CN109374449B - 一种考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法 - Google Patents

一种考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法 Download PDF

Info

Publication number
CN109374449B
CN109374449B CN201811115061.7A CN201811115061A CN109374449B CN 109374449 B CN109374449 B CN 109374449B CN 201811115061 A CN201811115061 A CN 201811115061A CN 109374449 B CN109374449 B CN 109374449B
Authority
CN
China
Prior art keywords
crack
stress
blade
cycle fatigue
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811115061.7A
Other languages
English (en)
Other versions
CN109374449A (zh
Inventor
宋迎东
贾旭
胡绪腾
嵇大伟
吴娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201811115061.7A priority Critical patent/CN109374449B/zh
Publication of CN109374449A publication Critical patent/CN109374449A/zh
Application granted granted Critical
Publication of CN109374449B publication Critical patent/CN109374449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0005Repeated or cyclic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • G01N2203/0066Propagation of crack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0073Fatigue

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明公开了一种考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法,首先从叶片承受的高/低周复合载荷中提取出高循环疲劳载荷和低循环疲劳载荷,分别建立一系列高循环疲劳载荷及低循环疲劳载荷下应力比相关的裂纹/撕裂型硬物损伤裂纹不扩展等值曲线,然后通过有限元数值分析方法确定叶片前后缘各点位置上的静态应力和动态应力,最后通过比对静态应力和动态应力在裂纹不扩展等值曲线中的位置确定该等值曲线所对应的裂纹尺寸,即为叶片前后缘该点处的裂纹/撕裂型硬物损伤的可用极限。本发明不仅提出了一种简单、有效的硬物损伤可用极限确定方法,而且针对叶片前后缘裂纹/撕裂型硬物损伤形成了一种规范化的可用极限制定流程。

Description

一种考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极 限确定方法
技术领域
本发明涉及一种考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法,属于航空发动机叶片硬物损伤容限设计与维护领域。
背景技术
金属、碎片、砂砾、石块等硬物伴随着气流进入发动机气流通道与高速旋转的叶片发生碰撞形成的冲击损伤是加重叶片疲劳失效的重要原因之一。尽管人们提出了如飞机跑道外物清扫、地勤人员维修工具检查与控制等外物损伤预防措施,但硬物损伤总是不可避免的。
对于不可避免的硬物损伤问题,虽然发动机设计者使叶片具有了一定的硬物损伤容限能力,但同时也需要在发动机研制后期为用户提供具有硬物损伤叶片的维修手册,为用户在使用和维护发动机叶片时提供必要的建议,例如叶片发生硬物损伤后,如何判断硬物损伤叶片是否可用(免修)。目前,评判硬物损伤严重程度的主要尺寸为损伤深度,发动机维修手册中往往采用所允许的最大损伤深度作为叶片发生硬物损伤后的可用极限,并通过确定合理的可用极限以达到在保证安全与性能的前提下,减少叶片在发生一定程度的外物损伤后拆卸维修和更换的次数,提高经济性和战备完好性。
目前发动机公司并没有制定硬物损伤后叶片可用极限的规范化程序,在过去新设计的发动机叶片的可用极限往往基于旧款发动机的使用和维护经验,然而随着叶片设计技术的不断发展,新型叶片结构(如整体叶盘、空心叶片等)让这种经验性的外推方式面临着巨大挑战。
撕裂/裂纹型硬物损伤是航空发动机叶片前后缘常遭受的较为严重的损伤,本发明为了给此种硬物损伤提供合理规范的可用极限制定流程,提出了一种考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法。
发明内容
本发明的目的在于提供一种考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法,以解决目前针对撕裂/裂纹型硬物损伤缺乏合理规范的可用极限制定流程的问题。
为实现上述目的,本发明采用的技术方案为:
一种考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法,包括如下步骤:
(1)从叶片的前后缘各点上承受的高/低周复合疲劳载荷提取可能发生的高循环疲劳载荷及低循环疲劳载荷;
(2)根据叶片材料在不同应力比下的裂纹扩展门槛值数据,建立应力比相关的裂纹扩展门槛值模型;
(3)将叶片前后缘中撕裂/裂纹型损伤假设为I型单边穿透裂纹,其裂纹长度a为撕裂/裂纹型损伤的最大深度d,建立该单边穿透裂纹的应力强度因子计算方法;
(4)分别建立不同应力比条件下高周疲劳载荷、低周疲劳载荷的裂纹不扩展模型,并绘制不同裂纹长度下裂纹不扩展等值曲线图;
(5)通过有限元数值分析方法获取叶片前后缘各点的静态应力和动态应力;
(6)通过比对静态应力和动态应力在裂纹不扩展等值曲线中的位置确定该等值曲线所对应的裂纹尺寸,即为叶片前后缘该点处的裂纹/撕裂型硬物损伤的可用极限。
所述步骤(1)中,叶片的高/低周复合载荷指发动机正常工作时叶片低频离心力循环载荷与高频振动载荷的交互,将叶片中低频离心力循环载荷记为低循环疲劳载荷,将叶片中高频振动载荷记为高循环疲劳载荷,通过载荷谱分析确定叶片前后缘各点可能出现的高循环疲劳载荷及低循环疲劳载荷形式。
所述的步骤(2)中,裂纹扩展门槛值采用应力强度因子范围ΔK表示,其中当应力比R>0时,ΔK=Kmax-Kmin,且Kmin≠0,当应力比R≤0时,ΔK=Kmax-Kmin,且Kmin=0。裂纹扩展门槛值ΔKth表示为应力比R的函数。
所述的步骤(3)中,具有I型单边穿透裂纹的叶片视为无限大板单边穿透裂纹体模型,其裂纹面上所承受的载荷采用幂函数分布应力表达式,即:
Figure BDA0001810326270000021
其中,σ(x)为裂纹面上的应力分布,a为裂纹长度,x为沿裂纹扩展方向上的坐标,其坐标原点为单边裂纹与前缘点的交点,σi为多项式系数,i为多项式指数,项数n≤7;与撕裂/裂纹型叶片等价的具有I型单边穿透裂纹的无限大板所承受的裂纹面应力分布为均布分布,即n=0;
无限大板单边穿透裂纹承受裂纹面上为均布载荷时的应力强度因子计算表达式为:
Figure BDA0001810326270000022
其中,K为应力强度因子,Fn为几何修正系数,n=0时Fn=1.1215,π为圆周率,σ0为裂纹面上承受的均布应力。
所述的步骤(4)中,不同应力比条件下高周疲劳载荷的裂纹不扩展判据为ΔKHCF=ΔKth(RHCF),其裂纹不扩展等值曲线模型为:
当应力比-1<R<0时,
Figure BDA0001810326270000031
当应力比0≤R<1时,
Figure BDA0001810326270000032
低周疲劳载荷下的裂纹不扩展判据为ΔKLCF=ΔKth(RLCF),其低循环疲劳应力比RLCF=-1,那么裂纹不扩展等值曲线模型为:
Figure BDA0001810326270000033
其中,ΔKHCF为HCF载荷循环下的应力强度因子范围,ΔKLCF为低循环疲劳载荷下的应力强度因子范围;RHCF为HCF载荷的应力比,RLCF为LCF载荷的应力比;σdyn为动态应力,σsta为静态应力,Δσth(RHCF)和Δσth(RLCF)为门槛值应力,Fn为几何修正系数;
裂纹不扩展等值曲线图横坐标为静态应力纵坐标为动态应力。
所述的步骤(5)中,叶片前后缘各点的静态应力和动态应力采用单元Von-mises等效应力表示,代表前后缘点的单元尺寸为1mm。
所述的步骤(6)中,取其中通过高周疲劳载荷对应的裂纹不扩展等值曲线确定的裂纹尺寸和通过低周疲劳载荷确定的裂纹尺寸的最小值作为叶片前后缘该点处的裂纹/撕裂型硬物损伤的可用极限。
有益效果:本发明为航空发动机叶片使用过程中前后缘常遭受的撕裂/裂纹型硬物损伤提供了一种合理规范的可用极限确定方法和流程。本发明考虑了叶片遭受硬物损伤后发生的典型失效方式:高周疲劳和低周疲劳,采用简单高效的裂纹不扩展原理建立了叶片的裂纹不扩展等值曲线图,提出了制定叶片前后缘中撕裂/裂纹型损伤可用极限的标准步骤。
附图说明
图1为高/低周复合疲劳示意图;
图2为低周疲劳和高周疲劳示意图;
图3为叶片前后缘各点可能出现的HCF与LCF载荷形式;
图4为叶片常用材料TC4钛合金的裂纹扩展门槛值数据及模型;
图5为叶片前后缘撕裂/裂纹型损伤等效简化为I型单边穿透裂纹;
图6为HCF载荷下裂纹不扩展等值曲线示意图;
图7为TC4钛合金材料HCF载荷下裂纹不扩展等值曲线图;
图8为LCF载荷下裂纹不扩展等值曲线示意图;
图9为TC4钛合金材料HCF载荷下裂纹不扩展等值曲线图;
图10为航空发动机叶片及网格划分形式;
图11为Von-mises应力表示的稳态应力分布;
图12为Von-mises应力表示的一阶模态振动应力;
图13为Von-mises应力表示的二阶模态振动应力;
图14为通过裂纹不扩展等值曲线图确定叶片前后缘可用极限示意图;
图15为一阶模态振动下叶片前后缘撕裂/裂纹型硬物损伤的可用极限分布;
图16为二阶模态振动下叶片前后缘撕裂/裂纹型损伤的可用极限分布。
具体实施方式
下面结合附图及实施例对本发明做更进一步的解释。
实施例
一种考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法,包括如下步骤:
(1)从叶片前后缘各点上承受的高/低周复合疲劳载荷提取可能发生的高循环疲劳载荷及低循环疲劳载荷。其中,高循环疲劳载荷即高周疲劳载荷High cycle fatigue,简称HCF,低循环疲劳载荷即低周疲劳载荷low cycle fatigue,简称LCF。
叶片的高/低周复合载荷指发动机正常工作时叶片低频离心力循环载荷与高频振动载荷的交互,如图1所示。本发明将叶片中的离心力循环载荷记为低循环疲劳载荷,即低周疲劳载荷,将叶片中超过1KHz的高频振动载荷记为高循环疲劳载荷,即高周疲劳载荷,如图2所示。通过载荷谱分析确定叶片前后缘各点可能出现的HCF载荷及LCF载荷形式如图3所示。
(2)根据叶片材料在不同应力比下的裂纹扩展门槛值数据,建立应力比相关的裂纹扩展门槛值模型。本发明中叶片材料的裂纹扩展门槛值采用应力强度因子范围ΔK表示,其中当应力比R>0时,ΔK=Kmax-Kmin,且Kmin≠0,当应力比R≤0时,ΔK=Kmax-Kmin,且Kmin=0。裂纹扩展门槛值ΔKth表示为应力比R的函数。本实施例中采用发动机风扇/压气机叶片常用材料TC4钛合金材料为例,其裂纹扩展模型值数据及曲线如图4所示。TC4钛合金的的裂纹扩展门槛值模型为:
当0≤R<1时:
Figure BDA0001810326270000041
当-1≤R<0时:
Figure BDA0001810326270000042
其中,
Figure BDA0001810326270000051
为应力比R=0时的有效应力强度因子范围,
Figure BDA0001810326270000052
A0=0.00729、A1=1.0108、A2=-0.3959、A3=-0.10356为系数,
Figure BDA0001810326270000053
为应力比R=0时的应力强度因子范围,
Figure BDA0001810326270000054
(3)将叶片前后缘中撕裂/裂纹型损伤假设为I型单边穿透裂纹,其裂纹长度a为撕裂/裂纹型损伤的最大深度d,建立该单边穿透裂纹的应力强度因子计算方法。由于硬物损伤深度相对与叶片弦长在1/10以下,所以本实施例中具有I型单边穿透裂纹的叶片视为无限大板单边穿透裂纹体模型如图5,其裂纹面上所承受的载荷采用幂函数分布应力表达式,即:
Figure BDA0001810326270000055
其中,σ(x)为裂纹面上的应力分布,a为裂纹长度,x为沿裂纹扩展方向上的坐标,其坐标原点为单边裂纹与前缘点的交点,σi为多项式系数,i为多项式指数,项数n≤7。与撕裂/裂纹型叶片等价的具有I型单边穿透裂纹的无限大板所承受的裂纹面应力分布为均布分布,即n=0。
本实施例中无限大板单边穿透裂纹承受裂纹面上为均布载荷时的应力强度因子计算表达式为:
Figure BDA0001810326270000056
其中,K为应力强度因子,Fn为几何修正系数,n=0时Fn=1.1215,π为圆周率,σ0为裂纹面上承受的均布应力。
(4)分别建立不同应力比条件下高周疲劳载荷、低周疲劳载荷的裂纹不扩展模型,并绘制不同裂纹长度下裂纹不扩展等值曲线图。不同应力比条件下高周疲劳载荷的裂纹不扩展判据为ΔKHCF=ΔKth(RHCF),其裂纹不扩展等值曲线模型为:
当应力比-1<R<0时,
Figure BDA0001810326270000057
当应力比0≤R<1时,
Figure BDA0001810326270000058
当应力比R较大时,可能出现应力强度因子范围不至于使裂纹发生扩展,但最大应力强度因子Kmax达到材料的断裂韧性而造成瞬态裂纹扩展至断裂。此时裂纹不扩展等值曲线应该补充边界条件,即Kmax=KIC。因此,HCF载荷下裂纹不扩展等值曲线示意图如图6所示。TC4钛合金材料HCF载荷下裂纹不扩展等值曲线图如图7所示。
低周疲劳载荷下的裂纹不扩展判据为ΔKLCF=ΔKth(RLCF),其低循环疲劳应力比RLCF=-1,那么裂纹不扩展等值曲线模型为:
其中,ΔKHCF为HCF载荷循环下的应力强度因子范围,ΔKLCF为低循环疲劳载荷下的应力强度因子范围;RHCF为HCF载荷的应力比,RLCF为LCF载荷的应力比;σdyn为动态应力,σsta为静态应力,Δσth(RHCF)和Δσth(RLCF)为门槛值应力。LCF载荷下裂纹不扩展等值曲线示意图如图8所示,TC4钛合金材料LCF载荷下裂纹不扩展等值曲线图如图9所示。
裂纹不扩展等值曲线图横坐标为静态应力纵坐标为动态应力。
(5)通过有限元数值分析方法获取叶片前后缘各点的静态应力和动态应力。叶片前后缘各点的静态应力和动态应力采用单元Von-mises等效应力表示,代表前后缘点的单元尺寸为1mm。本实施例中,某型航空发动机叶片及其网格划分形式如图10所示。发动机叶片在实际工作过程中静态应力由工作转速决定,因此可以通过有限元分析方法快速准确地获得。然而,叶片中实际振动应力的计算过程不仅十分复杂和计算精度难以保证。所以为了说明本发明方法的计算流程,本实施例中叶片的振动载荷采用叶片分别发生1阶、2阶模态振动且叶尖振动位移为5mm时的Von-mises有效应力表示。本实施例中叶片的静态应力分布如图11所示。采用Von-mises应力表示的叶片一阶模态振动应力分布如图12,采用Von-mises应力表示的叶片二阶模态应力分布如图13所示。
(6)通过比对静态应力和动态应力在裂纹不扩展等值曲线中的位置确定该等值曲线所对应的裂纹尺寸,取其中通过高周疲劳载荷对应的裂纹不扩展等值曲线确定的裂纹尺寸和通过低周疲劳载荷确定的裂纹尺寸的最小值作为叶片前后缘该点处的裂纹/撕裂型硬物损伤的可用极限。其中,通过HCF载荷下裂纹不扩展等值曲线图确定叶片前后缘可用极限过程如图14所示。
通过以上6个步骤可得到本实施例中一阶模态振动下叶片前后缘撕裂/裂纹型硬物损伤的可用极限分布如图15,二阶模态振动下叶片前后缘撕裂/裂纹型硬物损伤可用极限分布如图16所示。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法,其特征在于:包括如下步骤:
(1)从叶片的前后缘各点上承受的高/低周复合疲劳载荷提取可能发生的高循环疲劳载荷及低循环疲劳载荷;
(2)根据叶片材料在不同应力比下的裂纹扩展门槛值数据,建立应力比相关的裂纹扩展门槛值模型;
(3)将叶片前后缘中撕裂/裂纹型损伤假设为I型单边穿透裂纹,其裂纹长度a为撕裂/裂纹型损伤的最大深度d,建立该单边穿透裂纹的应力强度因子计算方法;
具有I型单边穿透裂纹的叶片视为无限大板单边穿透裂纹体模型,其裂纹面上所承受的载荷采用幂函数分布应力表达式,即:
Figure FDA0002303635510000011
其中,σ(x)为裂纹面上的应力分布,a为裂纹长度,x为沿裂纹扩展方向上的坐标,其坐标原点为单边裂纹与前缘点的交点,σi为多项式系数,i为多项式指数,项数n≤7;与撕裂/裂纹型叶片等价的具有I型单边穿透裂纹的无限大板所承受的裂纹面应力分布为均布分布,即n=0;
无限大板单边穿透裂纹承受裂纹面上为均布载荷时的应力强度因子计算表达式为:
Figure FDA0002303635510000012
其中,K为应力强度因子,Fn为几何修正系数,n=0时Fn=1.1215,π为圆周率,σ0为裂纹面上承受的均布应力;
(4)分别建立不同应力比条件下高周疲劳载荷、低周疲劳载荷的裂纹不扩展模型,并绘制不同裂纹长度下裂纹不扩展等值曲线图;
不同应力比条件下高周疲劳载荷的裂纹不扩展判据为ΔKHCF=ΔKth(RHCF),其裂纹不扩展模型为:
当应力比-1<R<0时,
当应力比0≤R<1时,
低周疲劳载荷下的裂纹不扩展判据为ΔKLCF=ΔKth(RLCF),其低循环疲劳应力比RLCF=-1,那么裂纹不扩展模型为:
其中,ΔKHCF为HCF载荷循环下的应力强度因子范围,ΔKLCF为低循环疲劳载荷下的应力强度因子范围;RHCF为HCF载荷的应力比,RLCF为LCF载荷的应力比;σdyn为动态应力,σsta为静态应力,Δσth(RHCF)和Δσth(RLCF)为门槛值应力,Fn为几何修正系数;
裂纹不扩展等值曲线图横坐标为静态应力纵坐标为动态应力;
(5)通过有限元数值分析方法获取叶片前后缘各点的静态应力和动态应力;
(6)通过比对静态应力和动态应力在裂纹不扩展等值曲线中的位置确定该等值曲线所对应的裂纹尺寸,即为叶片前后缘该点处的裂纹/撕裂型硬物损伤的可用极限。
2.根据权利要求1所述的考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法,其特征在于:所述步骤(1)中,叶片的高/低周复合载荷指发动机正常工作时叶片低频离心力循环载荷与高频振动载荷的交互,将叶片中低频离心力循环载荷记为低循环疲劳载荷,将叶片中高频振动载荷记为高循环疲劳载荷,通过载荷谱分析确定叶片前后缘各点可能出现的高循环疲劳载荷及低循环疲劳载荷形式。
3.根据权利要求1所述的考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法,其特征在于:所述的步骤(2)中,裂纹扩展门槛值采用应力强度因子范围ΔK表示,其中当应力比R>0时,ΔK=Kmax-Kmin,且Kmin≠0,当应力比R≤0时,ΔK=Kmax-Kmin,且Kmin=0,裂纹扩展门槛值ΔKth表示为应力比R的函数。
4.根据权利要求1所述的考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法,其特征在于:所述的步骤(5)中,叶片前后缘各点的静态应力和动态应力采用单元Von-mises等效应力表示,代表前后缘点的单元尺寸为1mm。
5.根据权利要求1所述的考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法,其特征在于:所述的步骤(6)中,取其中通过高周疲劳载荷对应的裂纹不扩展等值曲线确定的裂纹尺寸和通过低周疲劳载荷确定的裂纹尺寸的最小值作为叶片前后缘该点处的裂纹/撕裂型硬物损伤的可用极限。
CN201811115061.7A 2018-09-25 2018-09-25 一种考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法 Active CN109374449B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811115061.7A CN109374449B (zh) 2018-09-25 2018-09-25 一种考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811115061.7A CN109374449B (zh) 2018-09-25 2018-09-25 一种考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法

Publications (2)

Publication Number Publication Date
CN109374449A CN109374449A (zh) 2019-02-22
CN109374449B true CN109374449B (zh) 2020-02-21

Family

ID=65401683

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811115061.7A Active CN109374449B (zh) 2018-09-25 2018-09-25 一种考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法

Country Status (1)

Country Link
CN (1) CN109374449B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110134990B (zh) * 2019-04-03 2020-09-25 南京航空航天大学 航空发动机叶片前缘危险部位的检测方法
CN110489914B (zh) * 2019-08-27 2023-01-17 中国航空工业集团公司沈阳飞机设计研究所 一种基于应力损伤等效的耐久性计算方法
CN112213090B (zh) * 2020-09-25 2022-11-18 中国直升机设计研究所 一种直升机动部件损伤容限简化谱编制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736645A (en) * 1997-01-16 1998-04-07 Ford Global Technologies, Inc. Method of predicting crack initiation based fatigue life
US6902376B2 (en) * 2002-12-26 2005-06-07 General Electric Company Compressor blade with dovetail slotted to reduce stress on the airfoil leading edge
JP4855947B2 (ja) * 2007-01-11 2012-01-18 富士通株式会社 き裂進展評価装置、き裂進展評価方法及びき裂進展評価プログラム
CN100533119C (zh) * 2007-08-23 2009-08-26 南京航空航天大学 机械结构的裂纹扩展率和裂纹扩展寿命预测方法
CN103955604B (zh) * 2014-04-11 2016-01-06 南京航空航天大学 一种含裂纹金属梯度材料剩余强度预测方法
CN105893716B (zh) * 2016-06-02 2018-06-29 北京航空航天大学 一种基于分形理论的结构断裂非概率可靠性分析方法
CN106644490B (zh) * 2016-12-31 2018-08-03 北京航空航天大学 一种涡轮榫接结构高低周复合疲劳裂纹扩展寿命预测方法
CN106644784B (zh) * 2016-12-31 2018-11-16 北京航空航天大学 一种考虑多部位及多失效模式的涡轮盘损伤容限评估方法

Also Published As

Publication number Publication date
CN109374449A (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
CN109815521B (zh) 一种航空发动机叶片抗fod能力的评估方法
CN109374449B (zh) 一种考虑高、低周疲劳的叶片前后缘裂纹型硬物损伤可用极限确定方法
Cowles High cycle fatigue in aircraft gas turbines—an industry perspective
Poursaeidi et al. Fatigue crack growth simulation in a first stage of compressor blade
CN110411851B (zh) 一种高温合金涡轮叶片服役损伤评价及蠕变寿命预测方法
US7387030B1 (en) Process for determining a remaining life for a gas turbine airfoil
CN109583147B (zh) 一种离心叶轮预旋转盘心梯度模拟件设计方法
CN113011109A (zh) 考虑雨滴侵蚀的风力发电机叶片涂层疲劳分析方法
CN109374450B (zh) 一种考虑高、低周疲劳的叶片叶盆叶背裂纹型硬物损伤可用极限确定方法
Schwerdt et al. Aerodynamical and structural analysis of operationally used turbine blades
US7970555B2 (en) Method for developing a repair process to correct a deformed gas turbine engine component
CN108153928B (zh) 一种含夹杂物粉末高温合金裂纹萌生寿命预测方法
CN109522592B (zh) 一种航空发动机叶片fod允修极限确定方法
US20200012750A1 (en) Aircraft component qualification system and process for target based inventory qualification
Heinze et al. The impact of geometric scatter on high-cycle-fatigue of compressor blades
Bhachu et al. Application of 3D fracture mechanics for improved crack growth predictions of gas turbine components
Batailly et al. Minimising clearance consumption: a key factor for the design of blades robust to rotor/stator interactions?
CN112733398A (zh) 一种凹坑型硬物冲击损伤免修极限确定方法
Giannella et al. Fatigue crack propagation for an aircraft compressor under input data variability
CN110987388B (zh) 一种基于缺口疲劳强度的等效机械加工缺口的方法
CN115114735B (zh) 一种航空发动机风扇转子叶片凸肩抗鸟撞设计方法
CN111859729A (zh) 考虑多弹丸随机分布的喷丸模型对轮盘寿命的计算方法
CN114580094B (zh) 一种金属叶片旋转状态鸟撞损伤工程预估方法
CN112364541B (zh) 一种构件表面裂纹打磨后应力集中系数的计算方法
CN110032786A (zh) 镍基单晶气膜孔结构件原始疲劳质量的评估方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant