电流和/或输出功率。所采用的电路具有降低的复杂性,因为不需要峰值检测和保持。另外,可以获得准确的谷值(初始)电压信息,同时避免在每个切换周期开始时由前沿尖峰引入的误差。本文中描述的实施方式适用于CCM和DCM操作二者,并且以下在反激转换器的背景下来进一步详细描述,但是也适用于其他类型的隔离式功率转换器(例如,正激转换器)。
图1示出了反激转换器的实施方式,该反激转换器包括:初级侧功率开关装置Q1,其连接至磁装置100(例如,变压器或共用公共芯的两个电感器)的初级侧绕组LP;整流电路102(例如,包括连接至磁装置100的次级侧绕组LS的二极管D1和电容器C1);以及可操作来调节功率转换器的输出的初级侧控制器104。控制器104基于反馈信号VFB和电流感测信号VCS产生用于驱动功率开关装置Q1的切换信号SW。磁装置100连接至功率转换器的输入电压VIN,并且存储在磁装置100中的能量通过二极管D1和电容器C1传输至功率转换器的输出电压VO。与功率开关装置Q1串联连接的电阻器RCS响应于磁装置100的切换电流IP产生电流信号VCS。
初级侧开关装置Q1在图1中示为功率MOSFET。然而,任何合适的功率晶体管可用于开关装置Q1,例如但不限于功率MOSFET、IGBT(绝缘栅双极晶体管)、HEMT(高电子迁移率晶体管)等。初级侧功率开关装置Q1的切换由初级侧控制器104控制,初级侧控制器104基于输入电压VIN产生切换信号SW,磁装置100的切换电流IP由电阻器RCS两端产生的电流感测信号VCS和反馈信号VFB表示。反激转换器的初级侧功率开关装置的切换控制在本领域中是公知的,因此不再对功率开关装置Q1的切换控制提供进一步的说明。
包括在功率转换器控制器104中或与功率转换器控制器104相关联的电路106基于在每个切换周期功率开关装置Q1的导通时段(TON)期间所获取的电流感测信号VCS的至少两个测量值来计算功率转换器的平均输出电流和输出功率中的至少一者。在从导通时段起的第一时间延迟(tLEB)结束处进行至少两次测量中的第一测量。当电流感测信号VCS的幅度达到分配给功率开关装置Q1的预定阈值电压(Vth)并且大于功率开关装置Q1被设计为关断的值时,进行至少两次测量中的第二测量。利用这两个捕获的电流感测信号VCS的测量值,包括在控制器104中或与控制器104相关联的电路106可以计算功率转换器的平均输出电流。通过捕获在第一测量和第二测量之间获得的电流感测信号VCS的第三测量值,电路106还可以计算功率转换器的输出功率。接下来描述平均输出电流的计算,然后描述输出功率的计算。
平均输出电流计算
图2示出了与图1中所示的反激转换器的操作相关联的各种波形。功率转换器的输出电流IO可以表示为:
其中ISP是次级侧输出电流信号IS的峰值,ISA是次级侧输出电流IS的谷值,以及IO是平均次级侧连续输出电流。
通过将初级侧电流代入等式(1)中,输出电流IO由下式给出:
其中NP是初级侧绕组LP的匝数,NS是次级侧绕组LS的匝数,T是切换周期,TOFF是初级侧功率开关装置Q1的关断周期,Vvalley是功率开关装置Q1导通时的电流感测信号VCS的大小,Vpeak是功率开关装置Q1关断时的电流感测信号VCS的大小。
根据等式(2),如果(Vpeak+Vvalley)×TOFF的整体是恒定的,则反激转换器的输出电流IO将是恒定的并且不依赖于输入电压VIN。然而,如图2所示,在每个新的切换周期(T)开始时,磁装置的开关电流IP中存在前沿尖峰Ispike,因此电流感测信号VCS中的相应尖峰Vspike由控制器104进行处理。如果不考虑该前沿尖峰,则在Q1的导通时段(TON)的开始处进行的Vvalley测量将具有明显的误差/不准确性。
图3示出了有问题的前沿尖峰Vspike的VCS波形的一个切换周期。在初级侧功率开关装置Q1的导通时段TON的开始(t0)处,电流感测信号VCS响应于磁装置的开关电流IP中的相应尖峰Ispike而开始快速上升。在时间t1处,电流感测信号VCS中的尖峰Vspike已经消退。时间t0和t1之间的延迟(tLEB)在本文中称为前沿消隐时间,并且被确定为允许电流感测信号VCS中的尖峰Vspike在时间t1之前下降。在时间t1之后,电流感测信号VCS缓慢地上升并且遵循另外,控制器104例如通过在t1处采样并保持VCS测量值而捕获在时间t1处取得的电流感测信号VCS的测量值。在时间t2处,电流感测信号VCS等于分配至功率开关装置Q1的预定阈值电压Vth。功率开关装置Q1设计成在该阈值电压以上关断。
然而,例如,由于用于检测VCS何时等于Vth的比较器电路和用于驱动初级侧功率开关装置Q1的驱动器电路,在功率开关装置Q1关断之前存在固有的延迟。因此,功率开关装置Q1在时间t3处关断。时间t2和t3之间的延迟在此称为关断延迟(tdelay)。基于上述条件,导出以下等式:
Vvalley=VLEB-ΔVLEB (3)
Vpeak=Vth+ΔVovershoot (4)
术语(Vpeak+Vvalley)可以表示为:
Vpeak+Vvalley=(Vth+ΔVovershoot)+(VLEB-ΔVLEB)
=(Vth+VLEB)+(ΔVovershoot-ΔVLEB) (5)
其中△VLEB是时间t0处的VCS和时间t1处的VCS之间的差值,△Vovershoot是时间t2的处VCS和t3的处VCS之间的差值。
在一个实施方式中,在当前切换周期中,控制器104确定从电流感测信号VCS达到分配给初级侧功率开关装置Q1的预定阈值电压Vth时至功率开关装置Q1关断时的关断延迟tdelay。在下一个切换周期中,控制器104将用于捕获电流感测信号VCS的第一测量VLEB的前沿消隐时间tLEB设置为针对前一个切换周期确定的关断延迟tdelay。在一个实施方式中,控制器104将关断延迟tdelay确定为电流感测信号VCS的幅度从达到分配给功率开关装置的预定阈值电压Vth转变到在切换周期结束时达到零伏特所需的时间量。
通过将下一个切换周期的前沿消隐时间tLEB设置为等于针对前一个切换周期确定的关断延迟tdelay,ΔVovershoot=ΔVLEB,并且等式(5)简化为:
Vpeak+Vvalley=Vth+VLEB (6)
因为控制器104可以捕获(例如,采样并保持)在时间t1处取得的电流感测信号VCS的VLEB测量值,并且分配给功率开关装置Q1的阈值电压Vth是预定的并且对于控制器104是已知的,所以CCM操作输出电流可以由控制器104计算。
图4示出了包括在控制器104中或与控制器104相关联的用于计算用于CCM操作的隔离式转换器的输出电流的电路106的实施方式。根据该实施方式,采样和保持电路A0在前沿消隐时间tLEB刚刚过去之后采样并保持(捕获)在时间t1处测量的电流感测信号VCS的电压值,并使用由电路A5确定的前一个切换周期的关断延迟tdelay作为前沿消隐时间tLEB。比较器A8确定电流感测信号VCS何时达到分配给初级侧功率开关装置Q1的预定阈值电压Vth。功率开关装置Q1在VCS达到Vth后关断一段时间。在VCS高于Vth之后,电路A5检测功率开关Q1的关断(例如当VCS下降到0V时),并且将相应的关断延迟tdelay值提供至采样和保持电路A0。振荡器A2产生信号PLS,并且与缓冲器A4、触发器A9和逻辑门A10一起在下一个切换周期开始时导通功率开关装置Q1。
在初级侧功率开关装置Q1关断之后,电路A1计算VLEB+Vpeak,并且电路A3在功率开关装置Q1的关断时段TOFF上对该和进行积分,以计算功率转换器的平均输出电流。比较器A6将电路A3的输出与目标电压VR进行比较。电路A7基于如下的比较结果针对下一个切换周期更新分配给功率开关装置Q1的预定阈值电压Vth。如果VLEB+Vpeak之和的积分高于VR,则电路A7在下一个切换周期中降低Vth以降低积分输出。如果VLEB+Vpeak之和的积分低于VR,则电路A7在下一个切换周期增加Vth,以增加积分输出。如果VLEB+Vpeak之和的积分在VR正容差(plustolerance)内(例如2%,5%等),则电路A7针对下一个切换周期将Vth保持在当前水平,以保持积分输出与前一个切换周期相同。
图5示出了用于计算功率转换器的平均输出电流的方法的实施方式。在每个切换周期的开始(框200),初级侧功率开关装置Q1由内部振荡器输出信号PLS导通(框202)。控制器104采样并保持(捕获)刚好在前沿消隐时间tLEB之后取得的VCS测量值VLEB,其中tLEB等于来自先前切换周期的关断延迟tdelay(框204)。当VCS电压达到分配给功率开关装置Q1的预定阈值电压Vth时,控制器104启动Q1的关断(框206)。在初级侧功率开关装置Q1关断之后,控制器104检测Q1的关断延迟(框208)并将该延迟值用作下一个切换周期的前沿消隐时间tLEB(框204)。控制器104还在功率开关装置Q1的关断时段TOFF上对VLEB+Vpeak求积分,以计算功率转换器的平均输出电流(框210)。控制器104将积分结果与目标电压VR进行比较(框212),并且针对下一个切换周期更新预定阈值电压Vth(框214)。
如上所述,当积分的输出高于目标电压VR时,对于下一个切换周期,控制器104可以降低VTH以降低积分输出。当积分的输出低于目标电压VR时,对于下一个切换周期,控制器104可以增加VTH以增加积分输出。当积分的输出在VR的某个容差内时,对于下一个切换周期,控制器104可以保持VTH,使得积分的输出与前一个切换周期相同。
最大输出功率计算
另外或单独地,控制器104可以计算隔离式功率转换器的输出功率。对于CCM操作,可以假设开关频率fs恒定,并且效率η是恒定的。在这些条件下,转换器输出功率由每个切换周期中存储的能量确定,如下所示:
其中LP是磁装置100的初级线圈LP的磁化电感,并且Vpeak和Vvalley分别对应于初级电感器电流IP的峰值和谷值。参数Vpeak和Vvalley用于评估最大功率限制。
图6示出了分别检测Vpeak和Vvalley的实施方式。在时间t0处,电流感测信号VCS开始快速上升。前沿消隐时间tLEB在时间t1处结束。在时间t1之后,电流感测信号VCS缓慢地上升并且遵循同样在时间t1处,控制器104采样并保持(捕获)处于电平VLEB的VCS电压。在另一个前沿消隐时间tLEB在时间t2处结束之后,控制器104采样并保持(捕获)处于电平V2LEB的VCS电压。在时间t3,VCS电压等于分配给初级侧功率开关装置Q1的预定阈值电压Vth。在一定关断时间延迟tdelay(其间VCS增加到Vth以上然后降低到0V)之后,功率开关装置Q1在时间t4处关断。
控制器104可以如下确定Vpeak和Vvalley参数:
Vvalley=VLEB-ΔVLEB (8)
Vpeak=Vth+ΔVovershoot (9)
V2LEB=VLEB+ΔVLEB (10)
通过使下一个切换周期的前沿消隐时间tLEB等于来自前一个切换周期的关断延迟时间tdelay,ΔVovershoot=ΔVLEB,等式(8)和(9)简化如下:
Vvalley=VLEB-(V2LEB-VLEB)
=2×VLEB-V2LEB (11)
Vpeak=Vth+(V2LEB-VLEB) (12)
因为可以从在时间t1处进行的电流感测信号VCS测量中捕获(例如,通过采样和保持)电压测量VLEB,所以可以从在时间t2处进行的VCS测量中类似地捕获电压测量V2LEB,并且电压Vth是控制器104已知的预定阈值电压,控制器104可以在CCM操作中计算转换器输出功率。
图7示出了包括在控制器104中或与控制器104相关联的用于计算用于CCM操作的隔离式转换器的输出功率的电路106的实施方式。根据该实施方式,采样和保持电路A0在时间t1和t2处捕获VCS电压,其中t1等于来自前一个切换周期的tdelay,t2等于来自前一个切换周期的2×tdelay。比较器A9检测电流感测信号VCS何时达到预定阈值电压Vth。电流感测信号VCS继续上升,直到初级侧功率开关装置Q1关断。此时,VCS开始下降。电路A6检测VCS何时下降到0V,并将相应的关断时间延迟tdelay提供至采样和保持电路A0。振荡器A2产生信号PLS,并且与缓冲器A5、触发器A10和逻辑门A11一起在下一个切换周期开始时导通功率开关装置Q1。
在初级侧功率开关装置Q1关断之后,电路A1计算Vvalley=2×VLEB-V2LEB和Vpeak=Vth+V2LEB-VLEB。电路A3在功率开关装置Q1的关断时段TOFF上对电路A1的输出执行平方函数。平方函数的输出被输入至电路A4,电路A4计算Vpeak 2-Vvalley 2。比较器A7将电路A4的输出与目标电压VR进行比较。电路A8基于如下比较结果针对下一个切换周期更新分配给功率开关装置Q1的预定阈值电压Vth。如果由电路A4输出的电压差值(Vpeak 2-Vvalley 2)在当前切换周期中高于目标电压VR,则控制器104针对下一个切换周期减小分配给功率开关装置Q1的预定阈值电压Vth,以减小计算Vpeak 2-Vvalley 2的输出。如果电路A4输出的电压差值(Vpeak 2-Vvalley 2)在当前切换周期中低于目标电压VR,则控制器104增加下一个切换周期的预定阈值电压Vth,以增加计算Vpeak 2-Vvalley 2的输出。如果由电路A4输出的电压差值(Vpeak 2-Vvalley 2)在当前切换周期中的的目标电压VR的正容差(例如2%,5%等)内,则控制器104针对下一个切换周期保持预定阈值电压Vth,以保持计算(Vpeak 2-Vvalley 2)的输出与前一个切换周期相同。
图8示出了由控制器104实现的平方电路A3的实施方式。平方电路是四象限电流倍增器,其包括在饱和状态下操作的晶体管N1至N8。晶体管N1至N4以跨导线性环(translinear loop)的方式连接。晶体管对N5/N6和N7/N8被配置为相应的电流镜。该电路对电流IB的和与差二者求平方,并彼此相减以使电流倍增。由平方电路A3执行的计算由下式给出:
平方电路A3对温度和过程不敏感。
图9示出了用于计算功率转换器的输出功率的方法的实施方式。在每个切换周期的开始(框300),初级侧功率开关装置Q1通过内部振荡器输出信号PLS导通(302)。控制器104采样并保持(捕获)在时间t1处取得的VCS测量VLEB和在时间t2处取得的VCS测量V2LEB,其中t1等于前一切换周期的tdelay,并且t2等于2×tdelay(框304)。当电流感测信号VCS达到预定阈值电压Vth时,控制器104启动初级侧功率开关装置Q1的关断(框306)。控制器104确定功率开关装置Q1的关断tdelay(框308),并使用tdelay作为下一个切换周期的前沿消隐时间tLEB(框304)。在功率开关装置Q1关断之后,控制器104在功率开关装置Q1的关断时间段TOFF上计算Vpeak=Vth+V2LEB-VLEB和Vvalley=2×VLEB-V2LEB(框310)。在该计算之后,控制器104对于Vpeak 2和Vvalley 2实施平方函数(框312),并且在平方函数之后,计算Vpeak 2-Vvalley 2(框314)。
控制器104将Vpeak 2-Vvalley 2计算的输出与目标电压VR进行比较(框316),并针对下一个切换周期更新Vth电压值(框318)。当(Vpeak 2-Vvalley 2)计算的输出高于目标电压VR时,对于下一个切换周期,控制器104可以降低VTH以减小计算输出(Vpeak 2-Vvalley 2)。当(Vpeak 2-Vvalley 2)计算的输出低于目标电压VR时,对于下一个切换周期,控制器104可以增加VTH以增加计算输出(Vpeak 2-Vvalley 2)。当(Vpeak 2-Vvalley 2)计算的输出在VR正容差内时,对于下一个切换周期,控制器104可以保持相同的VTH值,使得计算输出(Vpeak 2-Vvalley 2)与前一个切换周期相同。
诸如“第一”、“第二”等术语用于描述各种元件、区域、部分等,并且也不旨在限制。相同术语在整个说明书中指代相同的元件。
如本文中所用,术语“具有”、“含有”、“包括”、“包含”等是开放式术语,其指示所述元件或特征的存在,但不排除其他元件或特征。除非上下文另有明确说明,否则冠词“一”、“一个”和“该”旨在包括复数以及单数。
应理解,除非另有特别说明,否则本文所述的各种实施方案的特征可彼此组合。
尽管本文已示出和描述了特定实施方式,但所属领域的技术人员将了解,在不脱离本发明的范围的情况下可以用各种替代和/或等效实施方案来替代所展示和描述的特定实施方式。本申请旨在涵盖本文所讨论的特定实施方式的任何改编或变化。因此,本发明旨在仅由权利要求及其等同方案限制。
Claims (20)
1.一种功率转换器,包括:
耦接至磁装置的功率开关装置;以及
控制器,所述控制器能够操作成:
基于反馈信号和对应于所述磁装置的切换电流的电流感测信号来生成用于驱动所述功率开关装置的切换信号;以及
基于在所述功率开关装置的接通时段期间进行的电流感测信号的至少两个测量来计算所述功率转换器的平均输出电流和最大输出功率中的至少之一,所述至少两个测量中的第一测量在从所述接通时段的开始算起的第一时间延迟的结束处进行,并且所述至少两个测量中的第二测量在所述电流感测信号的幅值达到分配给所述功率开关装置的预定阈值电压时进行,所述功率开关装置被设计成在高于所述预定阈值电压时关断。
2.根据权利要求1所述的功率转换器,其中,在当前切换周期中,所述控制器能够操作成确定从所述电流感测信号达到分配给所述功率开关装置的预定阈值电压时至所述功率开关装置关断时的关断延迟,并且其中,在下一个切换周期中,控制器能够操作成将用于执行所述电流感测信号的至少两个测量中的第一测量的第一时间延迟设定成针对前一切换周期确定的关断延迟。
3.根据权利要求2所述的功率转换器,其中所述控制器能够操作成将所述关断延迟确定为所述电流感测信号的幅值从分配给所述功率开关装置的预定阈值电压减小至零伏的时间量。
4.根据权利要求1所述的功率转换器,其中,所述控制器包括能够操作成执行如下操作的电路:在所述第一时间延迟的结束处对所述至少两个测量中的第一测量进行采样和保持,并且当所述电流感测信号的幅值达到分配给所述功率开关装置的预定阈值电压时对所述至少两个测量中的第二测量进行采样并保持。
5.根据权利要求1所述的功率转换器,其中所述控制器包括比较器,所述比较器能够操作成将所述电流感测信号的采样版本与分配给所述功率开关装置的预定阈值电压进行比较,以用于确定所述电流感测信号的幅值何时达到所述功率开关装置的预定阈值电压。
6.根据权利要求1所述的功率转换器,其中所述控制器能够操作成将所述至少两个测量中的第一测量和第二测量相加,并且在所述功率开关装置的关断时段上对所述第一测量和所述第二测量之和进行积分。
7.根据权利要求6所述的功率转换器,其中,所述控制器能够操作成:如果在当前切换周期中所述至少两个测量中的第一测量和第二测量之和的积分高于目标电压,针对下一个切换周期减小分配给所述功率开关装置的预定阈值电压;如果在当前切换周期中所述至少两个测量中的第一测量和第二测量之和的积分低于所述目标电压,针对下一个切换周期增加分配给所述功率开关装置的预定阈值电压;以及如果在当前切换周期中所述至少两个测量中的第一测量和第二测量之和的积分在所述目标电压的正容差内,针对下一个切换周期使分配给所述功率开关装置的预定阈值电压保持不变。
8.根据权利要求1所述的功率转换器,其中所述控制器能够操作成基于所述至少两个测量中的第一测量、所述至少两个测量中的第二测量以及在所述至少两个测量中的第一测量与第二测量之间进行的第三测量来计算所述功率转换器的最大输出功率。
9.根据权利要求8所述的功率转换器,其中所述控制器能够操作成在进行了所述至少两个测量中的第一测量之后的第二时间延迟的结束处进行所述第三测量,并且其中所述第二时间延迟等于所述第一时间延迟。
10.根据权利要求9所述的功率转换器,其中,在当前切换周期中,所述控制器能够操作成确定从所述电流感测信号达到分配给所述功率开关装置的预定阈值电压时至所述功率开关装置关断时的关断延迟,并且其中,在下一个切换周期中,所述控制器能够操作成将所述第一时间延迟和所述第二时间延迟二者设定成针对前一切换周期确定的关断延迟。
11.根据权利要求8所述的功率转换器,其中所述控制器能够操作成基于所述第三测量和所述至少两个测量中的第一测量和第二测量来计算谷值电压和峰值电压,并且其中所述控制器能够操作成基于所述谷值电压的平方和所述峰值电压的平方之差来计算电压差值。
12.根据权利要求11所述的功率转换器,其中,所述控制器能够操作成:如果在当前切换周期中所述电压差值高于目标电压,针对下一个切换周期减小分配给所述功率开关装置的预定阈值电压;如果在当前切换周期中所述电压差值低于所述目标电压,针对下一个切换周期增加分配给所述功率开关装置的预定阈值电压;以及如果在当前切换周期中所述电压差值在所述目标电压的正容差内,针对下一个切换周期使分配给所述功率开关装置的预定阈值电压保持不变。
13.一种操作功率转换器的方法,所述功率转换器具有耦接至磁装置的功率开关装置,所述方法包括:
基于反馈信号和对应于所述磁装置的切换电流的电流感测信号来生成用于驱动所述功率开关装置的切换信号;
捕获在从所述功率开关装置的关断时段的开始算起的第一时间延迟的结束处进行的对所述电流感测信号的第一测量;
捕获在所述电流感测信号的幅值达到分配给所述功率开关装置的预定阈值电压时进行的对所述电流感测信号的第二测量,所述功率开关装置被设计成在高于所述预定阈值电压时关断;以及
至少基于所捕获的电流感测信号的第一测量和第二测量来计算所述功率转换器的平均输出电流和最大输出功率中的至少之一。
14.根据权利要求13所述的方法,还包括:
在当前切换周期中,确定从所述电流感测信号达到分配给所述功率开关装置的预定阈值电压时至所述功率开关装置关断时的关断延迟;以及
在下一个切换周期中,将对所述电流感测信号的第一测量进行捕获的第一时间延迟设定成针对前一个切换周期确定的关断延迟。
15.根据权利要求13所述的方法,其中计算所述功率转换器的平均输出电流包括:
将所捕获的电流感测信号的第一测量和第二测量相加;以及
在功率开关器件的关断时段上对第一测量和第二测量之和进行积分。
16.根据权利要求15所述的方法,还包括:
如果在当前切换周期中所捕获的第一测量和第二测量之和的积分高于目标电压,针对下一个切换周期减小分配给所述功率开关装置的预定阈值电压;
如果在当前切换周期中所捕获的第一测量和第二测量之和的积分低于目标电压,针对下一个切换周期增加分配给所述功率开关装置的预定阈值电压;以及
如果在当前切换周期中所捕获的第一测量和第二测量之和的积分在所述目标电压的正容差内,针对下一个切换周期使分配给所述功率开关装置的预定阈值电压保持不变。
17.根据权利要求13所述的方法,还包括:
在已进行的所述电流感测信号的第一测量和第二测量之间捕获电流感测信号的第三测量,
其中,基于所捕获的电流感测信号的第一测量、第二测量和第三测量来计算所述功率转换器的最大输出功率。
18.根据权利要求17所述的方法,还包括:
在当前切换周期中,确定从所述电流感测信号达到分配给所述功率开关装置的预定阈值电压时至所述功率开关装置关断时的关断延迟;
在进行了至少两个测量中的第一测量之后的第二时间延迟的结束处进行所述第三测量,并且其中所述第二时间延迟等于所述第一时间延迟;以及
在下一个切换周期中,将针对捕获所述电流感测信号的第一测量的第一时间延迟和针对捕获所述电流感测信号第三测量的第二时间延迟设定为针对前一个切换周期确定的关断延迟。
19.根据权利要求17所述的方法,还包括:
基于所捕获的电流感测信号的第一测量、第二测量和第三测量来计算谷值电压和峰值电压;以及
基于所述谷值电压的平方和所述峰值电压的平方之间的差来计算电压差值。
20.根据权利要求19所述的方法,还包括:
如果在当前切换周期中所述电压差值高于目标电压,针对下一个切换周期减小分配给所述功率开关装置的预定阈值电压;
如果在当前切换周期中所述电压差值低于所述目标电压,针对下一个切换周期增加分配给所述功率开关装置的预定阈值电压;以及
如果在当前切换周期中所述电压差值在所述目标电压的正容差内,针对下一个切换周期使分配给所述功率开关装置的预定阈值电压保持不变。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/672,341 | 2017-08-09 | ||
US15/672,341 US10541618B2 (en) | 2017-08-09 | 2017-08-09 | Method and apparatus for measuring at least one of output current and output power for isolated power converters |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109391154A CN109391154A (zh) | 2019-02-26 |
CN109391154B true CN109391154B (zh) | 2021-02-02 |
Family
ID=65084662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810897488.0A Active CN109391154B (zh) | 2017-08-09 | 2018-08-08 | 功率转换器及其操作方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10541618B2 (zh) |
CN (1) | CN109391154B (zh) |
DE (1) | DE102018119153A1 (zh) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10418912B2 (en) * | 2017-12-21 | 2019-09-17 | Silanna Asia Pte Ltd | Power converter with active clamp |
US10707766B2 (en) | 2018-02-02 | 2020-07-07 | Silanna Asia Pte Ltd | Integrated self-driven active clamp |
US10756614B2 (en) * | 2018-06-11 | 2020-08-25 | Qualcomm Incorporated | Lossless average input and output current sensing in a switched-mode power supply |
US11581725B2 (en) | 2018-07-07 | 2023-02-14 | Intelesol, Llc | Solid-state power interrupters |
US11056981B2 (en) * | 2018-07-07 | 2021-07-06 | Intelesol, Llc | Method and apparatus for signal extraction with sample and hold and release |
US11671029B2 (en) | 2018-07-07 | 2023-06-06 | Intelesol, Llc | AC to DC converters |
US11334388B2 (en) | 2018-09-27 | 2022-05-17 | Amber Solutions, Inc. | Infrastructure support to enhance resource-constrained device capabilities |
US11205011B2 (en) | 2018-09-27 | 2021-12-21 | Amber Solutions, Inc. | Privacy and the management of permissions |
US10985548B2 (en) | 2018-10-01 | 2021-04-20 | Intelesol, Llc | Circuit interrupter with optical connection |
US11349296B2 (en) | 2018-10-01 | 2022-05-31 | Intelesol, Llc | Solid-state circuit interrupters |
JP7475351B2 (ja) | 2018-12-17 | 2024-04-26 | インテレソール エルエルシー | Ac駆動型の発光ダイオードシステム |
US10461626B1 (en) | 2019-01-14 | 2019-10-29 | Silanna Asia Pte Ltd | Active clamp circuit |
TWI684087B (zh) * | 2019-03-11 | 2020-02-01 | 聚積科技股份有限公司 | 穩壓系統 |
US10673342B1 (en) | 2019-05-02 | 2020-06-02 | Silanna Asia Pte Ltd | Active clamping with bootstrap circuit |
US10897201B2 (en) * | 2019-05-09 | 2021-01-19 | Nxp B.V. | Switched mode power supply signal reconstruction |
US11551899B2 (en) | 2019-05-18 | 2023-01-10 | Amber Semiconductor, Inc. | Intelligent circuit breakers with solid-state bidirectional switches |
US11740278B2 (en) * | 2019-08-02 | 2023-08-29 | Infineon Technologies Ag | Electronic test equipment apparatus and methods of operating thereof |
WO2021150684A1 (en) | 2020-01-21 | 2021-07-29 | Amber Solutions, Inc. | Intelligent circuit interruption |
WO2021146982A1 (zh) * | 2020-01-22 | 2021-07-29 | Msj系统有限责任公司 | 一种开关电源变换器 |
EP4197086A4 (en) | 2020-08-11 | 2024-09-04 | Amber Semiconductor Inc | INTELLIGENT POWER SOURCE SELECTION AND MONITORING CONTROL SYSTEM |
US12113525B2 (en) | 2021-09-30 | 2024-10-08 | Amber Semiconductor, Inc. | Intelligent electrical switches |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1271473A (zh) * | 1997-08-11 | 2000-10-25 | 系统通用公司 | 用于电流型电力变换器的自适应斜率补偿器 |
CN101202510A (zh) * | 2007-08-27 | 2008-06-18 | 崇贸科技股份有限公司 | 测量与调节连续电流模式电力转换器输出电流的控制电路 |
CN102185484A (zh) * | 2011-05-10 | 2011-09-14 | 成都芯源系统有限公司 | 开关电源及其控制电路和控制方法 |
CN102364848A (zh) * | 2011-02-01 | 2012-02-29 | 杭州士兰微电子股份有限公司 | 一种原边控制的恒流开关电源控制器及方法 |
TWI502873B (zh) * | 2014-07-01 | 2015-10-01 | Univ Nat Taiwan | 控制電路 |
CN105024549A (zh) * | 2014-04-15 | 2015-11-04 | 美格纳半导体有限公司 | 开关控制电路以及使用其的转换器 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6344983B1 (en) * | 1999-11-16 | 2002-02-05 | Motorola, Inc. | Flyback transformer regulator |
US6385059B1 (en) * | 2000-11-14 | 2002-05-07 | Iwatt, Inc. | Transformer-coupled switching power converter having primary feedback control |
US7061225B2 (en) * | 2004-06-29 | 2006-06-13 | System General Corp. | Apparatus and method thereof for measuring output current from primary side of power converter |
US7016204B2 (en) * | 2004-08-12 | 2006-03-21 | System General Corp. | Close-loop PWM controller for primary-side controlled power converters |
CN101295872B (zh) * | 2007-04-28 | 2010-04-14 | 昂宝电子(上海)有限公司 | 为功率转换器提供过电流和过功率保护的系统和方法 |
US7671486B2 (en) * | 2006-10-31 | 2010-03-02 | System General Corp. | Switching controller having synchronous input for the synchronization of power converters |
TWI370338B (en) * | 2008-04-15 | 2012-08-11 | Grenergy Opto Inc | Current-level decision device for a power supply device and power supply device |
US7965528B2 (en) * | 2008-06-13 | 2011-06-21 | System General Corporation | Method and apparatus for measuring the switching current of power converter operated at continuous current mode |
US8064230B2 (en) * | 2008-09-09 | 2011-11-22 | Infineon Technologies Austria Ag | System and method for power conversion |
US9553501B2 (en) * | 2010-12-08 | 2017-01-24 | On-Bright Electronics (Shanghai) Co., Ltd. | System and method providing over current protection based on duty cycle information for power converter |
TWI411202B (zh) * | 2010-12-20 | 2013-10-01 | Richtek Technology Corp | 電源轉換器的控制器以及電源轉換器的控制方法 |
CN103477233B (zh) * | 2011-03-15 | 2015-11-25 | 上舜照明(中国)有限公司 | 一种电流检测电路及其控制电路和电源转换电路 |
KR102048398B1 (ko) * | 2012-05-04 | 2019-11-26 | 온세미컨덕터코리아 주식회사 | 스위치 제어기, 스위치 제어 방법 및 스위치 제어기를 포함하는 전력 공급 장치 |
US9024533B2 (en) * | 2013-03-12 | 2015-05-05 | Atmel Corporation | Controlling switching current regulators |
JP6410554B2 (ja) * | 2014-10-21 | 2018-10-24 | ローム株式会社 | スイッチングコンバータおよびその制御回路、ac/dcコンバータ、電源アダプタおよび電子機器 |
CN105763061B (zh) * | 2014-12-17 | 2018-05-29 | 万国半导体(开曼)股份有限公司 | 反激转换器输出电流计算电路及计算方法 |
-
2017
- 2017-08-09 US US15/672,341 patent/US10541618B2/en active Active
-
2018
- 2018-08-07 DE DE102018119153.7A patent/DE102018119153A1/de not_active Ceased
- 2018-08-08 CN CN201810897488.0A patent/CN109391154B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1271473A (zh) * | 1997-08-11 | 2000-10-25 | 系统通用公司 | 用于电流型电力变换器的自适应斜率补偿器 |
CN101202510A (zh) * | 2007-08-27 | 2008-06-18 | 崇贸科技股份有限公司 | 测量与调节连续电流模式电力转换器输出电流的控制电路 |
CN102364848A (zh) * | 2011-02-01 | 2012-02-29 | 杭州士兰微电子股份有限公司 | 一种原边控制的恒流开关电源控制器及方法 |
CN102185484A (zh) * | 2011-05-10 | 2011-09-14 | 成都芯源系统有限公司 | 开关电源及其控制电路和控制方法 |
CN105024549A (zh) * | 2014-04-15 | 2015-11-04 | 美格纳半导体有限公司 | 开关控制电路以及使用其的转换器 |
TWI502873B (zh) * | 2014-07-01 | 2015-10-01 | Univ Nat Taiwan | 控制電路 |
Also Published As
Publication number | Publication date |
---|---|
CN109391154A (zh) | 2019-02-26 |
US20190052174A1 (en) | 2019-02-14 |
US10541618B2 (en) | 2020-01-21 |
DE102018119153A1 (de) | 2019-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109391154B (zh) | 功率转换器及其操作方法 | |
TWI424670B (zh) | System and method for switching power supply converters | |
TWI481176B (zh) | A system and method for current control of a power conversion system | |
US10651747B2 (en) | Systems and methods with timing control for synchronization rectifier controllers | |
US20170141688A1 (en) | Systems and methods for regulating output currents of power conversion systems | |
CN111431414B (zh) | 反激式转换器及其操作方法 | |
US9431909B2 (en) | Synchronous rectifier controller for a switched mode power supply | |
US20150062981A1 (en) | Systems and methods for adjusting frequencies and currents based on load conditions of power conversion systems | |
CN104852582B (zh) | 具有外部参数检测的功率转换 | |
US10454365B2 (en) | Apparatus and method for controlling pulse width modulation switching frequency | |
KR20100048769A (ko) | 역률 보상 회로 및 역률 보상 회로의 구동 방법 | |
CN104868722A (zh) | 具有延迟补偿的功率变换 | |
CN111756248B (zh) | 开关电源装置 | |
US10069402B2 (en) | Power supply apparatus and image forming apparatus | |
US8885365B2 (en) | Switching power supply device and method for control thereof | |
US20170079098A1 (en) | Led driver | |
CN113950791A (zh) | 用于驱动led负载的同步反激转换器 | |
TWI469478B (zh) | 用於控制功率轉換器的方法及其裝置 | |
US11909325B2 (en) | Circuit for generating a dynamic drain-source voltage threshold and method thereof | |
US20020114174A1 (en) | Power supply unit and driving method thereof | |
JP7204986B2 (ja) | 共振インバータおよび変換方法 | |
US9537396B2 (en) | Power switch control by adjusting the base current of a bipolar transistor | |
WO2015079579A1 (ja) | 電源装置、検査装置、及び電源装置の最適化方法 | |
KR101486962B1 (ko) | 컨버터 및 그 구동 방법 | |
JP2003033022A (ja) | 高圧電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |