CN109347130A - 计及电价及静态电压稳定的电动汽车容纳规模估算方法 - Google Patents

计及电价及静态电压稳定的电动汽车容纳规模估算方法 Download PDF

Info

Publication number
CN109347130A
CN109347130A CN201810939555.0A CN201810939555A CN109347130A CN 109347130 A CN109347130 A CN 109347130A CN 201810939555 A CN201810939555 A CN 201810939555A CN 109347130 A CN109347130 A CN 109347130A
Authority
CN
China
Prior art keywords
electric car
formula
power
indicates
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810939555.0A
Other languages
English (en)
Other versions
CN109347130B (zh
Inventor
吴晨曦
陈泽昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201810939555.0A priority Critical patent/CN109347130B/zh
Publication of CN109347130A publication Critical patent/CN109347130A/zh
Application granted granted Critical
Publication of CN109347130B publication Critical patent/CN109347130B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种计及电价及静态电压稳定的电动汽车容纳规模估算方法,本发明根据现有的配电系统及电动汽车数据和负荷增长模型描绘出PV曲线,利用连续潮流算法追踪PV曲线来获取最大负载因数从而估算出配电系统中可容纳的电动汽车数量;本专利以EV行驶里程估计EV的充电能量;以充放电代数费用最小确定可充放电的时段;配电系统在1)2)满足的前提下调度电动汽车充放电功率以起到削峰填谷的作用;具有评估配电系统中EV削峰填谷的能力。

Description

计及电价及静态电压稳定的电动汽车容纳规模估算方法
技术领域
本发明设计电力系统运行领域,涉及一种考虑分时电价及静态电压稳定的配电系统中电动汽车容纳规模的估算方法。
技术背景
为了解决化石燃料短缺以及环境问题,电动汽车(EV,electric vehicle)的重要作用逐渐突显。2016年我国新能源汽车全年销量达到50.7万辆,保有量已经突破100万辆,位居全球第一。高比例的电动汽车必然引起电力负荷的巨大增长。为了保证电网安全运行,必须对电动汽车接入电网的潜在影响进行评估。目前电动汽车对电力系统影响的研究较多,涵盖了几个方面的问题:电动汽车充电站的规划[1][2]、电动汽车对节能减排的影响[3]、电力市场对电动汽车车主充电行为的影响[4]、EV充放电功率调度等方面[5]
负荷特性是影响电力系统静态电压稳定性的主要因素。美国(EPRI)的一篇报道预测,截止到2050年插入式电动汽车在低、中、高三种不同渗透率的情形下将会分别占有20%、62%、80%的市场份额[6]。大量电动汽车充电会产生巨大的负荷需求,而电动汽车的负荷不同于其他传统负荷。电动汽车的充电时间以及充电位置也会影响配电系统的静态电压稳定性。静态电压稳定性分析可以通过获得关键母线电压曲线作为其负荷系数的函数来评估。电压曲线,或者称P-V曲线,可以观察在不同负荷水平下的系统行为及其运行状况,并已被电力行业用于评估电压稳定裕度和易发生电压崩溃的节点[7]。负荷的逐渐增大对应的最大负荷点 (MLP,maximum loading point)将导致一个鞍结分岔(SNB,saddle-nodebifurcation)点[8],该点为静态电压稳定的极限。
目前有少数关于电动汽车充电负荷对静态电压稳定性的影响的相关研究。文献[9]采用电动汽车静态负荷模型研究在不同情况下电动汽车的快充模式对电力系统电压稳定的影响,采用恒定功率模型模拟电动汽车充电站的总负荷。文献[10] 通过控制电动汽车充电地点减轻了低压配电系统中发热及电压问题。文献[11] 以损耗最小为目标,电压质量为约束条件,提出了一种含有电动汽车及分布式能源的配电系统优化方案。文献[12][13]提出电价敏感的最佳充电模式,在确保终端用户电压的前提下使得电动汽车充电所产生的功率损耗最小。
现有的关于静态电压稳定性研究中没有考虑电动汽车充电的时空分布特征,而在文献[9][11]中也没有考虑连续潮流以及负荷能力。文献[12][13]初步考虑了电力市场的影响。在我国分时电价(TOU,time-of-use electricity price)已经广泛地用于今天电力市场的终端用户。由于分时电价反映了电能时间差异,采用分时电价可以有效地激励电力用户有效地调整用电安排,起到错峰的作用[14]。同样的,电动汽车的车主将根据分时电价(TOU)调整其驾驶习惯和充电时间[14][15][16]
基于以上的讨论,本专利分析分时电价对于电动汽车车主充电行为的影响,并以充电成本最小化为目标来优化充电时间。配电系统在满足车主需求前提下调度电动汽车充电功率以起到负荷削峰填谷的作用。通过计算最大负荷因数建立起基于负荷曲线的连续潮流模型,以此来估算配电网中可容纳的电动汽车的最大数量。
参考文献
[1]F.He,D.Wu,Y.Yin,and Y.Guan.:‘Optimal deployment of public chargingstations for plug-in hybrid electric vehicles’,Trans.Res.Part B:Methodol.,2013,47,(1),pp.87-101.
[2]Z.Liu,F.Wen,and G.Ledwich.:‘Optimal planning of electric-vehiclecharging stations in distribution systems’,IEEE Trans.Power Del.,2013,28,(1),pp.102-110.
[3]K.Clement-nyns,E.Haesen,J.Driesen.The impact of charging plug-inhybrid electric vehicles on a residential distribution grid’,IEEE Trans.PowerSyst.,2010,25,(1),pp.371–380.
[4]NIKLAS R,MARIJA I.:‘Optimal charge control of plug-In hybridelectric vehicles in deregulated electricity markets’,IEEE Trans.Power Syst.,2011,26,(3),pp.1021-1029.
[5]Hao Xing,Minyue Fu,Zhiyun Lin and Yuting Mou.:‘DecentralizedOptimal Scheduling for Charging and Discharging of Plug-In Electric Vehiclesin Smart Grids’,IEEE Trans.Power Syst., 2016,31,(5),pp.4118-4127.
[6]M.Duvall and E.Knipping.:‘Environmental assessment of plug-inhybrid electric vehicles. volume 1:nationwide greenhouse gas emissions’,EPRI,Palo Alto,CA,USA,Tech.Rep., 1015325,2007.
[7]Augugliaro A,Dusonchet L,Mangione S.:‘Voltage collapse proximityindicators for radial distribution networks’,9th Int conf.on elect.powerquality and utilization.Barcelona,2007,pp. 9-11.
[8]Abdel-Akher M,Bedawy A,Aly MM.:‘Application of bifurcationanalysis on active unbalanced distribution system’,IET renewable power genconf.,Edinburgh,UK,September.2011,pp.5-8.
[9]Dharmakeerthi C.H.,Mithulananthan N.,Saha T.K.:‘Impact of electricvehicle fast charging on power system voltage stability’,Internationaljournal of Electrical Power and Energy Systems, 2014,57,pp.241-249.
[10]Jairo Quirós-Tortós,Luis F.Ochoa,Sahban W.Alnaser,and TimButler.:‘Control of EV Charging Points for Thermal and Voltage Management ofLV Networks’,IEEE Trans.Power Syst., 2015,31,(4),pp.3028-3039.
[11]Baosen Zhang,Albert Y.S.Lam,Alejandro D.Domínguez-García andDavid Tse.:‘An Optimal and Distributed Method for Voltage Regulation in PowerDistribution Systems’,IEEE Trans. Power Syst.,2015,30,(4),pp.1714-1726.
[12]Y.Cao,S.Tang,C.Li,P.Zhang,Y.Tan.:‘An optimized EV charging modelconsidering TOU price and SOC curve’,IEEE Trans.Smart Grid,2012,3,(1),pp.388-393.
[13]N.Rotering and M.Ilic.:‘Optimal charge control of plug-in hybridelectric vehicles in deregulated electricity markets’,IEEE Trans.Power Syst.,2011,26,(3),pp.1021-1029.
[14]Matteo Muratori and Giorgio Rizzoni.:‘Residential DemandResponse:Dynamic Energy Management and Time-Varying Electricity Pricing’,IEEETrans on Power System,2016,31,(2), pp.1108-1117.
[15]Hongming Yang,Songping Yang,Yan Xu,Erbao Cao,Mingyong Lai andZhaoyang Dong.: ‘Electric Vehicle Route Optimization Considering TOUelectricity price by learnable partheno-genetic algrithm’,IEEE Transactionson Smart Grid,2016,6,(2),pp.657-666.
[16]C.X.Wu,F.S.Wen,Y.L.Lou.:‘Probabilistic load flow analysis ofphotovoltaic generation system with plug-in electric vehicles’,InternationalJournal of Electrical Power&Energy System, 2015,64,pp.1221-1228.
发明内容
本发明所要解决的问题是考虑电动汽车时空特性、充电成本及静态电压稳定的前提下,提出一种估算配电系统中可容纳电动汽车最大数量的方法。
本发明解决其技术问题所采用的技术方案是:考虑成本及静态电压稳定的配电系统中电动汽车容纳规模的估算方法。包括如下步骤:
步骤一:根据分时电价建立电动汽车(EV)充电模型。
式(1)中c(t)表示分时电价函数,c1表示高峰电价,c2表示平时电价,c3低谷电价;t1、t2、t3分别对应负荷高峰、平时、低谷时间。
式(2)表示行驶路程的概率密度函数服从对数正态分布,其中s表示某一电动汽车的日行驶路程,μ,σ表示概率密度函数的平均值和标准差。
式(3)表示电动汽车最终返回时间的正态分布,其中μt表示期望返回时间,σt表示其方差。
式(4)表示初始行驶时间概率密度函数的瑞利分布,其期望值为假设可能的初始出行时间为7点,即期望值,令可解得σs
式(5)表示配电系统运营商的调度目标函数。其中PLt表示第t个时间段的负荷功率,PEVt表示第t个时间段的电动汽车总充电功率,Pav表示第t个时间段的等效平均负荷功率。
步骤二:根据步骤一得到的模型及概率分布,由式(1)-式(5)获得最小充电成本函数及约束方程:
式(6)表示最小充电成本表达式以及由行驶距离si决定总充电能量的充电约束方程。其中表示在tj时间段内第i辆电动汽车的充电能量,ωEV表示电动汽车行驶每公里所消耗的能量,表示第i辆电动汽车的充电功率,tend,tstart表示行驶结束时间和开始时间。
f(x,λ)=0 (7)
PLi=PLi0(1+λnPLi)
QLi=QLi0(1+λnQLi) (8)
等式(7)为潮流方程的非线性函数。x是它的状态变量。x=[θ,v](为电压相角和幅值),等式(8)是负荷增长模型。
其中PLi、QLi是母线i上负荷的有功和无功功率,PLi0、QLi0是母线i上负荷的有功和无功功率的初始值。nPLi,nQLi分别表示负荷有功无功增长的方向向量,λ为负荷增长系数,其值是根据EV数量的增加得到的。
根据式(6)-式(8)得到的数据及负荷增长参数可以描绘出PV曲线,分别利用连续潮流算法(CPF)追踪PV曲线在维持系统稳定性前提下获取最大负荷,通过拟合最大负荷与EV数量间的函数关系得到EV的最大数量。
步骤三:将所提方法在PG&E 69节点配电系统、IEEE33节点配电系统中验证。
本发明相对于现有技术具有效果:根据现有的配电系统及电动汽车数据和负荷增长模型描绘出PV曲线,利用连续潮流算法追踪PV曲线来获取最大负载因数从而估算出配电系统中可容纳的电动汽车数量;本专利区别于现有的研究工作有如下特点。
1)以EV行驶里程估计EV的充电能量;
2)以充放电代数费用最小确定可充放电的时段;
3)配电系统在1)2)满足的前提下调度电动汽车充放电功率以起到削峰填谷的作用;
4)评估配电系统中EV削峰填谷的能力。
附图说明
图1为总体技术路线框图;
图2为EV充电功率仿真示意图;
图3 EV充放电及行驶时段示意图
图4为负荷曲线(P-V曲线);
图5 PG&E 69节点配电系统图;
图6 IEEE 33节点配电系统图。
具体实施方式
以下结合附图具体说明本发明方法
如图1所示,本发明利用连续潮流估算配电系统中可容纳的EV最大数量的方法包括如下步骤:
步骤一:根据分时电价建立电动汽车(EV)充电模型。
式(1)中c(t)表示分时电价函数,c1表示高峰电价,c2表示中峰电价,c3低谷电价;t1、t2、t3分别对应负荷高峰、中峰、低谷时间。
式(2)表示行驶路程的概率密度函数服从对数正态分布,其中s表示某一电动汽车的日行驶路程,μ,σ表示概率密度函数的平均值和标准差。
式(3)表示电动汽车最终返回时间的正态分布,其中μt表示期望返回时间,σt表示其方差。
式(4)表示初始行驶时间概率密度函数的瑞利分布,其期望值为假设可能的初始出行时间为7点,即期望值,令可解得σs
式(5)表示配电系统运营商的调度函数。其中PLt表示第t个时间段的负荷功率,PEVt表示第t个时间段的电动汽车总充电功率,Pav表示第t个时间段的等效平均负荷功率。
步骤二:根据建立的模型,将一天24小时划分为N个时段,根据工作日、周末、节假日的不同日期分时电价信息,车主以节省充电费用为目标,仿真不同日期EV行驶与充电规律。获取传统私家车与公众用车的行驶里程与行驶路线的统计数据,每一台EV的车主以充电费用最少为目的优化各个时段的充电量,目标函数如式(6)。电力系统在保证车主费用最低的前提下,在相应的时间段内调度EV的充时间。式(6)中不等式约束为充电总能量,由EV行驶里程si决定。
式中,表示在tj时间段内第i辆电动汽车的充电能量,ωEV表示电动汽车行驶每公里所消耗的能量,表示第i辆电动汽车的充电功率,tend,tstart表示行驶结束时间和开始时间。图2为EV充电功率的仿真,每天的行驶里程决定EV 在第二次出行前所需充电的能量,行驶起始时间、终止时间决定EV充电的可能时间段,而最终车主会以充电费用最小来确定在各个时段的充电时长。图3所中 tstart1,tend1,tstart2,tend2,分别为两次行驶的开始时间及结束时间,除了该两个时段其他时间均可进行充电,即在满足车主行驶的前提下进行充电。式(6)是满足等式约束条件的线性规划问题,可利用MATLAB中‘linprog’函数求解。
充电能量及可充电时间段确定后,电网以平抑负荷曲线为目的进行EV充电功率调度,在TOU的每个时段内调度的目标函数为式(7),把24小以15分钟为单位分成96个时段。
式中,PLt是t时段的负荷,PEVt是t段的充电功率,Pav是平均负荷,式(7)是 KKT条件的优化问题,通过引入松弛变量可以将不等式约束变成等式约束进行求解。
式(8)为考虑负荷增长的配电系统潮流计算方程,式(9)为负荷增长的负荷有功功率与无功功率。
式中,nPLi,nQLi分别表示负荷有功无功增长的方向向量,随着EV数量的增加而增长。然后对配电系统进行潮流计算,绘制如图4所示的PV曲线,求取最大负荷系数λmax
根据不同的负荷增长模型,分别利用连续潮流算法(CPF)追踪PV曲线在维持系统静态电压稳定前提下获取最大负荷系数,通过计算一天24小时EV充电负荷的最大值,拟合EV数量与最大负荷系数的函数关系,从而估算EV的最大数量。
步骤三:将所提方法在图5的PG&E 69节点、图6的IEEE33节点配电系统中验证。
本发明以PHEV60电动汽车为例仿真电动汽车的充电特性。分散慢充时电动汽车的充电功率保持恒定为3.6kW,则对于电池容量为18kWh的PHEV60完全充满电需要5个小时。充电站快速充电时电动汽车的充电功率保持恒定为9kW,则对于电池容量为18kWh的PHEV60完全充满电需要2个小时。本发明中电动汽车仅作为通勤的私人汽车,能源消耗量为每公里0.24kWh。基于前文提出的假设,当行驶路程为60公里时,电池所消耗能量为14.4kWh,并且需要4小时可充至满电状态。电动汽车充电功率因数为0.98。PHEV60的参数如表1中所列。汽车的日常行驶距离服从参数μ=3.37,σ=0.5的概率密度函数。电动汽车最可能开始其日常出行的时间段是6:00-7:00。预计返回时间的概率密度函数参数μt= 17.6,其偏差σt=3.4。表2和表3分别是奥斯汀能源价格在夏季和非夏季的分时电价表。
本发明对多种情况进行了仿真,一是将电动汽车充电点分散接入PG&E 69 节点配电系统,这意味着整个配电系统将与住宅位置有关。另一种是电动汽车集中接入配电系统中某些母线上。假定这些母线是与住宅有关的。第三种情况是电动汽车集中安排在充电站充电。在第四种仿真情况中,对提出的方法在IEEE 33 节点的配电系统中也进行了仿真。
表1 PHEV60技术参数
表2夏季分时电价表
表3非夏季分时电价表
通过仿真得出EV充电时间、充电位置导致负荷的时空变化,电动汽车在配电系统中的容纳规模是不同的。以PG&E 69节点配电系统为例,表4显示了分散充电情况下的电动汽车容纳规模,拓扑结构变化时的情况也进行了验证:断开 59与3节点,将69节点与15节点相连。表5显示了集中接入充电站进行充电的情况下的电动汽车容纳规模。表6显示了在充电站充电情况下的电动汽车容纳规模。表7通过IEEE 33节点配电系统验证本发明所提方法。
表4分散充电情况下的电动汽车容纳规模
表5分散充电情况下的电动汽车容纳规模
表6充电站在不同节点的负荷系数和EV数量
表7 IEEE33节点配电系统下的充电站在不同节点的负荷系数和EV数量

Claims (1)

1.计及电价及静态电压稳定的电动汽车容纳规模估算方法,其特征在于该方法的具体步骤是:
步骤一:根据分时电价建立电动汽车充电模型;
式(1)中c(t)表示分时电价函数,c1表示高峰电价,c2表示中峰电价,c3低谷电价;t1、t2、t3分别对应负荷高峰、中峰、低谷时间;
式(2)表示行驶路程的概率密度函数服从对数正态分布,其中s表示某一电动汽车的日行驶路程,μ,σ表示概率密度函数的平均值和标准差;
式(3)表示电动汽车最终返回时间的正态分布,其中μt表示期望返回时间,σt表示ft(t)的方差;
式(4)表示初始行驶时间概率密度函数的瑞利分布,其期望值为假设可能的初始出行时间为7点,即期望值,令可解得σs
式(5)表示配电系统运营商的调度函数;其中PLt表示第t个时间段的负载功率,PEVt表示第t个时间段的电动汽车总充电功率,Pav表示第t个时间段的等效平均负荷功率;表示第i辆电动汽车在tj时刻的充电能量,N表示电动车总数,tj表示在第j个时间间隔;
步骤二:根据步骤一得到的模型及概率分布,由式(1)-式(5)获得最小充电成本表达式及约束方程:
式(6)表示最小充电成本表达式以及由行驶距离si决定总充电能量的充电约束方程;其中表示在tj时间段内第i辆电动汽车的充电能量,ωEV表示每里所消耗的能量,表示第i辆电动汽车的充电功率,tend,tstart表示行驶结束时间和开始时间;
f(x,λ)=0 (7)
等式(7)为潮流方程的非线性函数;x是它的状态变量;x=[θ,v](为电压相角和幅值);等式(8)是负荷增长模型函数;
其中PLi、QLi是母线i上负载的有功和无功功率,PLi0、QLi0是母线i上负荷的有功和无功功率的初始值;λ的值是根据EV数量的增加得到的负荷增长系数;
根据式(6)-式(8)得到的数据及负荷增长系数可以绘制出PV曲线,分别利用连续潮流算法追踪PV曲线在维持系统稳定性前提下获取最大负荷从而得到EV的最大数量;
步骤三:将所提方法在PG&E 69节点配电系统、IEEE 33节点配电系统中进行验证。
CN201810939555.0A 2018-08-17 2018-08-17 计及电价及静态电压稳定的电动汽车容纳规模估算方法 Active CN109347130B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810939555.0A CN109347130B (zh) 2018-08-17 2018-08-17 计及电价及静态电压稳定的电动汽车容纳规模估算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810939555.0A CN109347130B (zh) 2018-08-17 2018-08-17 计及电价及静态电压稳定的电动汽车容纳规模估算方法

Publications (2)

Publication Number Publication Date
CN109347130A true CN109347130A (zh) 2019-02-15
CN109347130B CN109347130B (zh) 2020-12-01

Family

ID=65291417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810939555.0A Active CN109347130B (zh) 2018-08-17 2018-08-17 计及电价及静态电压稳定的电动汽车容纳规模估算方法

Country Status (1)

Country Link
CN (1) CN109347130B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103065199A (zh) * 2012-12-18 2013-04-24 广东电网公司电力科学研究院 电动汽车充电站负荷预测方法
US20160236585A1 (en) * 2014-09-14 2016-08-18 Electric Motor Werks, Inc. Computerized information system for smart grid integrated electric vehicle charging and associated method
CN106599390A (zh) * 2016-11-23 2017-04-26 国网浙江省电力公司电动汽车服务分公司 一种计及电动出租车时空随机特性的充电负荷的计算方法
CN107609858A (zh) * 2017-08-04 2018-01-19 新奥泛能网络科技股份有限公司 车辆的充电计价方法、装置及车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103065199A (zh) * 2012-12-18 2013-04-24 广东电网公司电力科学研究院 电动汽车充电站负荷预测方法
US20160236585A1 (en) * 2014-09-14 2016-08-18 Electric Motor Werks, Inc. Computerized information system for smart grid integrated electric vehicle charging and associated method
CN106599390A (zh) * 2016-11-23 2017-04-26 国网浙江省电力公司电动汽车服务分公司 一种计及电动出租车时空随机特性的充电负荷的计算方法
CN107609858A (zh) * 2017-08-04 2018-01-19 新奥泛能网络科技股份有限公司 车辆的充电计价方法、装置及车辆

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
严俊等: "峰谷分时电价背景下的居民电动汽车有序充放电策略", 《电力系统保护与控制》 *
郑颖: "高渗透率电动汽车接入下的配电网静态稳定性分析及有序充电策略研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
郭建龙等: "电动汽车充电对电力系统的影响及其对策", 《电力自动化设备》 *

Also Published As

Publication number Publication date
CN109347130B (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
Kumar et al. V2G capacity estimation using dynamic EV scheduling
Ma et al. Modeling the benefits of vehicle-to-grid technology to a power system
Dang Electric vehicle (EV) charging management and relieve impacts in grids
Yang et al. A comprehensive review on electric vehicles integrated in virtual power plants
Liang et al. A calculation model of charge and discharge capacity of electric vehicle cluster based on trip chain
Zhang et al. A non-cooperative game based charging power dispatch in electric vehicle charging station and charging effect analysis
Rajani et al. A hybrid optimization based energy management between electric vehicle and electricity distribution system
Agarwal et al. Using EV battery packs for vehicle-to-grid applications: An economic analysis
CN109672199B (zh) 一种基于能量平衡的电动汽车削峰填谷能力估计方法
Zhou et al. Bi-level framework for microgrid capacity planning under dynamic wireless charging of electric vehicles
Li et al. Multi-objective optimal dispatching of electric vehicle cluster considering user demand response
Cetinbas et al. Energy management of a PV energy system and a plugged-in electric vehicle based micro-grid designed for residential applications
CN111224418B (zh) 一种基于电动汽车储能的微电网调度方法及系统
Chen et al. Probability evaluation of excess voltage in a distribution network with uneven charging electric vehicle load
Zhou et al. Collaborative strategy of dynamic wireless charging electric vehicles and hybrid power system in microgrid
CN109347130A (zh) 计及电价及静态电压稳定的电动汽车容纳规模估算方法
CN112109580B (zh) 一种电量自分配的微电网电动汽车充放电控制系统
CN113852073A (zh) 一种基于激励-响应充电决策估计的日前优化调度方法
CN209365942U (zh) 一种组件化离网快速充电系统
Chen et al. Optimal Energy Dispatch of Grid-Connected Electric Vehicle Considering Lithium Battery Electrochemical Model
Thakre et al. Potentially affect of a vehicle to grid on the electricity system
Paredes et al. Energy management model for an electric vehicle charging station in the environment of a microgrid
Bayat et al. A hybrid shuffled frog leaping algorithm and intelligent water drops optimization for efficiency maximization in smart microgrids considering EV energy storage state of health
Li et al. Modeling and Controllability Evaluation of EV Charging Facilities Changed from Gas Stations with Renewable Energy Sources
Zhang et al. Dynamic and fast electric vehicle charging coordinating scheme, considering V2G based var compensation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant