CN109358268A - 一种不依赖于线路参数的同杆双回线精确故障测距方法 - Google Patents

一种不依赖于线路参数的同杆双回线精确故障测距方法 Download PDF

Info

Publication number
CN109358268A
CN109358268A CN201811276038.6A CN201811276038A CN109358268A CN 109358268 A CN109358268 A CN 109358268A CN 201811276038 A CN201811276038 A CN 201811276038A CN 109358268 A CN109358268 A CN 109358268A
Authority
CN
China
Prior art keywords
line
circuit
fault
equation
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811276038.6A
Other languages
English (en)
Inventor
季晨宇
吉宇
张炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
Nantong Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Power Supply Co of State Grid Jiangsu Electric Power Co Ltd filed Critical Nantong Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Priority to CN201811276038.6A priority Critical patent/CN109358268A/zh
Publication of CN109358268A publication Critical patent/CN109358268A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Locating Faults (AREA)

Abstract

本发明提供了一种不依赖于线路参数的同杆双回线精确故障测距方法,根据线路参数已知的双回线测距原理,得到含已知线路参数的单线双端故障距离表达式及双回线双端故障距离表达式;将线路参数作为未知量,对含故障距离和线路参数两个未知量的测距方程,消除线路参数未知量构造简易测距方程;确定选择何种测距方式,若一回线运行、一回线检修,则采用单线双端测距方式,若两回线路均正常运行,则采用双回线双端测距方式。本发明实现参数未知或多变情况下可以精确定位线路故障点,大大减少巡线的工作量,加快抢修效率,缩短故障修复时间并快速恢复供电。

Description

一种不依赖于线路参数的同杆双回线精确故障测距方法
技术领域
本发明属于故障测量技术领域,特别涉及一种不依赖于线路参数的同杆双回线精确故障测距方法。
背景技术
一直以来,故障测距始终是电力工程界的研究热点。国内外众多学者针对输电线路的故障测距技术已开展了大量的研究工作,并取得一定成果。在传统的故障测距原理中,单端法和双端法在计算故障距离时均需采用线路基本参数,即线路单位长度阻抗、单位长度导纳,通常将其作为已知量进行求解。对于参数变化影响测距的问题,国内外学者的研究甚少。仅有基于线路基本模型将故障距离、线路参数、非同步角作为未知量,构造非线性最优数学模型,通过采用最小二乘法、牛顿拉弗逊迭代法、信赖域迭代搜索法、参数修正法等求解非线性最优问题来实现测距。这些方法都需要迭代搜索求解非线性方程,初值和收敛性问题不可避免,并未从原理上解决线路参数未知的影响。国外有学者提出了构造一元二次方程的测距方法,消去了线路参数,在原理上克服了参数变化对测距的影响,但是一元二次方程有两个解,存在伪根判别问题。至今,无伪根、无需迭代求解、能消去线路参数的测距原理研究在国内外仍然为空白。
因此,可研究通过基本数理方法构造出无需迭代求解、无伪根问题的简易测距方程来实现故障距离测量,该测距方法能够从原理上克服线路参数变化影响,为线路参数未知的故障测距技术提供理论基础。
发明内容
本发明实现参数未知或多变情况下可以精确定位线路故障点,大大减少巡线的工作量,加快抢修效率,缩短故障修复时间并快速恢复供电。
本发明具体为一种不依赖于线路参数的同杆双回线精确故障测距方法,所述不依赖于线路参数的同杆双回线精确故障测距方法具体包括如下步骤:
步骤(1)、确定发生故障时故障距离与线路两端电压、电流的关系,确定不同运行方式下发生不同类型故障对线路模型的影响及对构造测距方程的影响;
步骤(2)、确定采用线模变换解耦后的单线表示双回线的双端法测距模型;
步骤(3)、确定采用双线表示双回线的双端法测距模型;
步骤(4)、根据线路参数已知的双回线测距原理,得到含已知线路参数的单线双端故障距离表达式及双回线双端故障距离表达式;
步骤(5)、分别针对步骤(4)中的单线双端故障距离表达式及双回线双端故障距离表达式,将线路参数作为未知量,对含故障距离和线路参数两个未知量的测距方程,消除线路参数未知量构造简易测距方程;
步骤(6)、考虑所需电压、电流电气量,得到同时采用电压、电流计算的单线双端测距方程;或仅采用电流计算的单线双端测距方程,避免电压互感器传变特性影响;或仅采用电压计算的单线双端测距方程,避免电流互感器饱和影响;
步骤(7)、考虑所需电压、电流电气量,得到同时采用电压、电流计算的双回线双端测距方程;或仅采用电流计算的双回线双端测距方程,避免电压互感器传变特性影响;或仅采用电压计算的双回线双端测距方程,避免电流互感器饱和影响;
步骤(8)、为了保证线路保护能够自适应地构建双回线不同运行方式下的测距方案,双回线路保护之间需要传递本线当前的运行状态,通过识别断路器的位置来判别是否处于运行状态或检修状态,将判别的状态发送给邻线的线路保护装置;
步骤(9)、确定选择何种测距方式,若一回线运行、一回线检修,则采用单线双端测距方式,若两回线路均正常运行,则采用双回线双端测距方式;
步骤(10)、根据选定的测距方式完成精确故障测距。
进一步的,所述步骤(2)中的单线测距模型包括集中参数单线测距模型和分布参数单线测距模型。
进一步的,所述集中参数单线测距模型线路接于M侧与N侧之间,故障点F与已知始端M侧的距离为x,线路全长为l,其单位长度阻抗为Z,已知始端M侧电压UM,始端M侧电流IM,末端N侧电压UN,末端N侧电流IN,从始端M侧推算至故障点F处的电压UFM=UM-xIMZ,从末端N侧推算至故障点F处的电压UFN=UN-IN(I-x)Z,不考虑两侧数据采集失步问题,在故障点依据电压相等原理UFM=UFN,得到测距方程F(x)=0,该测距方程为简易的一元方程,求解得故障距离x与两端电气量UM、IM、UN、IN和线路基本参数l、Z的关系。
进一步的,所述分布参数单线测距模型线路传播常数为γ,波阻抗为ZC,依据均匀传输线方程,始端M侧推算至故障点F处的电压UFM=UMchγx-ZCIMshγx,末端N侧推算至故障点F处的电压UFN=UNchγ(l-x)-ZCINshγ(l-x),通过故障点等电压原理,在故障点F处恒满足UFM=UFN,得到测距方程F(x)=0,求解该方程的未知量x,得到测距结果与始末端电压电流UM、IM、UN、IN、线路长度l、特性阻抗ZC和传播常数γ的关系。
进一步的,所述步骤(3)中的双回线双端测距模型同杆双回线Ⅰ、Ⅱ连接于母线M和母线N之间,对Ⅰ、Ⅱ回线路分别用两侧电压电流表示出在故障情况下的母线M与母线N之间压降的方程,通过分析比较可以整理得到不含线路单位长度阻抗Z的简易测距方程F(x)=0,且故障距离仅与两侧双回线的电流有关。
进一步的,所述步骤(5)中的消除线路参数未知量构造简易测距方程采用正负序分量法、共轭法或者基于电路叠加定理的故障分量法。
进一步的,正负序分量法包括对于输电线路的正序和负序等值电路,分别得到F1(x,y)=0和F2(x,y)=0两个方程,对方程组构造出关于x的简单方程F(x)=0或关于y的简单方程F(y)=0,可以求得故障距离x。
进一步的,共轭法包括对含未知数的复数方程F(x,y)=0等号两侧同时取共轭复数,此时,构造出新方程F*(x,y)=0,通过联立原复数方程和新方程求解x和y。
进一步的,基于电路叠加定理的故障分量法包括对线性电路采用电路叠加定理进行计算,线路发生故障后,其故障等值电路等效为正常状态等值网络和故障分量等值网络的叠加,在全电量和故障分量作用下分别列出测距方程F(x,y)=0和ΔF(x,y)=0,联立两个方程求解得到x,即实现故障距离求解,且计算过程中线路基本参数保持不变,有利于构造简易的测距方程。
附图说明
图1为本发明同杆双回线精确故障测距方法的集中参数单线故障模型;
图2为本发明同杆双回线精确故障测距方法的分布参数单线故障模型;
图3为本发明同杆双回线精确故障测距方法的双回线故障模型;
图4为本发明双回线故障等值电路。
具体实施方式
下面结合附图对本发明一种不依赖于线路参数的同杆双回线精确故障测距方法的具体实施方式做详细阐述。
本发明不依赖于线路参数的同杆双回线精确故障测距方法具体包括如下步骤:
步骤(1)、确定发生故障时故障距离与线路两端电压、电流的关系,确定不同运行方式下发生不同类型故障对线路模型的影响及对构造测距方程的影响;
步骤(2)、确定采用线模变换解耦后的单线表示双回线的双端法测距模型;
步骤(3)、确定采用双线表示双回线的双端法测距模型;
步骤(4)、根据线路参数已知的双回线测距原理,得到含已知线路参数的单线双端故障距离表达式及双回线双端故障距离表达式;
步骤(5)、分别针对步骤(4)中的单线双端故障距离表达式及双回线双端故障距离表达式,将线路参数作为未知量,对含故障距离和线路参数两个未知量的测距方程,消除线路参数未知量构造简易测距方程;
步骤(6)、考虑所需电压、电流电气量,得到同时采用电压、电流计算的单线双端测距方程;或仅采用电流计算的单线双端测距方程,避免电压互感器传变特性影响;或仅采用电压计算的单线双端测距方程,避免电流互感器饱和影响;
步骤(7)、考虑所需电压、电流电气量,得到同时采用电压、电流计算的双回线双端测距方程;或仅采用电流计算的双回线双端测距方程,避免电压互感器传变特性影响;或仅采用电压计算的双回线双端测距方程,避免电流互感器饱和影响;
步骤(8)、为了保证线路保护能够自适应地构建双回线不同运行方式下的测距方案,双回线路保护之间需要传递本线当前的运行状态,通过识别断路器的位置来判别是否处于运行状态或检修状态,将判别的状态发送给邻线的线路保护装置;
步骤(9)、确定选择何种测距方式,若一回线运行、一回线检修,则采用单线双端测距方式,若两回线路均正常运行,则采用双回线双端测距方式;
步骤(10)、根据选定的测距方式完成精确故障测距。
所述步骤(2)中的单线测距模型包括集中参数单线测距模型和分布参数单线测距模型。
如图1所示,所述集中参数单线测距模型线路接于M侧与N侧之间,故障点F与已知始端M侧的距离为x,线路全长为l,其单位长度阻抗为Z,已知始端M侧电压UM,始端M侧电流IM,末端N侧电压UN,末端N侧电流IN,从始端M侧推算至故障点F处的电压UFM=UM-xIMZ,从末端N侧推算至故障点F处的电压UFN=UN-IN(l-x)Z,不考虑两侧数据采集失步问题,在故障点依据电压相等原理UFM=UFN,得到测距方程F(x)=0,该测距方程为简易的一元方程,求解得故障距离x与两端电气量UM、IM、UN、IN和线路基本参数l、Z的关系。
如图2所示,所述分布参数单线测距模型线路传播常数为γ,波阻抗为ZC,依据均匀传输线方程,始端M侧推算至故障点F处的电压UFM=UMchγx-ZCIMshγx,末端N侧推算至故障点F处的电压UFN=UNchγ(l-x)-ZCINshγ(l-x),通过故障点等电压原理,在故障点F处恒满足UFM=UFN,得到测距方程F(x)=0,求解该方程的未知量x,得到测距结果与始末端电压电流UM、IM、UN、IN、线路长度l、特性阻抗ZC和传播常数γ的关系。
如图3-4所示,所述步骤(3)中的双回线双端测距模型同杆双回线Ⅰ、Ⅱ连接于母线M和母线N之间,对Ⅰ、Ⅱ回线路分别用两侧电压电流表示出在故障情况下的母线M与母线N之间压降的方程,通过分析比较可以整理得到不含线路单位长度阻抗Z的简易测距方程F(x)=0,且故障距离仅与两侧双回线的电流有关。
所述步骤(5)中的消除线路参数未知量构造简易测距方程采用正负序分量法、共轭法或者基于电路叠加定理的故障分量法。
正负序分量法包括对于输电线路的正序和负序等值电路,分别得到F1(x,y)=0和F2(x,y)=0两个方程,对方程组构造出关于x的简单方程F(x)=0或关于y的简单方程F(y)=0,可以求得故障距离x。
共轭法包括对含未知数的复数方程F(x,y)=0等号两侧同时取共轭复数,此时,构造出新方程F*(x,y)=0,通过联立原复数方程和新方程求解x和y。
基于电路叠加定理的故障分量法包括对线性电路采用电路叠加定理进行计算,线路发生故障后,其故障等值电路等效为正常状态等值网络和故障分量等值网络的叠加,在全电量和故障分量作用下分别列出测距方程F(x,y)=0和ΔF(x,y)=0,联立两个方程求解得到x,即实现故障距离求解,且计算过程中线路基本参数保持不变,有利于构造简易的测距方程。
最后应该说明的是,结合上述实施例仅说明本发明的技术方案而非对其限制。所属领域的普通技术人员应当理解到,本领域技术人员可以对本发明的具体实施方式进行修改或者等同替换,但这些修改或变更均在申请待批的权利要求保护范围之中。

Claims (9)

1.一种不依赖于线路参数的同杆双回线精确故障测距方法,其特征在于,所述不依赖于线路参数的同杆双回线精确故障测距方法具体包括如下步骤:
步骤(1)、确定发生故障时故障距离与线路两端电压、电流的关系,确定不同运行方式下发生不同类型故障对线路模型的影响及对构造测距方程的影响;
步骤(2)、确定采用线模变换解耦后的单线表示双回线的双端法测距模型;
步骤(3)、确定采用双线表示双回线的双端法测距模型;
步骤(4)、根据线路参数已知的双回线测距原理,得到含已知线路参数的单线双端故障距离表达式及双回线双端故障距离表达式;
步骤(5)、分别针对步骤(4)中的单线双端故障距离表达式及双回线双端故障距离表达式,将线路参数作为未知量,对含故障距离和线路参数两个未知量的测距方程,消除线路参数未知量构造简易测距方程;
步骤(6)、考虑所需电压、电流电气量,得到同时采用电压、电流计算的单线双端测距方程;或仅采用电流计算的单线双端测距方程,避免电压互感器传变特性影响;或仅采用电压计算的单线双端测距方程,避免电流互感器饱和影响;
步骤(7)、考虑所需电压、电流电气量,得到同时采用电压、电流计算的双回线双端测距方程;或仅采用电流计算的双回线双端测距方程,避免电压互感器传变特性影响;或仅采用电压计算的双回线双端测距方程,避免电流互感器饱和影响;
步骤(8)、为了保证线路保护能够自适应地构建双回线不同运行方式下的测距方案,双回线路保护之间需要传递本线当前的运行状态,通过识别断路器的位置来判别是否处于运行状态或检修状态,将判别的状态发送给邻线的线路保护装置;
步骤(9)、确定选择何种测距方式,若一回线运行、一回线检修,则采用单线双端测距方式,若两回线路均正常运行,则采用双回线双端测距方式;
步骤(10)、根据选定的测距方式完成精确故障测距。
2.根据权利要求1所述的一种不依赖于线路参数的同杆双回线精确故障测距方法,其特征在于,所述步骤(2)中的单线测距模型包括集中参数单线测距模型和分布参数单线测距模型。
3.根据权利要求2所述的一种不依赖于线路参数的同杆双回线精确故障测距方法,其特征在于,所述集中参数单线测距模型线路接于M侧与N侧之间,故障点F与已知始端M侧的距离为x,线路全长为l,其单位长度阻抗为Z,已知始端M侧电压UM,始端M侧电流IM,末端N侧电压UN,末端N侧电流IN,从始端M侧推算至故障点F处的电压UFM=UM-xIMZ,从末端N侧推算至故障点F处的电压UFN=UN-IN(l-x)Z,不考虑两侧数据采集失步问题,在故障点依据电压相等原理UFM=UFN,得到测距方程F(x)=0,该测距方程为简易的一元方程,求解得故障距离x与两端电气量UM、IM、UN、IN和线路基本参数l、Z的关系。
4.根据权利要求2所述的一种不依赖于线路参数的同杆双回线精确故障测距方法,其特征在于,所述分布参数单线测距模型线路传播常数为γ,波阻抗为ZC,依据均匀传输线方程,始端M侧推算至故障点F处的电压UFM=UMchγx-ZCIMshγx,末端N侧推算至故障点F处的电压UFN=UNchγ(1-x)-ZCINshγ(1-x),通过故障点等电压原理,在故障点F处恒满足UFM=UFN,得到测距方程F(x)=0,求解该方程的未知量x,得到测距结果与始末端电压电流UM、IM、UN、IN、线路长度l、特性阻抗ZC和传播常数γ的关系。
5.根据权利要求1所述的一种不依赖于线路参数的同杆双回线精确故障测距方法,其特征在于,所述步骤(3)中的双回线双端测距模型同杆双回线Ⅰ、Ⅱ连接于母线M和母线N之间,对Ⅰ、Ⅱ回线路分别用两侧电压电流表示出在故障情况下的母线M与母线N之间压降的方程,通过分析比较可以整理得到不含线路单位长度阻抗Z的简易测距方程F(x)=0,且故障距离仅与两侧双回线的电流有关。
6.根据权利要求1所述的一种不依赖于线路参数的同杆双回线精确故障测距方法,其特征在于,所述步骤(5)中的消除线路参数未知量构造简易测距方程采用正负序分量法、共轭法或者基于电路叠加定理的故障分量法。
7.根据权利要求6所述的一种不依赖于线路参数的同杆双回线精确故障测距方法,其特征在于,正负序分量法包括对于输电线路的正序和负序等值电路,分别得到F1(x,y)=0和F2(x,y)=0两个方程,对方程组构造出关于x的简单方程F(x)=0或关于y的简单方程F(y)=0,可以求得故障距离x。
8.根据权利要求6所述的一种不依赖于线路参数的同杆双回线精确故障测距方法,其特征在于,共轭法包括对含未知数的复数方程F(x,y)=0等号两侧同时取共轭复数,此时,构造出新方程F*(x,y)=0,通过联立原复数方程和新方程求解x和y。
9.根据权利要求6所述的一种不依赖于线路参数的同杆双回线精确故障测距方法,其特征在于,基于电路叠加定理的故障分量法包括对线性电路采用电路叠加定理进行计算,线路发生故障后,其故障等值电路等效为正常状态等值网络和故障分量等值网络的叠加,在全电量和故障分量作用下分别列出测距方程F(x,y)=0和ΔF(x,y)=0,联立两个方程求解得到x,即实现故障距离求解,且计算过程中线路基本参数保持不变,有利于构造简易的测距方程。
CN201811276038.6A 2018-10-30 2018-10-30 一种不依赖于线路参数的同杆双回线精确故障测距方法 Pending CN109358268A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811276038.6A CN109358268A (zh) 2018-10-30 2018-10-30 一种不依赖于线路参数的同杆双回线精确故障测距方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811276038.6A CN109358268A (zh) 2018-10-30 2018-10-30 一种不依赖于线路参数的同杆双回线精确故障测距方法

Publications (1)

Publication Number Publication Date
CN109358268A true CN109358268A (zh) 2019-02-19

Family

ID=65347453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811276038.6A Pending CN109358268A (zh) 2018-10-30 2018-10-30 一种不依赖于线路参数的同杆双回线精确故障测距方法

Country Status (1)

Country Link
CN (1) CN109358268A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111650469A (zh) * 2020-05-14 2020-09-11 南方电网科学研究院有限责任公司 一种基于d-pmu装置的配电网故障精确定位方法
CN111830367A (zh) * 2020-07-27 2020-10-27 南京工程学院 一种高压直流输电线路单极接地故障的故障定位方法
CN112578225A (zh) * 2020-12-07 2021-03-30 广东电网有限责任公司韶关供电局 一种用于确定单相接地故障点的方法、装置及系统
CN113484682A (zh) * 2021-07-15 2021-10-08 保定市毅格通信自动化有限公司 一种基于驻波的配电线路接地故障测距方法
CN114184884A (zh) * 2021-11-23 2022-03-15 昆明理工大学 一种电网故障行波测距方程自动构造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299051A (zh) * 2007-11-08 2008-11-05 国网南京自动化研究院 基于相量测量技术的电网扰动在线自动识别方法
CN105067950A (zh) * 2015-07-23 2015-11-18 西安工程大学 基于纵向阻抗的双端量故障测距方法
CN107167707A (zh) * 2017-06-08 2017-09-15 国网江苏省电力公司无锡供电公司 一种基于参数未知的同杆双回线故障测距方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299051A (zh) * 2007-11-08 2008-11-05 国网南京自动化研究院 基于相量测量技术的电网扰动在线自动识别方法
CN105067950A (zh) * 2015-07-23 2015-11-18 西安工程大学 基于纵向阻抗的双端量故障测距方法
CN107167707A (zh) * 2017-06-08 2017-09-15 国网江苏省电力公司无锡供电公司 一种基于参数未知的同杆双回线故障测距方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
吴浩然等: "采用不同步数据的故障测距新原理研究", 《江苏电机工程》 *
施世鸿等: "基于分布参数模型的双端非同步故障测距算法", 《电网技术》 *
李澄: "输电线路双端测量非同步的故障测距新方法研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *
程少龙等: "同杆架设双回线自适应故障测距研究", 《电力学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111650469A (zh) * 2020-05-14 2020-09-11 南方电网科学研究院有限责任公司 一种基于d-pmu装置的配电网故障精确定位方法
CN111650469B (zh) * 2020-05-14 2021-11-16 南方电网科学研究院有限责任公司 一种基于d-pmu装置的配电网故障精确定位方法
CN111830367A (zh) * 2020-07-27 2020-10-27 南京工程学院 一种高压直流输电线路单极接地故障的故障定位方法
CN112578225A (zh) * 2020-12-07 2021-03-30 广东电网有限责任公司韶关供电局 一种用于确定单相接地故障点的方法、装置及系统
CN113484682A (zh) * 2021-07-15 2021-10-08 保定市毅格通信自动化有限公司 一种基于驻波的配电线路接地故障测距方法
CN114184884A (zh) * 2021-11-23 2022-03-15 昆明理工大学 一种电网故障行波测距方程自动构造方法
CN114184884B (zh) * 2021-11-23 2024-05-24 昆明理工大学 一种电网故障行波测距方程自动构造方法

Similar Documents

Publication Publication Date Title
CN109358268A (zh) 一种不依赖于线路参数的同杆双回线精确故障测距方法
CN103792465B (zh) 一种基于零序电压的配电网单相接地故障测距的方法
CN106249193B (zh) 一种充电站的充电桩电能计量误差校验的方法和系统
CN103837852B (zh) 全光纤电子式电流互感器频率特性测试装置以及测试方法
CN105929302B (zh) 基于序分量关系的输电线路单端故障测距方法
CN103954925B (zh) 一种基于rtds实时仿真的故障录波器动态测试方法
CN106054023B (zh) 一种输电线路单端测距中估计两侧系统阻抗的方法
CN202758062U (zh) 一种数字化变电站电能计量装置整体计量误差检测系统
CN108647438A (zh) 一种新型土壤等效电阻模型建模方法
CN105093114A (zh) 一种电池在线建模与荷电状态的联合估计方法及系统
CN103632235A (zh) 基于改进前推回代算法的电网低压台区线损信息处理方法
CN108802564A (zh) 配电网t型线参数无关故障测距算法及系统
CN107884682A (zh) 基于故障点与监测点距离的配电网故障定位方法
CN106814265A (zh) 一种光伏逆变器发电效率测试系统
CN104599193A (zh) 一种基于规则库的配电网单相接地故障定位方法
CN103809079A (zh) 一种适用于直流配电网络的双端高频阻抗式故障测距方法
CN106199333B (zh) 基于分布电容补偿的单端工频量改进分布参数自适应测距方法
CN105929305B (zh) 一种非全程混压双回线故障区段识别与精确测距方法
CN103762594A (zh) 基于时钟同步数据矩阵的馈线合环冲击电流计算方法
CN110333394A (zh) 一种低压配电网线路阻抗估计方法
CN102788902B (zh) 一种抗高感应电压干扰的高压输电线路工频参数实测装置
Daisy et al. Fault location in power grids using substation voltage magnitude differences: A comprehensive technique for transmission lines, distribution networks, and AC/DC microgrids
CN103616609A (zh) 一种利用直流分量的高压直流接地极线路故障测距方法
CN103424627B (zh) 双端测量平行电网线路零序阻抗的方法
CN107505534A (zh) 配网故障遗传搜索定位方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190219