CN109385049A - 一种防静电改性聚噻吩树脂及其在精密检测仪器上的应用 - Google Patents

一种防静电改性聚噻吩树脂及其在精密检测仪器上的应用 Download PDF

Info

Publication number
CN109385049A
CN109385049A CN201811314150.4A CN201811314150A CN109385049A CN 109385049 A CN109385049 A CN 109385049A CN 201811314150 A CN201811314150 A CN 201811314150A CN 109385049 A CN109385049 A CN 109385049A
Authority
CN
China
Prior art keywords
molecular weight
resin
low molecular
thiophene
polythiophene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811314150.4A
Other languages
English (en)
Other versions
CN109385049B (zh
Inventor
熊郃
吴远浪
李凤霞
吴正家
赵梦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Prin Standard Technical Service Co Ltd
Original Assignee
Hubei Prin Standard Technical Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Prin Standard Technical Service Co Ltd filed Critical Hubei Prin Standard Technical Service Co Ltd
Priority to CN201811314150.4A priority Critical patent/CN109385049B/zh
Publication of CN109385049A publication Critical patent/CN109385049A/zh
Application granted granted Critical
Publication of CN109385049B publication Critical patent/CN109385049B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明涉及一种防静电改性聚噻吩树脂及其在精密检测仪器上的应用,所述树脂包括低分子量聚苯胺、噻吩单体、催化剂,其中低分子量聚苯胺的数均分子量为800‑3000,低分子量聚苯胺与噻吩的质量比为1‑2:8‑10。本发明的改性聚噻吩树脂具有优异的电导率,其中HT结构的占比能够达到三种混合物总和的90%以上。

