CN109344903B - 基于车载感知数据的城市道路路面故障实时检测方法 - Google Patents
基于车载感知数据的城市道路路面故障实时检测方法 Download PDFInfo
- Publication number
- CN109344903B CN109344903B CN201811189560.0A CN201811189560A CN109344903B CN 109344903 B CN109344903 B CN 109344903B CN 201811189560 A CN201811189560 A CN 201811189560A CN 109344903 B CN109344903 B CN 109344903B
- Authority
- CN
- China
- Prior art keywords
- vehicle
- data
- day
- fault
- road
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000011897 real-time detection Methods 0.000 title claims abstract description 8
- 238000012549 training Methods 0.000 claims abstract description 22
- 238000012545 processing Methods 0.000 claims abstract description 20
- 238000001514 detection method Methods 0.000 claims description 73
- 238000005070 sampling Methods 0.000 claims description 36
- 239000013598 vector Substances 0.000 claims description 36
- 230000008447 perception Effects 0.000 claims description 35
- 239000011159 matrix material Substances 0.000 claims description 30
- 230000002159 abnormal effect Effects 0.000 claims description 21
- 230000001133 acceleration Effects 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 238000007781 pre-processing Methods 0.000 claims description 7
- 238000006467 substitution reaction Methods 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 6
- 238000009499 grossing Methods 0.000 claims description 5
- 230000001502 supplementing effect Effects 0.000 claims description 5
- 206010039203 Road traffic accident Diseases 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 3
- 238000012217 deletion Methods 0.000 claims description 3
- 230000037430 deletion Effects 0.000 claims description 3
- 230000003203 everyday effect Effects 0.000 claims description 3
- 238000002715 modification method Methods 0.000 claims description 3
- 230000001953 sensory effect Effects 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002547 anomalous effect Effects 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
- G06F18/24155—Bayesian classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/588—Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Probability & Statistics with Applications (AREA)
- Multimedia (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明提供了一种基于车载感知数据的城市道路路面故障实时检测方法,该方法的基本思想是以正态贝叶斯分类算法为基础,用车载感知数据构造一系列路面状况的状态分类特征,形成特征向量,利用历史数据和实时数据对道路路面状况进行检测。为实现上述目的,本发明提出的道路路面状况进行检测方法大致包括历史车载感知数据获取和处理步骤,贝叶斯分类器训练步骤和城市道路路面故障检测步骤。其有益效果是,本发明根据现有的车载感知数据,综合考虑多种车辆运行参数,利用正态贝叶斯分类器,自动检测道路路面故障,同时该方法采用尽量少的判别阈值并充分利用现有资源,易于工程实现。
Description
技术领域
本发明涉及道路路面故障检测领域,尤其涉及一种基于车载感知数据的城市道路路面故障实时检测方法。
背景技术
目前城市道路路面故障检测方法主要以路面不平整度或反应类平整度为检测指标,该类方法虽然能够精确地反映路面状况,但是基本测量数据需要安装有平整度仪的测量车辆在检测道路上运行获取。因此,以路面不平整度为评价指标的路面状况检测方法更加适用于对道路进行精确评价或对道路使用状况进行长期监测。
然而,实际路网中,极端天气、超载、交通事件等各种随机因素,都会对道路路面造成长时或短时损坏。若不及时对故障道路进行处理或维护,不仅会加剧路面损坏程度,并严重影响交通安全和交通运行效率。此时,道路路面故障实时检测显得尤为重要。
发明内容
本发明对道路路面状态或故障进行科学合理的实时检测,可以为道路维护部门、交通管理者和交通参与者提供动态决策依据,诱导城市交通良性发展。
随着车辆监测技术和交通检测技术的发展,车载感知系统能够提供丰富、实时的车辆监测数据。而车辆监测数据能够一定程度上反映路面状况,但是由于车辆性能不同、驾驶员行为习惯不同,难以直接根据不同车辆的监测数据对路面故障进行检测识别。因此建立起一个基于车载感知数据的城市道路路面故障实时检测方法是十分迫切的且有工程意义的。
所以为了至少解决现有的技术问题,本发明提供了一种基于车载感知数据的城市道路路面故障实时检测方法,该方法的基本思想是以正态贝叶斯分类算法为基础,用车载感知数据构造一系列路面状况的状态分类特征,形成特征向量,利用历史数据和实时数据对道路路面状况进行检测。为实现上述目的,本发明提出的道路路面状况进行检测方法大致包括历史车载感知数据获取和处理步骤,贝叶斯分类器训练步骤和城市道路路面故障检测步骤。
其中,所述方法具体包括如下步骤:
根据采样间隔,获取观测时段内检测道路上车辆的车载感知数据;
对车载感知数据进行预处理,包括缺失数据和异常数据的处理;
计算检测间隔内路面故障的一系列状态分类特征,构造特征向量;
根据不同时间内的特征向量构建特征矩阵,计算每个故障类型在训练样本中出现的频率以及其协方差矩阵和均值向量,完成贝叶斯分类器的训练;
对检测时段内车载感知数据进行处理,利用贝叶斯分类器对待检测道路的路面故障特征向量进行分类,分析结果,判断道路路面是否存在故障。
其有益效果是,本发明根据现有的车载感知数据,综合考虑多种车辆运行参数,利用正态贝叶斯分类器,自动检测道路路面故障,同时该方法采用尽量少的判别阈值并充分利用现有资源,易于工程实现。
在一些实施方式中,获取观测时段内检测道路上车辆的车载感知数据的具体过程包括:
对所需检测的道路进行区域划分,并确定观测时段及采样间隔,通过地图匹配,采集观测时段内通过车辆在各个采样间隔的车载感知数据,包括观测时段天数D、采样间隔ts、经度l、纬度d、速度v、加速度a、瞬时加速度ia、转向角度φ、瞬时角速度w、雨刷频率
对采样间隔内的车载感知数据进行预处理;
确定检测间隔,定义路面故障的一系列状态分类特征,构造特征向量,并利用车载感知数据进行计算。
在一些实施方式中,对车载感知数据进行预处理,包括缺失数据和异常数据的处理的具体过程:根据缺失比例确定处理方式,具体方式包括:删除车载感知数据、数据补齐以及不处理三种方式,并根据阈值范围判别异常数据并进行修正,其中数据补齐或修正采用均值插补方法实现。
在一些实施方式中,计算车载感知数据的缺失比例的方法为:
统计每日每辆车每项数据的个数和非随机缺失数据的个数,继而计算缺失数据个数,具体公式如下:
式中参数含义:——在第k日内车辆i的第m和m+1个采集数据之间的非随机缺失数据个数:第m和m+1个采集数据的采样间隔不连续时,两个采样数据之间必定存在缺失数据,但是当二者对应的距离差却很小时,认为缺失数据为非随机缺失数据,缺失原因有路边停车、车辆损坏等;
继而利用如下公式计算随机缺失数据比例:
pk,j——在第k日内车载感知数据j的平均随机缺失比例;
Qk——在第k日内检测道路的通过车辆数。
在一些实施方式中,检测异常数据的检测方法为:
在一些实施方式中,车载感知缺失数据和异常数据的具体处理方式:
对于非随机缺失数据采取不处理的方式;
对于随机缺失数据:
当pk,j>20%时,认为车载感知数据类型j不可靠,直接删除该项车辆运行参数;
对异常数据进行修改:
当j≠6且j≠8时,异常数据修改方法与随机缺失数据补齐方法相同。
在一些实施方式中,对车载感知数据进行补齐或修正的方法:
由于天数、采样间隔和雨刷频率数据的特殊性,其补齐和修正方式如下:
其他车载感知数据的补齐或修正公式如下:
β1,β2,β3,β4——第m-1、m、m+1和m+2个采集数据的权重,一般取值分别为0.15,0.35,0.35,0.15。。
在一些实施方式中,在确定检测间隔,定义路面故障的一系列状态分类特征,构造特征向量,并利用车载感知数据进行计算的步骤中需要对检测间隔内路面故障的特征向量进行定义和计算,详细步骤如下:
将检测间隔内,相邻采样数据采样间隔之差过大的车辆数占总车辆数的比例作为一个状态分类特征;将检测间隔内,速度、加速度、转向角度前后两个采样间隔变化过大的车辆数占总车辆数的比例作为三个状态分类特征;将检测间隔内,瞬时加速度和瞬时角速度过大的车辆数占总车辆数的比例作为三个状态分类特征,计算方法如下:
将采样间隔内雨刷频率的众数作为一个状态分类特征,计算方法如下:
在一些实施方式中,贝叶斯分类器的训练过程具体包括如下步骤;
获取特征矩阵,具体计算方法如下:
对路面故障情况进行分类,分为路面严重损坏C1、路面轻度损坏C2、道路临时障碍物C3、交通事件C4(交通事故、违章停车、违规行驶等)和正常C5。根据故障类型对历史数据中的路面故障情况进行归类,得到故障类型集合Ch,以及各个故障类型Cg下所有训练样本组成的特征矩阵Yg;
Yh=(Y1,...,Yg,...,Y5)T
完成贝叶斯分类器的训练:
依据故障类型集合Ch,利用拉普拉斯平滑方法计算每个故障类型Cg的先验概率,即对故障类型Cg在训练样本中出现的频率进行平滑处理。
式中:P(Cg)——每一个故障类型Cg的先验概率;
N——所有训练样本的频数和;
得到所有故障类型的频率,构造故障类型频率集合:
PC=(P(C1),...P(Cg),...,P(C5))
由于状态分类特征值为[0,1]之间的连续变量,故依据特征矩阵Yg,估计每个故障类型Cg的协方差矩阵和均值向量:
μg=(μg1,...,μgj,...,μg9)T
式中:μg——每个故障类型Cg的均值向量;
μgj,μgq——每个故障类型Cg下第j,q个状态分类特征的均值;
∑g——每个故障类型Cg的协方差矩阵;
在一些实施方式中,利用贝叶斯分类器对待检测道路的路面故障特征向量进行分类,分析结果,判断道路路面是否存在故障的方法如下:
根据当前检测间隔内的车辆感知数据,得到一个具体的特征向量yr;利用贝叶斯训练器,根据特征向量yr,计算每个故障类型的对数似然函数,选取最大值对应的故障类型作为检测结果:
Cr=Cg,ifln(Lg)=max(ln(L1),...,ln(Lg),...ln(L5))
式中:Cr——当前检测间隔内的路面故障检测结果;
ln(Lg)——每个故障类型Cg的对数似然函数
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的一种快速识别汽车信号和参数的方法的流程图;
图2为本发明的在获取观测时段内检测道路上车辆的车载感知数据的具体过程中的方法示意图;
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,基于车载感知数据的城市道路路面故障实时检测方法,其中,所述方法包括如下步骤:
步骤S1:根据采样间隔,获取观测时段内检测道路上车辆的车载感知数据;
步骤S2:对车载感知数据进行预处理,包括缺失数据和异常数据的处理;
步骤S3:计算检测间隔内路面故障的一系列状态分类特征,构造特征向量;
步骤S4:根据不同时间内的特征向量构建特征矩阵,计算每个故障类型在训练样本中出现的频率以及其协方差矩阵和均值向量,完成贝叶斯分类器的训练;
步骤S5:对检测时段内车载感知数据进行处理,利用贝叶斯分类器对待检测道路的路面故障特征向量进行分类,分析结果,判断道路路面是否存在故障。
这其中,对于步骤S1而言,获取观测时段内检测道路上车辆的车载感知数据的具体过程包括:
步骤S11:对所需检测的道路进行区域划分,并确定观测时段及采样间隔;通过地图匹配,采集观测时段内通过车辆在各个采样间隔的车载感知数据,包括观测时段天数D、采样间隔ts、经度l、纬度d、速度v、加速度a、瞬时加速度ia、转向角度φ、瞬时角速度w、雨刷频率除去观测时段D,其余共9个车辆运行参数,分别对应于序号1-9。确定观测时段为30D,采样间隔为30s。
步骤S12:对采样间隔内的车载感知数据进行预处理;
步骤S13:确定检测间隔,定义路面故障的一系列状态分类特征,构造特征向量,并利用车载感知数据进行计算。
其中,计算车载感知数据的缺失比例的方法为:
统计每日每辆车每项数据的个数、非随机缺失数据的个数,继而计算缺失数据个数,具体公式如下:
式中:——在第k日内车辆i的第m和m+1个采集数据之间的非随机缺失数据个数:第m和m+1个采集数据的采样间隔不连续时,两个采样数据之间必定存在缺失数据,但是当二者对应的距离却很小时,认为缺失数据为非随机缺失数据,缺失原因有路边停车、车辆损坏等;
继而利用如下公式计算随机缺失数据比例:
pk,j——在第k日内车载感知数据j的平均随机缺失比例;
Qk——在第k日内检测道路的通过车辆数。
表1某城市某车型车载感知数据阈值范围
对于车载感知缺失数据和异常数据的具体处理方式如下:
1):对于非随机缺失数据采取不处理的方式;
2):对于随机缺失数据:
当pk,d>20%时,认为车载感知数据类型j不可靠,直接删除该项车辆运行参数。
3):对异常数据进行修改:
当j≠6且j≠8时,异常数据修改方法与随机缺失数据补齐方法相同。
对车载感知数据进行补齐或修正的方法如下:
由于天、采样间隔和雨刷频率数据的特殊性,其补齐和修正方式不同于其他数据:
其他车载感知数据的补齐或修正公式如下:
β1,β2,β3,β4——第m-1、m、m+1和m+2个采集数据的权重,一般取值分别为0.15,0.35,0.35,0.15。
对于检测间隔内路面故障特征向量的构造方法;
各个状态分类特征值计算方法如下:
贝叶斯分类器的训练过程具体包括如下步骤;
获取特征矩阵,具体计算方法如下:
故障类型频率集合的获取;
各个故障类型Cg特征矩阵Yg的获取;
对路面故障情况进行分类,分为路面严重损坏C1、路面轻度损坏C2、道路临时障碍物C3、交通事件C4(交通事故、违章停车、违规行驶等)和正常C5。根据故障类型对历史数据中的路面故障情况进行归类,得到故障类型集合Ch,以及各个故障类型Cg下所有训练样本组成的特征矩阵Yg。
Yh=(Y1,...,Yg,...,Y5)T
故障类型频率集合的获取;
依据故障类型集合Ch,利用拉普拉斯平滑方法计算每个故障类型Cg的先验概率,即对故障类型Cg在训练样本中出现的频率进行平滑处理,构造故障类型频率集合PC:
PC=(P(C1),...P(Cg),...,P(C5))
式中:P(Cg)——每一个故障类型Cg的先验概率;
N——所有训练样本的频数和;
故障类型协方差矩阵和均值向量的计算;
μg=(μg1,...,μgj,...,μg9)T
式中:μg——每个故障类型Cg的均值向量;
μgj,μgq——每个故障类型Cg下第j,q个状态分类特征的均值;
∑g——每个故障类型Cg的协方差矩阵;
通过对当前检测间隔内车载感知数据进行处理,最终得到一个具体的特征向量yr。
对当前检测间隔内路面故障的检测;
计算每个故障类型的对数似然函数,选取最大值对应的故障类型作为检测结果:
Cr=Cg,ifln(Lg)=max(ln(L1),...,ln(Lg),...ln(L5))
式中:Cr——当前检测间隔内的路面故障检测结果;
ln(Lg)——每个故障类型Cg的对数似然函数。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (7)
1.基于车载感知数据的城市道路路面故障实时检测方法,其中,所述方法包括如下步骤:
根据采样间隔,获取观测时段内检测道路上车辆的车载感知数据;
对车载感知数据进行预处理,包括缺失数据和异常数据的处理;
计算检测间隔内路面故障的一系列状态分类特征,构造特征向量;
根据不同时间内的特征向量构建特征矩阵,计算每个故障类型在训练样本中出现的频率以及其协方差矩阵和均值向量,完成贝叶斯分类器的训练;
对检测时段内车载感知数据进行处理,利用贝叶斯分类器对待检测道路的路面故障特征向量进行分类,分析结果,判断道路路面是否存在故障;
在获取观测时段内检测道路上车辆的车载感知数据时的具体过程包括:
对所需检测的道路进行区域划分,并确定观测时段及采样间隔,通过地图匹配,采集观测时段内通过车辆在各个采样间隔的车载感知数据,包括观测时段天数D、采样间隔ts、经度l、纬度d、速度v、加速度a、瞬时加速度ia、转向角度φ、瞬时角速度w、雨刷频率
对采样间隔内的车载感知数据进行预处理;
确定检测间隔,定义路面故障的一系列状态分类特征,构造特征向量,并利用车载感知数据进行计算;
在对车载感知数据进行预处理,包括缺失数据和异常数据的处理时的具体过程:根据缺失比例确定处理方式,具体方式包括:删除该车载感知数据、数据补齐以及不处理三种方式,并根据阈值范围判别异常数据并进行修正,其中数据补齐或修正采用均值插补方法实现;
在计算车载感知数据的缺失比例时的方法为:
统计每日每辆车每项数据的个数和非随机缺失数据的个数,继而计算缺失数据个数,具体公式如下:
式中参数含义:——在第k日内车辆i的第m和m+1个采集数据之间的非随机缺失数据个数:第m和m+1个采集数据的采样间隔不连续时,两个采样数据之间必定存在缺失数据,但是当二者对应的距离差却很小时,认为缺失数据为非随机缺失数据,缺失原因有路边停车、车辆损坏等;
继而利用如下公式计算随机缺失数据比例:
pk,j——在第k日内车载感知数据j的平均随机缺失比例;
Qk——在第k日内检测道路的通过车辆数。
4.根据权利要求3所述的方法,其中,对车载感知数据进行补齐或修正的方法:
由于天数、采样间隔和雨刷频率数据的特殊性,其补齐和修正方式如下:
其他车载感知数据的补齐或修正公式如下:
β1,β2,β3,β4——第m-1、m、m+1和m+2个采集数据的权重,一般取值分别为0.15,0.35,0.35,0.15。
5.根据权利要求4所述的方法,其中,在确定检测间隔,定义路面故障的一系列状态分类特征,构造特征向量,并利用车载感知数据进行计算的步骤中需要对检测间隔内路面故障的特征向量进行定义和计算,详细步骤如下:
将检测间隔内,相邻采样数据采样间隔之差过大的车辆数占总车辆数的比例作为一个状态分类特征;将检测间隔内,速度、加速度、转向角度前后两个采样间隔变化过大的车辆数占总车辆数的比例作为三个状态分类特征;将检测间隔内,瞬时加速度和瞬时角速度过大的车辆数占总车辆数的比例作为三个状态分类特征,计算方法如下:
将采样间隔内雨刷频率的众数作为一个状态分类特征,计算方法如下:
6.根据权利要求5所述的方法,其中,贝叶斯分类器的训练过程具体包括如下步骤;
获取特征矩阵,具体计算方法如下:
对路面故障情况进行分类,分为路面严重损坏C1、路面轻度损坏C2、道路临时障碍物C3、交通事件C4(交通事故、违章停车、违规行驶等)和正常C5;根据故障类型对历史数据中的路面故障情况进行归类,得到故障类型集合Ch,以及各个故障类型Cg下所有训练样本组成的特征矩阵Yg;
Yh=(Y1,...,Yg,...,Y5)T
完成贝叶斯分类器的训练:
依据故障类型集合Ch,利用拉普拉斯平滑方法计算每个故障类型Cg的先验概率,即对故障类型Cg在训练样本中出现的频率进行平滑处理;
式中:P(Cg)——每一个故障类型Cg的先验概率;
N——所有训练样本的频数和;
得到所有故障类型的频率,构造故障类型频率集合:
PC=(P(C1),...P(Cg),...,P(C5))
由于状态分类特征值为[0,1]之间的连续变量,故依据特征矩阵Yg,估计每个故障类型Cg的协方差矩阵和均值向量:
μg=(μg1,...,μgj,...,μg9)T
式中:μg——每个故障类型Cg的均值向量;
μgj,μgq——每个故障类型Cg下第j,q个状态分类特征的均值;
∑g——每个故障类型Cg的协方差矩阵;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811189560.0A CN109344903B (zh) | 2018-10-12 | 2018-10-12 | 基于车载感知数据的城市道路路面故障实时检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811189560.0A CN109344903B (zh) | 2018-10-12 | 2018-10-12 | 基于车载感知数据的城市道路路面故障实时检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109344903A CN109344903A (zh) | 2019-02-15 |
CN109344903B true CN109344903B (zh) | 2021-03-09 |
Family
ID=65309352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811189560.0A Active CN109344903B (zh) | 2018-10-12 | 2018-10-12 | 基于车载感知数据的城市道路路面故障实时检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109344903B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10981577B1 (en) * | 2019-12-19 | 2021-04-20 | GM Global Technology Operations LLC | Diagnosing perception system based on scene continuity |
CN112241806B (zh) * | 2020-07-31 | 2021-06-22 | 深圳市综合交通运行指挥中心 | 道路破损概率预测方法、装置终端设备及可读存储介质 |
CN112749210B (zh) * | 2021-01-18 | 2024-03-12 | 优必爱信息技术(北京)有限公司 | 基于深度学习的车辆碰撞识别方法和系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102932812A (zh) * | 2012-11-06 | 2013-02-13 | 武汉大学 | 一种面向道路路况的车载传感器协同监测方法 |
CN104680805A (zh) * | 2013-11-26 | 2015-06-03 | 西安大昱光电科技有限公司 | 一种联网式车路协同系统 |
CN106127879A (zh) * | 2016-06-24 | 2016-11-16 | 都城绿色能源有限公司 | 用于新能源发电设备的移动智能巡检管理系统及巡检方法 |
CN107564280A (zh) * | 2017-08-22 | 2018-01-09 | 王浩宇 | 基于环境感知的驾驶行为数据采集分析系统和方法 |
CN108400973A (zh) * | 2018-02-02 | 2018-08-14 | 中原工学院 | 车载自组织网络中基于交通流模型的虚假消息检测方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10339671B2 (en) * | 2016-11-14 | 2019-07-02 | Nec Corporation | Action recognition using accurate object proposals by tracking detections |
-
2018
- 2018-10-12 CN CN201811189560.0A patent/CN109344903B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102932812A (zh) * | 2012-11-06 | 2013-02-13 | 武汉大学 | 一种面向道路路况的车载传感器协同监测方法 |
CN104680805A (zh) * | 2013-11-26 | 2015-06-03 | 西安大昱光电科技有限公司 | 一种联网式车路协同系统 |
CN106127879A (zh) * | 2016-06-24 | 2016-11-16 | 都城绿色能源有限公司 | 用于新能源发电设备的移动智能巡检管理系统及巡检方法 |
CN107564280A (zh) * | 2017-08-22 | 2018-01-09 | 王浩宇 | 基于环境感知的驾驶行为数据采集分析系统和方法 |
CN108400973A (zh) * | 2018-02-02 | 2018-08-14 | 中原工学院 | 车载自组织网络中基于交通流模型的虚假消息检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109344903A (zh) | 2019-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109344903B (zh) | 基于车载感知数据的城市道路路面故障实时检测方法 | |
US10023200B2 (en) | Driver profiling system and method | |
CN105931458B (zh) | 一种路面交通流量检测设备可信度评估的方法 | |
CN104809877A (zh) | 基于特征参数加权gefcm算法的高速公路地点交通状态估计方法 | |
CN110588658B (zh) | 一种基于综合模型检测驾驶员风险等级的方法 | |
CN107146409B (zh) | 路网中设备检测时间异常的识别和真实时差估算方法 | |
CN110473085B (zh) | 一种车辆风险判别方法和装置 | |
CN110781873A (zh) | 一种双模态特征融合的驾驶员疲劳等级识别方法 | |
CN110562261B (zh) | 一种基于马尔可夫模型检测驾驶员风险等级的方法 | |
CN105868870A (zh) | 一种基于数据融合的城市快速路旅行时间估计方法和装置 | |
CN102622885A (zh) | 检测交通事件的方法和装置 | |
CN105551250A (zh) | 一种基于区间聚类的城市道路交叉口运行状态判别方法 | |
CN114155706A (zh) | 一种服务区车辆判别方法、装置、电子设备和存储介质 | |
WO2017107790A1 (zh) | 一种基于大数据预测路段状况的方法及装置 | |
CN103413046A (zh) | 车流量统计方法 | |
CN111707476B (zh) | 一种面向自动驾驶汽车的纵向驾驶能力检测方法 | |
CN117151513A (zh) | 评价交通安全的方法、装置、设备及存储介质 | |
CN106297373A (zh) | 基于互相关和地磁传感器的停车场车辆检测方法 | |
US10618524B2 (en) | Method for determining a reference driving class | |
CN111775948B (zh) | 一种驾驶行为分析方法及装置 | |
Ko et al. | Measuring control delay using second–by–second GPS speed data | |
KR101939446B1 (ko) | 지점검지기 및 구간검지기 사이에서 소통 상황의 동질성을 판단하는 방법 및 시스템 | |
CN114692418B (zh) | 质心侧偏角估计方法、装置、智能终端及存储介质 | |
CN117953444B (zh) | 一种弱势道路使用者事故风险评估方法 | |
CN109859499B (zh) | 一种交通流量检测系统及其检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |