CN109382085A - 稀土矿泡沫陶瓷催化剂及其制备方法和应用 - Google Patents

稀土矿泡沫陶瓷催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN109382085A
CN109382085A CN201811348927.9A CN201811348927A CN109382085A CN 109382085 A CN109382085 A CN 109382085A CN 201811348927 A CN201811348927 A CN 201811348927A CN 109382085 A CN109382085 A CN 109382085A
Authority
CN
China
Prior art keywords
rare earth
foamed ceramics
preparation
earth mine
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811348927.9A
Other languages
English (en)
Inventor
赵增武
赵然
李保卫
武文斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University of Science and Technology
Original Assignee
Inner Mongolia University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University of Science and Technology filed Critical Inner Mongolia University of Science and Technology
Priority to CN201811348927.9A priority Critical patent/CN109382085A/zh
Publication of CN109382085A publication Critical patent/CN109382085A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1324Recycled material, e.g. tile dust, stone waste, spent refractory material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1328Waste materials; Refuse; Residues without additional clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/24Manufacture of porcelain or white ware
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Abstract

本发明涉及稀土矿泡沫陶瓷催化剂及其制备方法和应用,所述方法包括如下步骤:取矿产原料过筛并球磨,再与羧甲基纤维素钠、十二烷基苯磺酸钠、无水乙醇和硅溶胶混合,得到混合浆料;将聚氨酯泡沫切成条状,然后浸入NaOH溶液中水解后晾干,再浸入硅溶胶溶液中并干燥,然后浸入混合浆料中,再充分挤压并吸浆后,采用玻璃棒辊压法排除多余的浆料,再干燥并取出,再在空气氛围下烧结,得到稀土矿泡沫陶瓷催化剂。本发明的稀土矿泡沫陶瓷催化剂的制备方法,开发制备出低成本高性能的泡沫陶瓷稀土催化剂用于处理工业气体,实现温室气体的减排和利用氧化的热量可以发电或其他的用途。

Description

稀土矿泡沫陶瓷催化剂及其制备方法和应用
技术领域
本发明属于稀土催化材料领域,具体涉及一种稀土矿泡沫陶瓷催化剂及其制备方法和应用。
背景技术
一、煤炭产生的工业气体污染环境
我国煤炭资源储量极为丰富,而我区的煤炭资源储量居全国第二,每年开釆量也十分巨大。在煤炭开釆过程中,为了减少因煤矿瓦斯而引起矿难的发生,向煤矿巷道中通入大量的空气,将瓦斯稀释后排入大气。而煤层气按其内含有瓦斯含量的多少大体上分为高浓度、低度瓦斯两类,以30%含量为界。高浓度瓦斯质量优、燃烧清洁、利用率高。低浓度瓦斯易燃易爆,浓度一般低于30%,同时由于与煤矿直接接触,含有许多煤灰、粉尘,成分并不单一,极其容易爆炸,具有严重的安全隐患。有效的处理低浓度瓦斯,不仅对减缓温室效应带来的环境问题有重要意义,也是我国低碳经济主题有效实施手段,更是对生命安全有着深远影响。
低浓度甲烷对环境造成巨大的污染,肆意排放这类温室气体必然加剧环境问题的恶化,甲烷的温室效应是二氧化碳的25倍,造成了严重的温室效应,威胁人类的生存环境,此外,煤层气的存在也时刻威胁着煤矿安全而甲烷气体燃烧产物之一CO2的温室效应却很低,所以对浓度不高的工业气体目前有效又使用广泛的方法是催化还原法。
目前,低浓度甲烷利用的主要方式是将其进行催化燃烧,以利用其放出的热能。催化燃烧的关键在于寻找经济高效的催化剂,使甲烷在较低温度下能够完全转化。甲烷等工业气体燃烧虽然只是一个简单的氧化过程,但对催化剂的要求十分苟刻,原因有以下两点:一是甲烷是所有烃类中最稳定的,一般情况下难于活化或氧化,为此甲烷催化材料必需具备较高的活性;二是甲烷催化燃烧反应温度通常比较高,并且反应过程中会产生大量水气,无论是来自天然气还是矿井瓦斯,甲烷中往往含杂质硫,所以甲烷催化燃烧催化剂还必须具备一定的水热稳定性以及抗硫中毒能力。一般情况下,催化剂的活性与稳定性是相互矛盾的,因此研究并开发高效稳定的催化剂具有一定的难度,为此,国内外许多学者进行了大量的相关研究,并取得了一定的成果。
二、白云鄂博矿可用于制备稀土金属催化剂
白云鄂博共生矿是目前世界上已经发现的最大稀土矿,是我国稀土工业的主要原料基地。包钢选矿厂自投产以来,进入尾矿坝中的稀土氧化物达到数百万吨,尾矿中稀土REO的平均品位在7%左右,比原矿稀土品位略高,其价值相当可观。
白云鄂博尾矿中多种金属氧化物、稀土氧化物都会对工业气体起到催化作用,经国内外多年的研究和实践,稀土在催化过程中的作用是多方面的,由于稀土元素具有独特的储氧功能,储氧作用可以调节空燃比,稀土的原子半径大,极易失去外层电子,具有特殊的变价特性和化学活性,可以增加催化剂的活性。稀土元素还可以改善催化剂的抗铅硫中毒性能,这种催化剂采用了稀土和其它氧化物等多成分的协同效应。同时稀土加入有助于贵金属组份在高温下有良好的弥散性及分散性,防止催化剂载体的品粒长大和烧结,增加了催化剂的热稳定性。所以由于稀土元素的加入可提高了催化剂的性能和使用寿命。大力开发稀土在催化剂领域中的应用既可带动我国稀土产业化的发展,又能治理温室气体所带来的大气污染。对合理利用我国丰富的稀土资源,保护生态环境,实现社会、经济可持续发展具有重要的意义。尾矿资源再利用使其成为二次资源,可以减少尾矿坝建坝及维护费,保护环境减少污染,实现社会的可持续发展,具有重大的社会效益。
三、泡沫陶瓷催化剂的特性
多孔陶瓷是由各种颗粒和各种添加剂形成的坯料,通过干燥、高温烧结后,具有低密度、高渗透性、耐腐蚀、保温性能好等优点的新型功能材料。由于其内部有大量的宏观尺度的中空孔道,并具有大空隙度,所以有高表面积,在催化反应中可以暴露更多的活位点,所以可直接用于催化反应或者作为整体催化剂的载体来使用。
从应用上讲,多孔陶瓷催化剂是具有浆态化特性的固定化催化剂:既具有较高的比表面积和较短扩散距离,且不存在催化剂磨损和与产物的分离问题。与常规固定床反应器中使用的颗粒型催化剂比较,多孔陶瓷催化剂在反应过程中没有因为催化剂与物料或催化剂与催化剂之间相互碰撞造成的催化剂损失,以及产生的细小粉末造成孔道堵塞的情况。所以,可以利用以上的这些优良特性促进多孔陶瓷催化剂在化工生产中的应用,发挥其较传统催化剂的各种优势。
发明内容
本发明的一个目的在于提出一种稀土矿泡沫陶瓷催化剂的制备方法。
本发明的一种稀土矿泡沫陶瓷催化剂的制备方法,包括如下步骤:S101:取内蒙古包头市白云鄂博矿区所开采的矿产原料过筛,得到粒径为40μm~60μm的颗粒,然后加入乙醇进行球磨,得到粒径为10μm~50μm的尾矿原料;S102:将所述尾矿原料与羧甲基纤维素钠、十二烷基苯磺酸钠、无水乙醇和第一化合物混合,然后调节pH值为10.0~12.0,再放入密闭容器中,在氮气氛围下搅拌15min~25min,得到混合浆料;S103:将聚氨酯泡沫切成条状,然后浸入质量分数为15%的NaOH溶液中,在55℃~65℃水中水解35min~45min,然后反复揉搓后用清水冲洗并晾干,再将其浸入质量分数为25%~35%的硅溶胶溶液中,45℃~55℃温度下保温3h~5h,然后在室温下自然干燥42h~55h,再在78℃~82℃恒温鼓风干燥箱中干燥1.5h~2.5h,然后取出并浸入步骤S102得到的混合浆料中8min~12min,再充分挤压并吸浆后,采用玻璃棒辊压法排除多余的浆料,再在室温下自然晾干后,再干燥3.5h~4.5h并取出,得到泡沫陶瓷预制体;S104:将所述泡沫陶瓷预制体在空气氛围下烧结,首先在第一升温速率下从室温升至190℃~210℃,然后在第二升温速率下升至480℃~520℃并保温55min~65min,再在第三升温速率下升至800℃~1100℃并保温55min~65min,得到稀土矿泡沫陶瓷催化剂。
本发明的稀土矿泡沫陶瓷催化剂的制备方法,以高效、高附加利用白云鄂博富稀土渣和稀土矿为根本目的,使用以待治理的白云鄂博矿原料,开发制备出低成本高性能的泡沫陶瓷稀土催化剂用于处理工业气体,实现温室气体的减排和利用氧化的热量可以发电或其他的用途。
另外,本发明上述的稀土矿泡沫陶瓷催化剂的制备方法,还可以具有如下附加的技术特征:
进一步地,在所述步骤S101中,所述矿产原料至少包括白云鄂博尾矿、白云鄂博精矿和富稀土铁矿中的一种。
进一步地,在所述步骤S102中,取尾矿原料55wt%~65wt%,羧甲基纤维素钠1wt%~3wt%,十二烷基苯磺酸钠1wt%~5wt%,所述无水乙醇的质量分数为3%~7wt%,硅溶胶溶液25%~40wt%,所述硅溶胶溶液的质量分数为25%~35%。
进一步地,在所述步骤S102中,所述第一化合物至少为硅溶胶、硅酸钠、硅酸钾和聚乙烯醇中的一种。
进一步地,在所述步骤S103中,所述聚氨酯泡沫的孔数为15ppi~60ppi。
进一步地,在所述步骤S103中,条状聚氨酯泡沫的长、宽和高分别为5.5mm~6.5mm、5.5mm~6.5mm和28mm~32mm。
进一步地,在所述步骤S103中,在室温晾干后,再置于鼓风干燥箱中进行干燥。
进一步地,在所述步骤S104中,所述第一升温速率为4℃/min~6℃/min,所述第二升温速率为1℃/min~3℃/min,所述第三升温速率为6℃/min~10℃/min。
本发明的另一个目的在于提出所述的方法制备的稀土矿泡沫陶瓷催化剂。
本发明的再一个目的在于提出所述的稀土矿泡沫陶瓷催化剂在甲烷催化燃烧、挥发性有机化合物的祛除、CO催化燃烧消除、甲烷之外的烃类的催化燃烧消除以及汽车尾气中NOx的消除中的应用。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1为实施例1制备的泡沫陶瓷催化剂(ceramic foams)和稀土尾矿原矿(RE-tailings)的XRD衍射图谱;
图2是甲烷催化氧化反应实验系统的示意图,其中,1-N2,2-O2,3-CH4/CO,4-减压阀5-质量流量计6-气体混合箱7-反应器加热炉8-石英反应器9-热电偶10-温控仪11-数字显示仪12-气相色谱;
图3(a)、(b)和(c)为实施例1制备的多孔泡沫陶瓷的扫描电镜图,(d)多孔陶瓷实物照片;
图4为实施例1制备的稀土尾矿原矿和泡沫陶瓷甲烷催化活性曲线。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
实施例1-7的评价方式为:
该催化剂的甲烷(一氧化碳或甲烷之外的烃或挥发性有机化合物之一)催化燃烧活性测试是在微型固定床反应装置(图2)中进行的。测试的压力为常压,反应气的组成为2%CH4、18%O2、80%N2。催化剂用量为200mg,空速为48000mL/h/g。其中反应器为石英管反应器,内径16mm,高700mm,反应气氛为空气,温度的测定采用两根热电偶,分别测试反应器和催化剂床层的温度在样品测试前,先在50mL/min的混合气气氛下,以10℃/min的升温速率将催化剂升温至500℃,保温1h,然后在He气氛下降至室温。样品进行活性测试时,升温速率为5℃/min,并在每个待测温度点保持30min。反应物和产物用气相色谱在线分析,采用氢火焰检测器(FID)和热导检测器(TCD)同时检测,
转化率定义为反应前后混合气中甲烷浓度的变化率,
计算公式:
C0和C1分别表示混合气反应前后气体的浓度。
分别取石英砂(Non-catalys)和粉末状的稀土尾矿原矿(RE-tailings)采用上述固定床石英反应器中进行催化剂的活性评价如图4,T10为670.0℃,T90为803.4℃(T10和T90所对应的温度分别表示转化率达到10%和90%所对应的温度),说明石英砂基本没有催化活性,可作为空白对照。稀土原矿有催化活性,T10为498.3℃,T90为724.5℃,可作为后面实施例制得的多孔陶瓷催化的对照。
根据本发明的要旨并结合若干现有技术的教导,本申请的发明人认识到,除了甲烷催化燃烧外,本发明的催化剂还能应用于富燃贫氧工况甲烷催化脱氧、挥发性有机化合物(VOC)的去除、CO催化燃烧消除、甲烷之外的烃类的催化燃烧消除以及汽车尾气中NOx的消除。
实施例1
实施例1提出了一种稀土矿泡沫陶瓷催化剂,其制备方法,包括如下步骤:
(1)取内蒙古包头市白云鄂博矿区所开采的白云鄂博稀土尾矿过筛,得到粒径为50μm的颗粒,然后加入乙醇进行球磨,得到粒径为10μm的尾矿原料。
(2)将所述尾矿原料与羧甲基纤维素钠、十二烷基苯磺酸钠、无水乙醇和硅溶胶混合,然后调节pH值为10.0,再放入密闭容器中,在氮气氛围下搅拌20min,得到混合浆料。其中,取所述尾矿原料65wt%,所述羧甲基纤维素钠1wt%,所述十二烷基苯磺酸钠为1wt%,所述无水乙醇3wt%,所述硅溶胶溶液为30wt%,所述硅溶胶溶液的质量分数为35%。
(3)将孔数为20ppi的聚氨酯泡沫切成长、宽和高分别为6mm*6mm*30mm的条状,然后浸入质量分数为15%的NaOH溶液中,在60℃水中水解40min,然后反复揉搓后用清水冲洗并晾干,再将其浸入浓度为30%的硅溶胶溶液中,50℃温度下保温4h,然后在室温下自然干燥48h,再在80℃恒温鼓风干燥箱中干燥2h,然后取出并浸入步骤(2)得到的混合浆料中10min,再充分挤压并吸浆后,采用玻璃棒辊压法排除多余的浆料,再在室温下自然晾干后,再置于鼓风干燥箱中干燥4h并取出,得到泡沫陶瓷预制体。
(4)将所述泡沫陶瓷预制体在空气氛围下烧结,首先在5℃/min升温速率下从室温升至200℃,然后在2℃/min升温速率下升至500℃并保温60min,再在8℃/min升温速率下升至950℃并保温60min,得到稀土矿泡沫陶瓷催化剂,如图3所示;其XRD衍射图谱如图1所示。将上述催化剂装填于固定床石英反应器中进行甲烷催化燃烧的活性评价,T10为478.1℃,T90为710.1℃,完全可以达到甲烷催化燃烧的要求。
将制备成的多孔陶瓷材料(ceramic foams)用于催化低浓度甲烷燃烧,获得甲烷转化率与反应温度关系的催化活性曲线如图4所示。分析结果表明,相比粉末状的原矿而言,多孔泡沫陶瓷催化剂更适合制备低起燃点的整体式催化剂,更适合工业化推广使用。
实施例2
实施例2提出了一种稀土矿泡沫陶瓷催化剂,其制备方法,包括如下步骤:
(1)取内蒙古包头市白云鄂博矿区所开采的白云鄂博稀土精矿过筛,得到粒径为50μm的颗粒,然后加入乙醇进行球磨,得到粒径为30μm的尾矿原料。
(2)将所述尾矿原料与羧甲基纤维素钠、十二烷基苯磺酸钠、无水乙醇和硅酸钠混合,然后调节pH值为10.0,再放入密闭容器中,在氮气氛围下搅拌20min,得到混合浆料。其中,取所述尾矿原料65wt%,所述羧甲基纤维素钠1wt%,所述十二烷基苯磺酸钠为1wt%,所述无水乙醇3wt%,所述硅溶胶溶液为30wt%,所述硅溶胶溶液的质量分数为35%。
(3)将孔数为20ppi的聚氨酯泡沫切成长、宽和高分别为6mm*6mm*30mm的条状,然后浸入质量分数为15%的NaOH溶液中,在60℃水中水解40min,然后反复揉搓后用清水冲洗并晾干,再将其浸入浓度为30%的硅溶胶溶液中,50℃温度下保温4h,然后在室温下自然干燥48h,再在80℃恒温鼓风干燥箱中干燥2h,然后取出并浸入步骤(2)得到的混合浆料中10min,再充分挤压并吸浆后,采用玻璃棒辊压法排除多余的浆料,再在室温下自然晾干后,再置于鼓风干燥箱中干燥4h并取出,得到泡沫陶瓷预制体。
(4)将所述泡沫陶瓷预制体在空气氛围下烧结,首先在5℃/min升温速率下从室温升至200℃,然后在2℃/min升温速率下升至500℃并保温60min,再在8℃/min升温速率下升至950℃并保温60min,得到稀土矿泡沫陶瓷催化剂。将上述催化剂装填于固定床石英反应器中进行甲烷催化燃烧的活性评价,T10为480.2℃,T90为711.8℃,完全可以达到甲烷催化燃烧的要求。
将制备成的多孔陶瓷材料(ceramic foams)用于催化低浓度甲烷燃烧,分析结果表明,相比粉末状的原矿而言,多孔泡沫陶瓷催化剂更适合制备低起燃点的整体式催化剂,更适合工业化推广使用。
实施例3
实施例3提出了一种稀土矿泡沫陶瓷催化剂,其制备方法,包括如下步骤:
(1)取内蒙古包头市白云鄂博矿区所开采的白云鄂博稀土尾矿过筛,得到粒径为50μm的颗粒,然后加入乙醇进行球磨,得到粒径为10μm的尾矿原料。
(2)将所述尾矿原料与羧甲基纤维素钠、十二烷基苯磺酸钠、无水乙醇和硅酸钾混合,然后调节pH值为10.0,再放入密闭容器中,在氮气氛围下搅拌20min,得到混合浆料。其中,取所述尾矿原料55wt%,所述羧甲基纤维素钠1wt%,所述十二烷基苯磺酸钠为1wt%,所述无水乙醇5wt%,所述硅溶胶溶液为38wt%,所述硅溶胶溶液的质量分数为35%。
(3)将孔数为20ppi的聚氨酯泡沫切成长、宽和高分别为6mm*6mm*30mm的条状,然后浸入质量分数为15%的NaOH溶液中,在60℃水中水解40min,然后反复揉搓后用清水冲洗并晾干,再将其浸入浓度为30%的硅溶胶溶液中,50℃温度下保温4h,然后在室温下自然干燥48h,再在80℃恒温鼓风干燥箱中干燥2h,然后取出并浸入步骤(2)得到的混合浆料中10min,再充分挤压并吸浆后,采用玻璃棒辊压法排除多余的浆料,再在室温下自然晾干后,再置于鼓风干燥箱中干燥4h并取出,得到泡沫陶瓷预制体。
(4)将所述泡沫陶瓷预制体在空气氛围下烧结,首先在5℃/min升温速率下从室温升至200℃,然后在2℃/min升温速率下升至500℃并保温60min,再在8℃/min升温速率下升至950℃并保温60min,得到稀土矿泡沫陶瓷催化剂。将其装填于固定床石英反应器中进行甲烷催化燃烧的活性评价,T10为484℃,T90为717℃,完全可以达到甲烷催化燃烧的要求。
实施例4
实施例4提出了一种稀土矿泡沫陶瓷催化剂,其制备方法,包括如下步骤:
(1)取内蒙古包头市白云鄂博矿区所开采的白云鄂博稀土尾矿过筛,得到粒径为50μm的颗粒,然后加入乙醇进行球磨,得到粒径为10μm的尾矿原料。
(2)将所述尾矿原料与羧甲基纤维素钠、十二烷基苯磺酸钠、无水乙醇和聚乙烯醇混合,然后调节pH值为10.0,再放入密闭容器中,在氮气氛围下搅拌20min,得到混合浆料。其中,取所述尾矿原料65wt%,所述羧甲基纤维素钠1wt%,所述十二烷基苯磺酸钠为1wt%,所述无水乙醇3wt%,所述硅溶胶溶液为30wt%,所述硅溶胶溶液的质量分数为35%。
(3)将孔数为20ppi的聚氨酯泡沫切成长、宽和高分别为6mm*6mm*30mm的条状,然后浸入质量分数为15%的NaOH溶液中,在60℃水中水解40min,然后反复揉搓后用清水冲洗并晾干,再将其浸入浓度为30%的硅溶胶溶液中,50℃温度下保温4h,然后在室温下自然干燥48h,再在80℃恒温鼓风干燥箱中干燥2h,然后取出并浸入步骤(2)得到的混合浆料中10min,再充分挤压并吸浆后,采用玻璃棒辊压法排除多余的浆料,再在室温下自然晾干后,再置于鼓风干燥箱中干燥4h并取出,得到泡沫陶瓷预制体。
(4)将所述泡沫陶瓷预制体在空气氛围下烧结,首先在5℃/min升温速率下从室温升至200℃,然后在2℃/min升温速率下升至500℃并保温60min,再在8℃/min升温速率下升至950℃并保温60min,得到稀土矿泡沫陶瓷催化剂。将上述催化剂装填于固定床石英反应器中进行甲烷催化燃烧的活性评价,T10为478.1℃,T90为710.1℃,完全可以达到甲烷催化燃烧的要求。
实施例5
实施例5提出了一种稀土矿泡沫陶瓷催化剂,其制备方法,包括如下步骤:
(1)取内蒙古包头市白云鄂博矿区所开采的白云鄂博稀土尾矿过筛,得到粒径为50μm的颗粒,然后加入乙醇进行球磨,得到粒径为10μm的尾矿原料。
(2)将所述尾矿原料与羧甲基纤维素钠、十二烷基苯磺酸钠、无水乙醇和硅酸钠混合,然后调节pH值为10.0,再放入密闭容器中,在氮气氛围下搅拌20min,得到混合浆料。其中,取所述尾矿原料65wt%,所述羧甲基纤维素钠1wt%,所述十二烷基苯磺酸钠为1wt%,所述无水乙醇3wt%,所述硅溶胶溶液为30wt%,所述硅溶胶溶液的质量分数为35%。
(3)将孔数为20ppi的聚氨酯泡沫切成长、宽和高分别为6mm*6mm*30mm的条状,然后浸入质量分数为15%的NaOH溶液中,在60℃水中水解40min,然后反复揉搓后用清水冲洗并晾干,再将其浸入浓度为30%的硅溶胶溶液中,50℃温度下保温4h,然后在室温下自然干燥48h,再在80℃恒温鼓风干燥箱中干燥2h,然后取出并浸入步骤(2)得到的混合浆料中10min,再充分挤压并吸浆后,采用玻璃棒辊压法排除多余的浆料,再在室温下自然晾干后,再置于鼓风干燥箱中干燥4h并取出,得到泡沫陶瓷预制体。
(4)将所述泡沫陶瓷预制体在空气氛围下烧结,首先在5℃/min升温速率下从室温升至200℃,然后在2℃/min升温速率下升至500℃并保温60min,再在8℃/min升温速率下升至1000℃并保温60min,得到稀土矿泡沫陶瓷催化剂。将上述催化剂装填于固定床石英反应器中进行甲烷催化燃烧的活性评价,T10为477℃,T90为715℃,完全可以达到甲烷催化燃烧的要求。
实施例6
实施例6提出了一种稀土矿泡沫陶瓷催化剂,其制备方法,包括如下步骤:
(1)取内蒙古包头市白云鄂博矿区所开采的白云鄂博稀土尾矿过筛,得到粒径为50μm的颗粒,然后加入乙醇进行球磨,得到粒径为10μm的尾矿原料。
(2)将所述尾矿原料与羧甲基纤维素钠、十二烷基苯磺酸钠、无水乙醇和聚乙烯醇溶液混合,然后调节pH值为10.0,再放入密闭容器中,在氮气氛围下搅拌20min,得到混合浆料。其中,取所述尾矿原料65wt%,所述羧甲基纤维素钠1wt%,所述十二烷基苯磺酸钠为1wt%,所述无水乙醇3wt%,所述聚乙烯醇溶液为30wt%,所述聚乙烯醇溶液的质量分数为10%。
(3)将孔数为20ppi的聚氨酯泡沫切成长、宽和高分别为6mm*6mm*30mm的条状,然后浸入质量分数为15%的NaOH溶液中,在60℃水中水解40min,然后反复揉搓后用清水冲洗并晾干,再将其浸入浓度为30%的硅溶胶溶液中,50℃温度下保温4h,然后在室温下自然干燥48h,再在80℃恒温鼓风干燥箱中干燥2h,然后取出并浸入步骤(2)得到的混合浆料中10min,再充分挤压并吸浆后,采用玻璃棒辊压法排除多余的浆料,再在室温下自然晾干后,再置于鼓风干燥箱中干燥4h并取出,得到泡沫陶瓷预制体。
(4)将所述泡沫陶瓷预制体在空气氛围下烧结,首先在5℃/min升温速率下从室温升至200℃,然后在2℃/min升温速率下升至500℃并保温60min,再在8℃/min升温速率下升至950℃并保温60min,得到稀土矿泡沫陶瓷催化剂。将上述催化剂装填于固定床石英反应器中进行甲烷催化燃烧的活性评价,T10为479.9℃,T90为717.7℃,完全可以达到甲烷催化燃烧的要求。
实施例7
实施例7提出了一种稀土矿泡沫陶瓷催化剂,其制备方法,包括如下步骤:
(1)取内蒙古包头市白云鄂博矿区所开采的白云鄂博稀土尾矿过筛,得到粒径为50μm的颗粒,然后加入乙醇进行球磨,得到粒径为10μm的尾矿原料。
(2)将所述尾矿原料与羧甲基纤维素钠、十二烷基苯磺酸钠、无水乙醇和硅溶胶混合,然后调节pH值为10.0,再放入密闭容器中,在氮气氛围下搅拌20min,得到混合浆料。其中,取所述尾矿原料65wt%,所述羧甲基纤维素钠1wt%,所述十二烷基苯磺酸钠为1wt%,所述无水乙醇3wt%,所述硅溶胶溶液为30wt%,所述硅溶胶溶液的质量分数为35%。
(3)将孔数为20ppi的聚氨酯泡沫切成长、宽和高分别为6mm*6mm*30mm的条状,然后浸入质量分数为15%的NaOH溶液中,在60℃水中水解40min,然后反复揉搓后用清水冲洗并晾干,再将其浸入浓度为30%的硅溶胶溶液中,50℃温度下保温4h,然后在室温下自然干燥48h,再在80℃恒温鼓风干燥箱中干燥2h,然后取出并浸入步骤(2)得到的混合浆料中10min,再充分挤压并吸浆后,采用玻璃棒辊压法排除多余的浆料,再在室温下自然晾干后,再置于鼓风干燥箱中干燥4h并取出,得到泡沫陶瓷预制体。
(4)将所述泡沫陶瓷预制体在空气氛围下烧结,首先在5℃/min升温速率下从室温升至200℃,然后在2℃/min升温速率下升至500℃并保温60min,再在8℃/min升温速率下升至950℃并保温60min,得到稀土矿泡沫陶瓷催化剂。将上述催化剂装填于固定床石英反应器中进行一氧化碳催化燃烧的活性评价,CO在250℃转化率达到15%,在400℃转化率达到100%。
综上,本发明的稀土矿泡沫陶瓷催化剂的制备方法,以高效、高附加利用白云鄂博富稀土渣和稀土尾矿为根本目的,使用以待治理的白云鄂博矿原料,开发制备出低成本高性能的泡沫陶瓷稀土催化剂用于处理工业气体,实现温室气体的减排和利用氧化的热量可以发电或其他的用途。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种稀土矿泡沫陶瓷催化剂的制备方法,其特征在于,包括如下步骤:
S101:取内蒙古包头市白云鄂博矿区所开采的矿产原料过筛,得到粒径为40μm~60μm的颗粒,然后加入乙醇进行球磨,得到粒径为10μm~50μm的尾矿原料;
S102:将所述尾矿原料与羧甲基纤维素钠、十二烷基苯磺酸钠、无水乙醇和第一化合物混合,然后调节pH值为10.0~12.0,再放入密闭容器中,在氮气氛围下搅拌15min~25min,得到混合浆料;
S103:将聚氨酯泡沫切成条状,然后浸入质量分数为15%的NaOH溶液中,在55℃~65℃水中水解35min~45min,然后反复揉搓后用清水冲洗并晾干,再将其浸入质量分数为25%~35%的硅溶胶溶液中,45℃~55℃温度下保温3h~5h,然后在室温下自然干燥42h~55h,再在78℃~82℃恒温鼓风干燥箱中干燥1.5h~2.5h,然后取出并浸入步骤S102得到的混合浆料中8min~12min,再充分挤压并吸浆后,采用玻璃棒辊压法排除多余的浆料,再在室温下自然晾干后,再干燥3.5h~4.5h并取出,得到泡沫陶瓷预制体;
S104:将所述泡沫陶瓷预制体在空气氛围下烧结,首先在第一升温速率下从室温升至190℃~210℃,然后在第二升温速率下升至480℃~520℃并保温55min~65min,再在第三升温速率下升至800℃~1100℃并保温55min~65min,得到稀土矿泡沫陶瓷催化剂。
2.根据权利要求1所述的稀土矿泡沫陶瓷催化剂的制备方法,其特征在于,在所述步骤S101中,所述矿产原料至少包括白云鄂博尾矿、白云鄂博精矿和富稀土铁矿中的一种。
3.根据权利要求1所述的稀土矿泡沫陶瓷催化剂的制备方法,其特征在于,在所述步骤S102中,取尾矿原料55wt%~65wt%,羧甲基纤维素钠1wt%~3wt%,十二烷基苯磺酸钠1wt%~5wt%,所述无水乙醇为3%~7wt%,硅溶胶溶液25%~40wt%,所述硅溶胶溶液的质量分数为25%~35%。
4.根据权利要求1所述的稀土矿泡沫陶瓷催化剂的制备方法,其特征在于,在所述步骤S102中,所述第一化合物至少为硅溶胶、硅酸钠、硅酸钾和聚乙烯醇中的一种。
5.根据权利要求1所述的稀土矿泡沫陶瓷催化剂的制备方法,其特征在于,在所述步骤S103中,所述聚氨酯泡沫的孔数为15ppi~60ppi。
6.根据权利要求1所述的稀土矿泡沫陶瓷催化剂的制备方法,其特征在于,在所述步骤S103中,条状聚氨酯泡沫的长、宽和高分别为5.5mm~6.5mm、5.5mm~6.5mm和28mm~32mm。
7.根据权利要求1所述的稀土矿泡沫陶瓷催化剂的制备方法,其特征在于,在所述步骤S103中,在室温晾干后,再置于鼓风干燥箱或者微波炉中进行干燥。
8.根据权利要求1所述的稀土矿泡沫陶瓷催化剂的制备方法,其特征在于,在所述步骤S104中,所述第一升温速率为4℃/min~6℃/min,所述第二升温速率为1℃/min~3℃/min,所述第三升温速率为6℃/min~10℃/min。
9.权利要求1-8任一项所述的方法制备的稀土矿泡沫陶瓷催化剂。
10.权利要求1-8任一项所述的方法制备的稀土矿泡沫陶瓷催化剂在甲烷催化燃烧、挥发性有机化合物的去除、CO催化燃烧消除、甲烷之外的烃类的催化燃烧消除以及汽车尾气中NOx的消除中的应用。
CN201811348927.9A 2018-11-13 2018-11-13 稀土矿泡沫陶瓷催化剂及其制备方法和应用 Pending CN109382085A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811348927.9A CN109382085A (zh) 2018-11-13 2018-11-13 稀土矿泡沫陶瓷催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811348927.9A CN109382085A (zh) 2018-11-13 2018-11-13 稀土矿泡沫陶瓷催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN109382085A true CN109382085A (zh) 2019-02-26

Family

ID=65428719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811348927.9A Pending CN109382085A (zh) 2018-11-13 2018-11-13 稀土矿泡沫陶瓷催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109382085A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109939689A (zh) * 2019-04-22 2019-06-28 内蒙古科技大学 一种稀土矿整体催化剂、制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175547A (ja) * 1984-02-21 1985-09-09 Matsushita Electric Ind Co Ltd 触媒燃焼器
CN105272351A (zh) * 2015-10-26 2016-01-27 青岛铸英特陶科技有限公司 一种稀土泡沫陶瓷过滤器的制备方法
CN106902814A (zh) * 2017-04-06 2017-06-30 南京工业大学 一种催化燃烧用稀土基有序介孔整体式催化剂及其制备方法
CN107930637A (zh) * 2017-12-05 2018-04-20 内蒙古科技大学 一种稀土基含铁高熵固溶体催化剂及其制备方法
CN107961794A (zh) * 2017-12-05 2018-04-27 内蒙古科技大学 一种稀土基高熵固溶体催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175547A (ja) * 1984-02-21 1985-09-09 Matsushita Electric Ind Co Ltd 触媒燃焼器
CN105272351A (zh) * 2015-10-26 2016-01-27 青岛铸英特陶科技有限公司 一种稀土泡沫陶瓷过滤器的制备方法
CN106902814A (zh) * 2017-04-06 2017-06-30 南京工业大学 一种催化燃烧用稀土基有序介孔整体式催化剂及其制备方法
CN107930637A (zh) * 2017-12-05 2018-04-20 内蒙古科技大学 一种稀土基含铁高熵固溶体催化剂及其制备方法
CN107961794A (zh) * 2017-12-05 2018-04-27 内蒙古科技大学 一种稀土基高熵固溶体催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李娜等: "对包钢稀土矿进行多孔陶瓷材料的制备与研究", 《中国陶瓷》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109939689A (zh) * 2019-04-22 2019-06-28 内蒙古科技大学 一种稀土矿整体催化剂、制备方法及其应用

Similar Documents

Publication Publication Date Title
CN103272604B (zh) 一种用于生物油催化重整制氢的粉煤灰催化剂及其制备方法
CN107376924A (zh) 一种多级孔钙钛矿催化剂的制备方法
CN109794248A (zh) 一种低成本烟气脱硝催化剂及其制备、使用方法
Li et al. Low temperature reduction of NO by activated carbons impregnated with Fe based catalysts
CN102618349A (zh) 一种甲烷化学链燃烧的氧载体及其制备方法
CN109603877A (zh) 选择性氧化硫化氢气体的碳氮催化剂的制备方法及应用
CN103785389A (zh) 一种高活性载氧体及其制备方法和应用
CN108479744A (zh) 一种脱硫催化剂的制备方法及其应用
Roux et al. Study and improvement of the regeneration of metallic oxides used as oxygen carriers for a new combustion process
Zhang et al. Effect of Mn-doped CaO on NO removal by CO in carbonation of calcium looping for CO2 capture in a fluidized bed reactor
CN102527392B (zh) 用于煤催化气化的三元催化剂及其制备方法
CN109382085A (zh) 稀土矿泡沫陶瓷催化剂及其制备方法和应用
GUO et al. Recent advances in integrated carbon dioxide capture and methanation technology
Liu et al. Synthesis process and efficient NH3-SCR performance of alkali/alkaline earth metal-rich Chlorella@ Mn catalyst
Zhang et al. Effect of bimetallic modification on blast furnace slag and its application in low‐temperature selective catalytic reduction
Ma et al. Montmorillonite‐supported iron oxide for hydrogen storage by chemical looping
Ren et al. Enhancement effect of RuO2 doping on the reduction process of NOx by NH3 via V2O5-WO3/TiO2 particle catalyst under low-temperature: Structure-activity relationship and reaction mechanism
CN101301607B (zh) 高效节能助燃催化剂
Cai et al. Formation and performance of monolithic catalysts for selective catalytic reduction of nitrogen oxides: a critical review
CN106867624A (zh) 一种CuO和准东煤灰共同修饰铁矿石的载氧体及其制备方法
Cai et al. Performance optimization of Ca2Fe2O5 oxygen carrier by doping different metals for coproduction syngas and hydrogen with chemical looping gasification and water splitting
CN103433055B (zh) 一种脱氧催化剂的制备方法及利用其进行脱氧的方法
CN101767041A (zh) 一种烟气除硝催化剂的制备方法
Zhang et al. Simultaneous reduce NO/CO2/CO emissions by modified peanut shell biochars in Ca-L/CARBONOx process
Zhu et al. Effect of binder on the properties of iron oxide sorbent for hot gas desulfurization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190226