Description

一种防静电改性聚噻吩树脂及其在精密检测仪器上的应用
技术领域
本发明涉及检测设备防静电技术领域,具体涉及一种防静电改性聚噻吩树脂及其制备方法和应用。
背景技术
静电是日常生活和工作中常见的自然现象,它产生的原因有多方面,人或设备等在活动中都可能产生静电,静电积累到一定程度会造成较大的危害,尤其对于一些高精密的检测仪器,如色谱仪等,如造成仪器损坏需要耗费大量的人力物力来修复。
采用导电聚合物树脂制备检测的仪器设备的壳体部件,或者采用导电高分子材料制备成待检测产品的容器等,在样品转移和检测过程中可以有效避免静电的积累,进而减少静电对检测产品或者检测仪器的破坏。现有的导电聚合物一般分为掺杂型导电聚合物和本征导电聚合物,前者是通过掺杂导电材料等手段,能使得电导率在半导体和导体范围内的聚合物,掺杂型导电聚合物的性能与掺杂的组分及其掺杂量有着密切关系,由于聚合物本身掺杂量的限制,大大阻碍了掺杂型导电聚合物的应用和发展。本征导电聚合物(intrinsic condcuting polymer)是一种新型的导电高分子材料,由于有特殊的结构而使其本身具有导电的可能性,常见的本征型导电聚合物有:聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙烯和聚双炔等。这种导电材料相对于掺杂型导电聚合物具有更广阔的应用前景,但也存在导电性能较弱的问题。这些需求,给高分子导电聚合物产品提供了广阔的应用空间,也对其导电、抗静电性能提出了越来越高的要求。
发明内容
本发明的目的在于克服现有技术中导电高分子聚合物的缺点和不足,具体而言,提供一种抗静电性能优异的改性聚噻吩树脂及其制备方法和应用。
本发明解决上述技术问题所采用的方案是:
一种防静电改性聚噻吩树脂,包括如下组分:低分子量聚苯胺、噻吩单体、催化剂,其中低分子量聚苯胺的数均分子量为800-3000,低分子量聚苯胺与噻吩的质量比为1-2:8-10。
优选地,所述噻吩单体包含单卤代噻吩、双卤代噻吩、乙烯二氧噻吩中的至少一种。
优选地,所述低分子量聚苯胺的数均分子量为1000-2000。
优选地,所述催化剂为Ni(dppe)Cl2、格氏试剂、铂催化剂中的一种,催化剂用量为噻吩单体用量的1-2%。
优选地,所述低分子量聚苯胺为直径5~25nm的纳米颗粒。
优选地,所述树脂中还掺杂有导电材料。
本发明还提供上述的防静电改性聚噻吩树脂的制备方法,包括如下步骤:
(1)将噻吩单体配置成质量浓度为10-20%的溶液;
(2)将低分子量聚苯胺加入到步骤(1)所得溶液中,在500-1000rpm下低速搅拌5-10min;
(3)加入催化剂,调节pH值为7-8,低温反应12-18h,除杂即得所述改性聚噻吩树脂。
优选地,步骤(1)采用的溶剂为水、醇或者醇水混合溶液。
优选地,步骤(3)所述的低温条件为不超过30℃。
上述的防静电改性聚噻吩树脂在检测领域的应用,其特征在于,用于制作检测仪器外壳或者检测样品容器。
另外,本发明的防静电改性聚噻吩树脂还可以应用于任何对于抗静电或导电有要求的环境。
噻吩单体在聚合制备成聚噻吩后,得到的通常是由三种产物组成的混合物,具体结构如下所示:
聚噻吩的抗静电性能与其分子链的长度、结构的规整度、取向程度密切相关,而其中HT结构产物的共轭程度最高,结构更趋向于平面化,对导电率和其他性能都更加有利。因此,改性聚噻吩结构中HT结构越多,聚噻吩的抗静电性能越优异。而通过本申请的制备方法得到的改性聚噻吩树脂,HT结构的占比能够达到三种混合物总和的90%以上,进而使最终的改性聚噻吩树脂具备更优异的导电性能。
另外,本申请还添加了低分子量聚苯胺,其数均分子量为800-3000,优选的数均分子量为1000-2000。聚苯胺也是一种本征型导电高分子聚合物,申请人发现通过特定数均分子量的聚苯胺的加入,不仅可以提高改性聚噻吩的抗静电性能,还能够调控改性聚噻吩树脂中HT结构的含量,其数均分子量的选择是本发明的改性聚噻吩树脂中HT结构的占比能够达到90%以上的关键。
相对于现有技术而言,本发明的有益效果是:
1、本发明的改性聚噻吩树脂中HT结构的占比能够达到三种混合物总和的 90%以上,具有优异的抗静电性能。
2、特定数均分子量的聚苯胺的加入,不仅提高了改性聚噻吩的抗静电性能,还能够调控改性聚噻吩树脂中HT结构的含量。
3、聚苯胺的合适用量也能使改性聚苯胺树脂的抗静电性能带来很大提升。
具体实施方式
为更好的理解本发明,下面的实施例是对本发明的进一步说明,但本发明的内容不仅仅局限于下面的实施例。
实施例1
将100g噻吩单体制备成质量浓度为15%的水溶液,然后与10g数均分子量为800的聚苯胺混合,在500-1000rpm下低速搅拌5-10min,加入2g催化剂,调节pH值为7-8,低温反应12-18h,除杂即得所述改性聚噻吩树脂;将所得改性聚噻吩树脂经恒压压片制备成直径为12mm,厚度1.5mm的片材,采用微电流测量仪测量其电导率。另外,对上述改性聚噻吩树脂进行XRD分析,计算得出 HT占HH、HT、TT的比例。
实施例2
聚苯胺数均分子量为500,其他配方同实施例1。
实施例3
聚苯胺数均分子量为1000,其他配方同实施例1。
实施例4
聚苯胺数均分子量为2000,其他配方同实施例1。
实施例5
聚苯胺数均分子量为3000,其他配方同实施例1。
实施例6
聚苯胺数均分子量为4000,其他配方同实施例1。
表1.实施例1-6的HT含量及电导率
HT含量 电导率(10<sup>-7</sup>s·m<sup>-1</sup>)
实施例1 90.2% 4.98
实施例2 84.6% 3.14
实施例3 91.3% 5.16
实施例4 92.5% 5.28
实施例5 90.6% 5.07
实施例6 86.7% 3.25
从上表可以看出,当低分子量聚苯胺的数均分子量在800-3000时,其中HT 含量均高于90%,电导率也相对于其他实施例高。
实施例7
取20g聚苯胺和80g噻吩单体,其他配方同实施例1。
实施例8
取10g聚苯胺和120g噻吩单体,其他配方同实施例1。
实施例9
取30g聚苯胺和80g噻吩单体,,其他配方同实施例1。
表2.实施例1、7-9的电导率
电导率(10<sup>-7</sup>s·m<sup>-1</sup>)
实施例1 4.98
实施例7 5.06
实施例8 4.34
实施例9 4.48
上述检测结果可以看出,聚苯胺与噻吩单体的用量在1-2:8-10之间时,其电导率要比其他的比例高。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (10)

1.一种防静电改性聚噻吩树脂,其特征在于,包括如下组分:低分子量聚苯胺、噻吩单体、催化剂,其中低分子量聚苯胺的数均分子量为800-3000,低分子量聚苯胺与噻吩的质量比为1-2:8-10。
2.根据权利要求1所述的树脂,其特征在于,所述噻吩单体包含单卤代噻吩、双卤代噻吩、乙烯二氧噻吩中的至少一种。
3.根据权利要求1所述的树脂,其特征在于,所述低分子量聚苯胺的数均分子量为1000-2000。
4.根据权利要求1所述的树脂,其特征在于,所述催化剂为Ni(dppe)Cl2、格氏试剂、铂催化剂中的一种,催化剂用量为噻吩单体用量的1-2%。
5.根据权利要求1所述的树脂,其特征在于,所述低分子量聚苯胺为直径5~25nm的纳米颗粒。
6.根据权利要求1所述的树脂,其特征在于,所述树脂中还掺杂有导电材料。
7.如权利要求1~5任一项所述的防静电改性聚噻吩树脂的制备方法,其特征在于,包括如下步骤:
(1)将噻吩单体配置成质量浓度为10-20%的溶液;
(2)将低分子量聚苯胺加入到步骤(1)所得溶液中,在500-1000rpm下低速搅拌5-10min;
(3)加入催化剂,调节pH值为7-8,低温反应12-18h,除杂即得所述改性聚噻吩树脂。
8.根据权利要求7所述的制备方法,其特征在于,步骤(1)采用的溶剂为水、醇或者醇水混合溶液。
9.根据权利要求7所述的制备方法,其特征在于,步骤(3)所述的低温条件为不超过30℃。
10.如权利要求1~6任一项所述的防静电改性聚噻吩树脂在检测领域的应用,其特征在于,用于制作检测仪器外壳或者检测样品容器。
CN201811314150.4A 2018-11-06 2018-11-06 一种防静电改性聚噻吩树脂及其在精密检测仪器上的应用 Active CN109385049B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811314150.4A CN109385049B (zh) 2018-11-06 2018-11-06 一种防静电改性聚噻吩树脂及其在精密检测仪器上的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811314150.4A CN109385049B (zh) 2018-11-06 2018-11-06 一种防静电改性聚噻吩树脂及其在精密检测仪器上的应用

Publications (2)

Publication Number Publication Date
CN109385049A true CN109385049A (zh) 2019-02-26
CN109385049B CN109385049B (zh) 2020-12-18

Family

ID=65427264

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811314150.4A Active CN109385049B (zh) 2018-11-06 2018-11-06 一种防静电改性聚噻吩树脂及其在精密检测仪器上的应用

Country Status (1)

Country Link
CN (1) CN109385049B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116640520A (zh) * 2023-05-08 2023-08-25 极天羽技术股份有限公司 一种低撕膜电压pu胶保护膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778561B2 (en) * 2008-02-04 2014-07-15 Stmicroelectronics S.R.L. Electrocatalytic polymer-based powder, method of production and use thereof
CN105683228A (zh) * 2013-10-28 2016-06-15 约瑟夫·P·劳里诺 一种具有2,5呋喃二酮、金属盐的1-十八烯导电性聚合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778561B2 (en) * 2008-02-04 2014-07-15 Stmicroelectronics S.R.L. Electrocatalytic polymer-based powder, method of production and use thereof
CN105683228A (zh) * 2013-10-28 2016-06-15 约瑟夫·P·劳里诺 一种具有2,5呋喃二酮、金属盐的1-十八烯导电性聚合物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
戴松元: "《薄膜太阳电池关键科学和技术》", 31 January 2013, 上海科学技术出版社 *
杨逢时等: "复合型导电高分子材料的研究进展", 《化工新型材料》 *
江明等: "《高分子科学的近代论题》", 30 September 1998, 复旦大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116640520A (zh) * 2023-05-08 2023-08-25 极天羽技术股份有限公司 一种低撕膜电压pu胶保护膜及其制备方法

Also Published As

Publication number Publication date
CN109385049B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
Kim et al. Fabrication of highly flexible, scalable, and high‐performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity
Müller et al. Flexible PEDOT-nanocellulose composites produced by in situ oxidative polymerization for passive components in frequency filters
Dhibar et al. Fabrication of transition‐metal‐doped polypyrrole/multiwalled carbon nanotubes nanocomposites for supercapacitor applications
CN102212244B (zh) 一种高电导率的导电塑料及其制备方法
Omura et al. Organic thin paper of cellulose nanofiber/polyaniline doped with (±)-10-camphorsulfonic acid nanohybrid and its application to electromagnetic shielding
Dai et al. Interfacial polymerization to high-quality polyacrylamide/polyaniline composite hydrogels
CN103910881A (zh) 十二烷基苯磺酸掺杂聚苯胺合成及其在钒电池极板的应用
Wong et al. Effects of synthesised polyaniline (PAni) contents on the anti-static properties of PAni-based polylactic acid (PLA) films
CN109385049A (zh) 一种防静电改性聚噻吩树脂及其在精密检测仪器上的应用
Rahaman et al. Polyaniline, ethylene vinyl acetate semi‐conductive composites as pressure sensitive sensor
Li et al. A composite of polyelectrolyte-grafted multi-walled carbon nanotubes and in situ polymerized polyaniline for the detection of low concentration triethylamine vapor
Chouli et al. Preparation and characterization of the new conducting composites obtained from 2-methylaniline and aniline with activated carbon by in situ intercalative oxidative polymerization
de Oliveira et al. Development of flexible sensors using knit fabrics with conductive polyaniline coating and graphite electrodes
CN108084627A (zh) 基于碳纳米管及石墨烯复配体系的hips基导电母粒及其制备方法
da Silva Guimarães et al. Thermal and morphological characterization of conducting, polyaniline/polystyrene blends
Losaria et al. Enhancement of Strain‐Sensing Performance through Gas Phase Incorporation of Siloxane into Thermoplastic Polyurethane‐Conducting Polymer Composite
Taşdelen Conducting hydrogels based on semi‐interpenetrating networks of polyaniline in poly (acrylamide‐co‐itaconic acid) matrix: synthesis and characterization
Rahaman et al. Polyaniline/ethylene vinyl acetate composites as dielectric sensor
Sury et al. Synthesis of conducting polyaniline with photopolymerization method and characterization
CN109554076A (zh) 一种防静电改性聚噻吩涂料及其在精密检测仪器上的应用
Hou et al. Towards enhanced electrochemical capacitance with self‐assembled synthesis of poly (pyrrole‐co‐o‐toluidine) nanoparticles
CN113004662B (zh) 一种pedot:pss/zif-8气敏材料、气敏元件、制备方法及应用
Rahy et al. Nano‐emulsion use for the synthesis of polyaniline nano‐grains or nano‐fibers
Permpool et al. Polydiphenylamine–polyethylene oxide blends as methanol sensing materials
Siddaramaiah et al. Investigation on microstructural behavior of styroflex/polyaniline blends by WAXS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant