CN109345031B - 基于交通流数据的协调干线线路规划方法及配置系统 - Google Patents

基于交通流数据的协调干线线路规划方法及配置系统 Download PDF

Info

Publication number
CN109345031B
CN109345031B CN201811264323.6A CN201811264323A CN109345031B CN 109345031 B CN109345031 B CN 109345031B CN 201811264323 A CN201811264323 A CN 201811264323A CN 109345031 B CN109345031 B CN 109345031B
Authority
CN
China
Prior art keywords
time period
traffic
intersection
flow direction
trunk line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811264323.6A
Other languages
English (en)
Other versions
CN109345031A (zh
Inventor
吕伟韬
徐佳骋
李璐
陈凝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Zhitong Traffic Technology Co ltd
Original Assignee
Jiangsu Zhitong Traffic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Zhitong Traffic Technology Co ltd filed Critical Jiangsu Zhitong Traffic Technology Co ltd
Priority to CN201811264323.6A priority Critical patent/CN109345031B/zh
Publication of CN109345031A publication Critical patent/CN109345031A/zh
Priority to PCT/CN2019/113476 priority patent/WO2020083399A1/zh
Application granted granted Critical
Publication of CN109345031B publication Critical patent/CN109345031B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明提供一种基于交通流数据的协调干线线路规划方法及配置系统,将互联网数据和视频号牌识别设备的过车数据进行整合,依托非拥堵时间段内交通流数据确定关键流向,从而识别配置出各控制时间段的协调方向,进而规划配置出协调干线;本发明基于互联网的交通状态数据识别出非拥堵时间段,针对该时间段进行干线配置分析,避免了传统干线配置根据路网交通规划以及针对饱和时间段和非饱和时间段综合考虑各路口的协调方向,导致的协调干线效率低下的问题,从而提高了协调干线不同时间段的准确性,达到协调最优。本发明对不同时间段的干线进行配置识别分析,提高了协调干线实施效率,为区域信号协调优化提供了辅助支撑。

Description

基于交通流数据的协调干线线路规划方法及配置系统
技术领域
本发明涉及一种基于交通流数据的协调干线线路规划方法及配置系统。
背景技术
在城市道路中,交叉口相距较近,各交叉口分别设置单点信号控制时,车辆经常遇到红灯,时停时开,造成行车不畅,也因而使环境污染加重,因此为使车辆减少在各个交叉口上的停车时间,需要把一条干线上一批相邻的交通信号连接起来,加以协调控制。目前随着机动车保有量的日趋增长,交通拥堵问题日渐严重,交通信号控制系统不断被普及,各级交警部门均开始在本城市主干道实施干线。
现阶段的协调干线是由信控专业团队和交警部门警员根据城市路口渠化特征、路口交通量、交通管理规则等现状进行经验式标定,一般配置的干线为多个交叉口的城市主干道、高速公路干道、长隧道和长桥,但在城市路网中,主干道不一定为真正需要协调的干线;另一方面,目前干线协调各路口的协调方向根据各路口的交通流量确定,但是视频号牌识别设备(电子警察/智能卡口)在路口饱和状态下检测的流向数据并不能代表为路口真正的需求流向,而对全天流量的检测对比或基于动态OD研究较为复杂,因此针对目前交通信号协调干线的规划和配置缺乏一套干线配置合理性分析的标准,需要一套智能化、自动化的干线规划配置方法,从而确保交警大队配置的协调干线效率最优。
发明内容
本发明的目的是提供一种基于交通流数据的协调干线线路规划方法及配置系统,依托互联网数据和视频号牌识别的过车数据对非拥堵时间段内路口进口道关键流向进行判别,进而对相邻路口关键流向进行分析,规划配置出协调干线及其控制时间段,提高了协调干线的准确性,缓解了城市道路拥堵问题,解决现有技术中存在的现阶段干线配置依据交通规划主干道等道路类型,路口协调方向不准确的问题。
本发明的技术解决方案是:
一种基于交通流数据的协调干线线路规划方法,将互联网数据和视频号牌识别设备的过车数据进行整合,依托非拥堵时间段内交通流数据确定关键流向,从而识别配置出各控制时间段的协调方向,进而规划配置出协调干线;包括以下步骤,
S1、基于互联网数据对路段上行与下行的拥堵指数进行求解,识别出路段的非拥堵时间段;
S2、提取出非拥堵时间段内的过车数据,对路口进口各单位时间段内的关键流向进行识别,建立关键流向时间表;
S3、基于关键流向配置出协调干线,确定干线的协调控制时间段。
进一步地,步骤S1具体为,
S11、基于路网内的信控路口划分路段,即相邻信控路口之间为一路段;
S12、对步骤S11中划分的各路段统计时间段内单位时间的拥堵指数进行计算;其中,每条路段均包括上行和下行;
S13、由步骤S12所得拥堵指数来绘制时间-拥堵指数折线图,确定路段非拥堵时间段。
进一步地,步骤S12中,对步骤S11中划分的各路段统计时间段内单位时间的拥堵指数进行计算,具体为,与互联网数据对接,提取出统计时间段内全天各单位时间的交通状态,包括畅通、缓行、拥堵和严重拥堵四种,进而确定统计时间段内出现此种交通状态的总次数Ni,其中i表示交通状态,具体包括四种,即i为1代表畅通,i为2代表缓行,i为3代表拥堵,i为4代表严重拥堵;进而根据畅通、缓行、拥堵和严重拥堵的权重数值αi进行计算,即拥堵指数为:
Figure BDA0001842537100000021
进一步地,步骤S2具体为,
S21、基于路口号牌识别设备提取出路口各进口道非拥堵时间段内的过车数据;
S22、识别出进口道各单位时间段内的关键流向;
S23、整合路口各进口道单位时间段内的关键流向,建立关键流向时间表。
进一步地,步骤S22具体为,基于过车数据统计出进口道各流向的单位时间段内的过车流量,进一步计算出各进口道内流向的交通需求比值qmn,即:
Figure BDA0001842537100000022
式中:m为进口道,n为流向;Qmn为单位时间段内进口道m流向n的交通流量;Qm为单位时间段内进口道m总交通流量;同时若某一流向比例大于设定的流向阈值,则选定该流向为关键流向。
进一步地,步骤S3具体为,
S31、基于确定的路口方向识别上下游关联路口,判别交通需求平衡度,配置出单位时间段内的协调干线;
S32、整合各单位时间段内路口进口道关键流向和配置的协调干线,识别协调干线的合理性,确定协调干线的控制时间段;具体为,根据协调干线开始路口进口道的关键流向进行时间段划分,若连续多个单位时间段内的存在一个路口的进口道关键流向不一,即配置的干线均为不同,则默认为该协调干线不适合配置,否则默认协调干线合理,且基于整合的时间段确定其协调控制时间段。
进一步地,步骤S31具体为,
S311、求解出交通需求平衡度γ,具体为,基于筛选的单位时间段,通过路口进口道的关键流向确定其在此流向的下游路口进口道,根据关键流向时间表确定该路口进口道的关键流向;进一步依托上游路口进口道关键流向的交通流量数值Qmn上和下游关联进口道的关键流向交通流量数值Qmn下,求解出交通需求平衡度γ:
Figure BDA0001842537100000031
S312、若交通需求平衡度γ大于设定的平衡阈值,则判定路口不可关联,否则判别路口可关联,将下游路口默认为上游路口,重复步骤S311直至单位时间段内协调干线配置完成。
一种采用上述任一项所述基于交通流数据的协调干线线路规划方法的基于交通流数据的协调干线线路规划配置系统,包括路口交通流识别模块和协调干线配置模块,
路口交通流识别模块:接入互联网数据和视频号牌识别采集的过车数据,确定各路口各信控时间段内的关键流向;
协调干线配置模块:基于路口交通流识别模块识别的关键流向,配置出协调干线及其协调控制时间段。
进一步地,路口交通流识别模块包括非拥堵时间识别单元和路口关键流向识别单元,
非拥堵时间识别单元:接入互联网的交通状态数据,采用上述任一项所述基于交通流数据的协调干线线路规划方法中步骤S1确定路网内各路段的非拥堵时间段,并将非拥堵时间段传输至路口关键流向识别单元;
路口关键流向识别单元:与路网内视频号牌识别设备对接,采用上述任一项所述基于交通流数据的协调干线线路规划方法中步骤S2确定各路口的关键流向,同时根据筛选的时间段展现出路口各进口道的关键流向,并在GIS电子地图中标注。
进一步地,协调干线配置模块包括干线绘制单元和控制时间段划分单元,
干线绘制单元:基于GIS电子地图确定协调干线的某一路口,根据筛选的时间段展示出该信号各进口道的关键流向及其相邻信控路口的关键流向,确定路口的协调方向,并依次配置出下游路口完成干线绘制,并将绘制的干线信息发送至控制时间段划分单元;根据上述任一项所述基于交通流数据的协调干线线路规划方法中步骤S3针对无法关联的路口进行预警;
控制时间段划分单元:将干线绘制单元绘制的协调干线存在的时间段进行整合,采用上述任一项所述基于交通流数据的协调干线线路规划方法中步骤S3确定协调干线协调可控的时间段,并进行列表展示。
本发明的有益效果是:该种基于交通流数据的协调干线线路规划方法及配置系统,基于互联网的交通状态数据识别出非拥堵时间段,即非饱和时间段,针对该时间段进行干线配置分析,避免了传统干线配置根据路网交通规划以及针对饱和时间段和非饱和时间段综合考虑各路口的协调方向,导致的协调干线效率低下的问题,从而提高了协调干线不同时间段的准确性,达到协调最优。本发明对不同时间段的干线进行配置识别分析,提高了协调干线实施效率,为区域信号协调优化提供了辅助支撑。
附图说明
图1是本发明实施例基于交通流数据的协调干线线路规划方法的流程示意图。
图2是实施例中基于交通流数据的协调干线线路规划配置系统的说明框图。
具体实施方式
下面结合附图详细说明本发明的优选实施例。
实施例
一种基于交通流数据的协调干线线路规划方法,将互联网数据和视频号牌识别设备的过车数据进行整合,依托非拥堵时间段内交通流数据确定关键流向,从而识别配置出各控制时间段的协调方向,进而规划配置出协调干线;如图1,具体步骤如下所示:
S1.基于互联网数据对路段上行与下行的拥堵指数进行求解,识别出路段的非拥堵时间段。
S11.基于路网内的信控路口划分路段,即相邻信控路口之间为一路段。
S12.对各路段(每条路段均包括上行和下行)统计时间段内单位时间的拥堵指数进行计算。具体来说,与互联网数据对接,提取出统计时间段内全天各单位时间的交通状态(包括畅通、缓行、拥堵和严重拥堵四种),进而确定统计时间段内出现此种交通状态的总次数Ni,其中i表示交通状态,具体包括四种,即1(畅通)、2(缓行)、3(拥堵)、4(严重拥堵);进而根据畅通、缓行、拥堵和严重拥堵的权重数值αi进行计算,即拥堵指数为:
Figure BDA0001842537100000051
同时若路段有多种交通状态,如路段显示“拥堵-畅通-拥堵”则根据交通状态将路段划分为若干个小路段,分别对各小路段的拥堵指数进行求解,进而得到路段的拥堵指数,即k=∑kj,其中j为若干小路段的数目。
一般情况下,统计时间段为周/月/季度,全天单位时间段为15min/30min/1hour,畅通、缓行、拥堵和严重拥堵的权重比值按固定比值确定。如选取周为统计单位,单位时间段内为15min,则基于物联网数据对每周内各15min的交通状态进行读取,畅通、缓行、拥堵和严重拥堵的权重αi分别取0、0.5、1和2,以8:00-8:15为例,一周内,畅通的次数为1次、缓行次数为3次、拥堵为3次,严重拥堵为0次,则拥堵指数k=10.5。
S13.绘制时间-拥堵指数折线图,确定路段非拥堵时间段(非饱和时间段)。
具体来说,整合路段单位时间内的拥堵指数,绘制出全日路段上行与下行时间-拥堵指数折线图,基于折线图趋势找出其拐点,并将其默认为拥堵时间段的开始时刻和结束时刻,从而确定出全日内的拥堵时间段,进一步剔除找到路段全天非拥堵时间段,即除了拥堵时间段以外的时间段。
一般情况下,可通过斜率或者标准差找寻拐点,同时全天的拥堵时间段总数一般以两段为主,即为早高峰时间段和晚高峰时间段,该时间段内无法配置干线协调方案。
S2.提取出非拥堵时间段内的过车数据,对路口进口各单位时间段内的关键流向进行识别,建立关键流向时间表。
S21.基于路口号牌识别设备提取出路口各进口道非拥堵时间段内的过车数据。具体来说,对接路网内号牌识别视频设备,提取出路口绑定号牌视频设备采集的过车数据,提取出路口各进口道非拥堵时间段的过车数据。
一般情况下,路口欠饱和状态(非拥堵)下,过车流量基本为实际交通需求,针对非拥堵欠饱和的交通流量识别出路口进口道各流向的交通需求。
S22.识别出进口道各单位时间段内的关键流向。具体来说,基于过车数据统计出进口道各流向的单位时间段内的过车流量,进一步计算出各进口道内流向的交通需求比值qmn,即:
Figure BDA0001842537100000061
式中:m为进口道,n为流向;Qmn为单位时间段内,进口道m流向n的交通流量;Qm为单位时间段内,进口道m总交通流量。同时若某一流向比例大于设定的流向阈值,则选定该流向为关键流向。
一般情况下,流向阈值根据路口渠化特征由用户自行配置,如路口进口道存在左转、直行、右转三个流向,则流向阈值可取45%-55%,路口进口道只有左转、直行、右转中两个流向,即流向阈值可取55%-65%。
S23.整合建立关键流向时间表。具体来说,整合路口各进口道单位时间段内的关键流向,建立关键流向时间表,表中包含时间段、路口编号、进口道、关键流向方向,其中对于拥堵时间段,则关键流向方向为空。
如单位时间为15min时,其表格式样如下所示:
Figure BDA0001842537100000062
S3.基于关键流向配置出协调干线,确定干线的协调控制时间段。
S31.基于确定的路口方向识别上下游关联路口,判别交通需求平衡度,配置出单位时间段内的协调干线。
S311.求解出交通需求平衡度γ。具体来说,基于筛选的单位时间段,通过路口进口道的关键流向确定其在此流向的下游路口进口道,根据关键流向时间表确定该路口进口道的关键流向;进一步依托上游路口进口道关键流向的交通流量数值Qmn上和下游关联进口道的关键流向交通流量数值Qmn下,求解出交通需求平衡度γ,即:
Figure BDA0001842537100000071
S312.若交通需求平衡度γ大于设定的平衡阈值,则判定路口不可关联,否则判别路口可关联,将下游路口默认为上游路口,重复S311步骤直至单位时间段内协调干线配置完成。
一般情况下,平衡阈值由用户配置,数值可为120%-180%之间,若大于该平衡阈值,说明下游路口的关键流向不仅来自上游路口进口道的流量,还包括上游路口其他进口道的车流,则不可配置协调干线。
S32.整合各单位时间段内路口进口道关键流向和配置的协调干线,识别协调干线的合理性,确定协调干线的控制时间段。具体来说,根据协调干线开始路口进口道的关键流向进行时间段划分,若连续多个单位时间段内的存在一个路口的进口道关键流向不一,即配置的干线均为不同,则默认为该协调干线不适合配置,否则默认协调干线合理,且基于整合的时间段确定其协调控制时间段。
如A路口南进口道自9:00-16:00的关键流向均为直行,且基于S31步骤配置的协调干线一致,则该条协调干线合理,且协调控制时间段为9:00-16:00;如A路口南进口道9:00-10:00与10:00-11:00的关键流向不一,则协调干线不合理。
实施例还提供一种基于交通流数据的协调干线线路规划配置系统,如图2,包括路口交通流识别模块和协调干线配置模块,实现协调干线及其控制时间段的配置。
路口交通流识别模块:该模块接入互联网数据和视频号牌识别采集的过车数据,确定各路口各信控时间段内的关键流向,具体包括非拥堵时间识别单元和路口关键流向识别单元。
非拥堵时间识别单元:接入互联网的交通状态数据,基于实施例上述基于交通流数据的协调干线线路规划方法的步骤S1确定路网内各路段的非拥堵时间段,并将非拥堵时间段传输至路口关键流向识别单元。
路口关键流向识别单元:与路网内视频号牌识别设备对接,依托实施例上述基于交通流数据的协调干线线路规划方法的步骤S2确定各路口的关键流向,同时根据筛选的时间段展现出路口各进口道的关键流向,并在GIS电子地图中标注。
协调干线配置模块:该模块基于路口交通流识别模块识别的关键流向,配置出协调干线及其协调控制时间段,具体包括干线绘制单元和控制时间段划分单元。
干线绘制单元:基于GIS电子地图确定协调干线的某一路口,根据筛选的时间段展示出该信号各进口道的关键流向及其相邻信控路口的关键流向,确定路口的协调方向,并依次配置出下游路口完成干线绘制,并将绘制的干线信息发送至控制时间段划分单元;同时系统可根据实施例上述基于交通流数据的协调干线线路规划方法的步骤S3针对无法关联的路口进行预警。
控制时间段划分单元:将干线绘制单元绘制的协调干线存在的时间段进行整合,基于实施例上述基于交通流数据的协调干线线路规划方法的步骤S3确定协调干线协调可控的时间段,并进行列表展示。
实施例的基于交通流数据的协调干线线路规划方法及配置系统,基于互联网数据的交通状态数据识别出非拥堵时间段,进而提取出路口各进口道非拥堵时间段的过车数据,从而有效识别出准确的关键流向,进一步对相邻路口进行关联分析,确定协调干线。
该种基于交通流数据的协调干线线路规划方法及配置系统,可根据时间段内路口各进口的关键流向自由配置协调干线,创新的评判了配置的协调干线是否合理,从而提出不同时间段的干线协调。
实施例的基于交通流数据的协调干线线路规划方法及配置系统,针对城市道路交通信号控制协调干线的干线规划配置问题现状,基于互联网数据识别出非拥堵时间段,从而提取出非拥堵时间段的过车数据,判别出路口进口道关键流向,分析出各路口之间关联关系,从而配置出协调干线及其控制时间段,提高了协调干线的配置效率,避免了传统主干道规划配置方法协调效率低下的问题,为区域信号协调提供了有效支撑。

Claims (9)

1.一种基于交通流数据的协调干线线路规划方法,其特征在于:将互联网数据和视频号牌识别设备的过车数据进行整合,依托非拥堵时间段内交通流数据确定关键流向,从而识别配置出各控制时间段的协调方向,进而规划配置出协调干线;包括以下步骤,
S1、基于互联网数据对路段上行与下行的拥堵指数进行求解,识别出路段的非拥堵时间段;步骤S1具体为,
S11、基于路网内的信控路口划分路段,即相邻信控路口之间为一路段;
S12、对步骤S11中划分的各路段统计时间段内单位时间的拥堵指数进行计算;其中,每条路段均包括上行和下行;
S13、由步骤S12所得拥堵指数来绘制时间-拥堵指数折线图,确定路段非拥堵时间段;
S2、提取出非拥堵时间段内的过车数据,对路口进口各单位时间段内的关键流向进行识别,建立关键流向时间表;
S3、基于关键流向配置出协调干线,确定干线的协调控制时间段。
2.如权利要求1所述的基于交通流数据的协调干线线路规划方法,其特征在于:步骤S12中,对步骤S11中划分的各路段统计时间段内单位时间的拥堵指数进行计算,具体为,与互联网数据对接,提取出统计时间段内全天各单位时间的交通状态,包括畅通、缓行、拥堵和严重拥堵四种,进而确定统计时间段内出现此种交通状态的总次数Ni,其中i表示交通状态,具体包括四种,即i为1代表畅通,i为2代表缓行,i为3代表拥堵,i为4代表严重拥堵;进而根据畅通、缓行、拥堵和严重拥堵的权重数值αi进行计算,即拥堵指数为:
Figure FDA0003015825890000011
3.如权利要求1所述的基于交通流数据的协调干线线路规划方法,其特征在于:步骤S2具体为,
S21、基于路口号牌识别设备提取出路口各进口道非拥堵时间段内的过车数据;
S22、识别出进口道各单位时间段内的关键流向;
S23、整合路口各进口道单位时间段内的关键流向,建立关键流向时间表。
4.如权利要求3所述的基于交通流数据的协调干线线路规划方法,其特征在于:步骤S22具体为,基于过车数据统计出进口道各流向的单位时间段内的过车流量,进一步计算出各进口道内流向的交通需求比值qmn,即:
Figure FDA0003015825890000021
式中:m为进口道,n为流向;Qmn为单位时间段内进口道m流向n的交通流量;Qm为单位时间段内进口道m总交通流量;同时若某一流向比例大于设定的流向阈值,则选定该流向为关键流向。
5.如权利要求1所述的基于交通流数据的协调干线线路规划方法,其特征在于:步骤S3具体为,
S31、基于确定的路口方向识别上下游关联路口,判别交通需求平衡度,配置出单位时间段内的协调干线;
S32、整合各单位时间段内路口进口道关键流向和配置的协调干线,识别协调干线的合理性,确定协调干线的控制时间段;具体为,根据协调干线开始路口进口道的关键流向进行时间段划分,若连续多个单位时间段内的存在一个路口的进口道关键流向不一,即配置的干线均为不同,则默认为该协调干线不适合配置,否则默认协调干线合理,且基于整合的时间段确定其协调控制时间段。
6.如权利要求5所述的基于交通流数据的协调干线线路规划方法,其特征在于:步骤S31具体为,
S311、求解出交通需求平衡度γ,具体为,基于筛选的单位时间段,通过路口进口道的关键流向确定其在此流向的下游路口进口道,根据关键流向时间表确定该路口进口道的关键流向;进一步依托上游路口进口道关键流向的交通流量数值Qmn上和下游关联进口道的关键流向交通流量数值Qmn下,求解出交通需求平衡度γ:
Figure FDA0003015825890000022
S312、若交通需求平衡度γ大于设定的平衡阈值,则判定路口不可关联,否则判别路口可关联,将下游路口默认为上游路口,重复步骤S311直至单位时间段内协调干线配置完成。
7.一种采用权利要求1-6任一项所述基于交通流数据的协调干线线路规划方法的基于交通流数据的协调干线线路规划配置系统,其特征在于:包括路口交通流识别模块和协调干线配置模块,
路口交通流识别模块:接入互联网数据和视频号牌识别采集的过车数据,确定各路口各信控时间段内的关键流向;
协调干线配置模块:基于路口交通流识别模块识别的关键流向,配置出协调干线及其协调控制时间段。
8.如权利要求7所述的基于交通流数据的协调干线线路规划配置系统,其特征在于:路口交通流识别模块包括非拥堵时间识别单元和路口关键流向识别单元,
非拥堵时间识别单元:接入互联网的交通状态数据,采用权利要求1-6任一项所述基于交通流数据的协调干线线路规划方法中步骤S1确定路网内各路段的非拥堵时间段,并将非拥堵时间段传输至路口关键流向识别单元;
路口关键流向识别单元:与路网内视频号牌识别设备对接,采用权利要求1-6任一项所述基于交通流数据的协调干线线路规划方法中步骤S2确定各路口的关键流向,同时根据筛选的时间段展现出路口各进口道的关键流向,并在GIS电子地图中标注。
9.如权利要求7所述的基于交通流数据的协调干线线路规划配置系统,其特征在于:协调干线配置模块包括干线绘制单元和控制时间段划分单元,
干线绘制单元:基于GIS电子地图确定协调干线的某一路口,根据筛选的时间段展示出该路口各进口道的关键流向及其相邻信控路口的关键流向,确定路口的协调方向,并依次配置出下游路口完成干线绘制,并将绘制的干线信息发送至控制时间段划分单元;根据权利要求1-6任一项所述基于交通流数据的协调干线线路规划方法中步骤S3针对无法关联的路口进行预警;
控制时间段划分单元:将干线绘制单元绘制的协调干线存在的时间段进行整合,采用权利要求1-6任一项所述基于交通流数据的协调干线线路规划方法中步骤S3确定协调干线协调可控的时间段,并进行列表展示。
CN201811264323.6A 2018-10-26 2018-10-26 基于交通流数据的协调干线线路规划方法及配置系统 Active CN109345031B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811264323.6A CN109345031B (zh) 2018-10-26 2018-10-26 基于交通流数据的协调干线线路规划方法及配置系统
PCT/CN2019/113476 WO2020083399A1 (zh) 2018-10-26 2019-10-26 基于交通流数据的协调干线线路规划方法及配置系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811264323.6A CN109345031B (zh) 2018-10-26 2018-10-26 基于交通流数据的协调干线线路规划方法及配置系统

Publications (2)

Publication Number Publication Date
CN109345031A CN109345031A (zh) 2019-02-15
CN109345031B true CN109345031B (zh) 2021-07-20

Family

ID=65310824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811264323.6A Active CN109345031B (zh) 2018-10-26 2018-10-26 基于交通流数据的协调干线线路规划方法及配置系统

Country Status (2)

Country Link
CN (1) CN109345031B (zh)
WO (1) WO2020083399A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109345031B (zh) * 2018-10-26 2021-07-20 江苏智通交通科技有限公司 基于交通流数据的协调干线线路规划方法及配置系统
CN109544925B (zh) * 2018-11-30 2021-07-20 江苏智通交通科技有限公司 协调干线合理性分析及协调方式配置方法
CN109859503B (zh) * 2019-03-15 2021-07-13 公安部交通管理科学研究所 一种全网绿波协调线路自动识别方法、装置及系统
CN110634293B (zh) * 2019-09-26 2021-06-04 同济大学 一种基于模糊控制的干线交叉口控制方法
CN111986483A (zh) * 2020-08-28 2020-11-24 上海宝康电子控制工程有限公司 基于电警数据碰撞实现道路拥堵状态研判处理的方法、装置及存储介质
CN113345230B (zh) * 2021-06-02 2023-01-03 江苏智通交通科技有限公司 一种协调干线管控问题研判的优化方法与优化系统
CN114120647B (zh) * 2021-11-26 2023-01-24 阿波罗智联(北京)科技有限公司 交通数据处理方法、装置、电子设备和介质
CN115063988B (zh) * 2022-05-05 2023-06-02 北京联合大学 一种应急车辆优先的跨交通子区信号协同控制方法
CN116229742B (zh) * 2022-12-14 2024-08-20 上海电科智能系统股份有限公司 城市道路紧急车辆优先通行方法
CN116013083B (zh) * 2023-01-10 2024-03-12 合肥工业大学 一种基于电子地图数据的路网常发性交通状态识别方法
CN117593891B (zh) * 2024-01-19 2024-05-07 长安大学 一种基于高速公路交通大数据的车流量分析系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110162A (zh) * 2007-07-12 2008-01-23 公安部交通管理科学研究所 交通信号控制系统多关键路口优化技术
CN103559795A (zh) * 2013-11-07 2014-02-05 青岛海信网络科技股份有限公司 一种多策略多目标的自适应交通控制方法
CN104835335A (zh) * 2015-06-03 2015-08-12 常州市蓝涛物联网科技有限公司 路网交通优化控制系统和方法
WO2015159251A1 (en) * 2014-04-16 2015-10-22 Syntell Proprietary Limited Method and system for adaptive traffic control
CN106856049A (zh) * 2017-01-20 2017-06-16 东南大学 基于卡口号牌识别数据的关键交叉口需求集聚分析方法
CN107316472A (zh) * 2017-07-28 2017-11-03 广州市交通规划研究院 一种面向干道双向不同需求的动态协调控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102346964A (zh) * 2010-08-05 2012-02-08 王学鹰 道路交通网络区域拥堵实时预测与智能管理系统
CN107730882B (zh) * 2017-09-08 2021-07-27 上海电科市政工程有限公司 基于人工智能的道路拥堵预测系统及方法
CN109345031B (zh) * 2018-10-26 2021-07-20 江苏智通交通科技有限公司 基于交通流数据的协调干线线路规划方法及配置系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110162A (zh) * 2007-07-12 2008-01-23 公安部交通管理科学研究所 交通信号控制系统多关键路口优化技术
CN103559795A (zh) * 2013-11-07 2014-02-05 青岛海信网络科技股份有限公司 一种多策略多目标的自适应交通控制方法
WO2015159251A1 (en) * 2014-04-16 2015-10-22 Syntell Proprietary Limited Method and system for adaptive traffic control
CN104835335A (zh) * 2015-06-03 2015-08-12 常州市蓝涛物联网科技有限公司 路网交通优化控制系统和方法
CN106856049A (zh) * 2017-01-20 2017-06-16 东南大学 基于卡口号牌识别数据的关键交叉口需求集聚分析方法
CN107316472A (zh) * 2017-07-28 2017-11-03 广州市交通规划研究院 一种面向干道双向不同需求的动态协调控制方法

Also Published As

Publication number Publication date
CN109345031A (zh) 2019-02-15
WO2020083399A1 (zh) 2020-04-30

Similar Documents

Publication Publication Date Title
CN109345031B (zh) 基于交通流数据的协调干线线路规划方法及配置系统
US11380195B2 (en) Road traffic analysis methods and apparatuses
US10354523B2 (en) Road traffic control system, method, and electronic device
CN106781499B (zh) 一种交通网络效率评价系统
CN108133613B (zh) 一种实时发布路内停车服务指数方法及系统
CN102708688B (zh) 一种基于二级模糊综合判别的城市道路状态辨识方法
CN109872544A (zh) 一种交通信号的控制方法及装置
CN109754598B (zh) 一种拥堵组团识别方法及系统
CN104778834A (zh) 一种基于车辆gps数据的城市道路交通拥堵判别方法
CN112767694B (zh) 用于缓解道路拥堵的交通优化方法和装置
CN107016872A (zh) 快速生成交通广播路况信息发布稿的方法、介质和系统
CN110021161B (zh) 一种交通流向的预测方法及系统
CN109785627A (zh) 一种十字路口交通流量监控系统
CN105139670A (zh) 一种基于视频的区域自优化信号控制方法及装置
CN110827537B (zh) 一种潮汐车道的设置方法、装置及设备
CN104966403A (zh) 一种基于地磁的干线自优化信号控制方法及装置
CN109544925B (zh) 协调干线合理性分析及协调方式配置方法
CN113593222B (zh) 一种多源数据支撑的交通管控诊断方法
Clara Fang et al. Computer simulation modeling of driver behavior at roundabouts
CN110837904A (zh) 一种交通规划控制系统和方法
CN114038211A (zh) 一种基于车辆平均延误的大型停车场出入口拥堵研判方法
Soltész et al. Information system for road infrastructure booking
Hellinga et al. An overview of a simulation study of the Highway 401 freeway traffic management system
CN106530725A (zh) 一种应用于城市交通的云端大数据分析系统
Jenjiwattanakul et al. Capacity of U-turn junction at midblock median opening on urban arterial based on balancing volume-to-capacity ratio

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 211106 19 Su Yuan Avenue, Jiangning economic and Technological Development Zone, Nanjing, Jiangsu

Applicant after: JIANGSU ZHITONG TRAFFIC TECHNOLOGY Co.,Ltd.

Address before: 210006, Qinhuai District, Jiangsu, Nanjing should be 388 days street, Chenguang 1865 Technology Creative Industry Park E10 building on the third floor

Applicant before: JIANGSU ZHITONG TRAFFIC TECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant