CN109326789A - 一种石墨烯包覆钴酸锌复合电极材料及其制备方法 - Google Patents

一种石墨烯包覆钴酸锌复合电极材料及其制备方法 Download PDF

Info

Publication number
CN109326789A
CN109326789A CN201811508168.8A CN201811508168A CN109326789A CN 109326789 A CN109326789 A CN 109326789A CN 201811508168 A CN201811508168 A CN 201811508168A CN 109326789 A CN109326789 A CN 109326789A
Authority
CN
China
Prior art keywords
cobalt acid
acid zinc
preparation
graphene
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811508168.8A
Other languages
English (en)
Other versions
CN109326789B (zh
Inventor
李丽
谢政军
姜高学
曹丙强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201811508168.8A priority Critical patent/CN109326789B/zh
Publication of CN109326789A publication Critical patent/CN109326789A/zh
Application granted granted Critical
Publication of CN109326789B publication Critical patent/CN109326789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种石墨烯包覆钴酸锌复合电极材料及其制备方法。该复合材料是由石墨烯和钴酸锌纳米颗粒组成,该复合材料的具体制备步骤为:将钴酸锌和氧化石墨烯分散于去离子水中,形成均匀混合溶液;将上述均匀混合溶液在不同的脉冲激光条件下进行激光辐照/烧蚀,即可得到石墨烯包覆钴酸锌复合材料。本发明制备方法简单、易于操作、重复性好,该方法制备得到的石墨烯包覆钴酸锌颗粒均匀、纯度高,操作简单、制备成本低等优点。

Description

一种石墨烯包覆钴酸锌复合电极材料及其制备方法
技术领域
本发明属于无机材料的制备及应用领域,具体涉及一种石墨烯包覆钴酸锌复合电极材料及其制备方法。
背景技术
锂离子电池由于其能量密度高、循环寿命长、环保性能好等优点,在现实生活中得到了广泛应用。为此,人们在不断探索低成本、高能量密度的新型电极材料。过渡金属氧化物(TMOs)作为锂电池的负极材料,具有比石墨更高的理论比容量和更优异的循环稳定性,引起了广泛的关注。钴酸锌(ZnCo2O4)由于其资源丰富、电化学活性较高、热稳定性好、高理论比容量(975.2mAhg-1)等优点成为目前科研工作者的研究热点。但是,在锂离子电池的应用中,钴酸锌电极材料存在电导率低、容量衰减快、电极粉化等问题。
为了解决以上问题,本发明通过激光辐照/烧蚀法制备出石墨烯包覆钴酸锌复合电极材料。在石墨烯包覆钴酸锌复合材料中,ZnCo2O4纳米颗粒抑制了石墨烯的再聚合,并保持了固有电导率,而石墨烯也抑制了ZnCo2O4纳米颗粒的团聚。受益于这种纳米结构,石墨烯包覆钴酸锌电极材料具有高充放电比容量,优异的循环性能和高倍率性能。
发明内容
为了提高钴酸锌电极材料的导电性和稳定性,实现更高的比容量、良好的倍率性能和循环稳定性,本发明提供了一种石墨烯包覆钴酸锌复合电极材料及其制备方法。本发明制备方法简单、易于操作、重复性好。
一种石墨烯包覆钴酸锌复合电极材料,所述的复合电极材料由石墨烯和钴酸锌纳米颗粒组成,其中所述钴酸锌纳米颗粒被石墨烯均匀包覆,所述钴酸锌纳米颗粒尺寸为50~200nm。
本发明提出的技术方案:
一种石墨烯包覆钴酸锌电极材料的制备方法,其特征在于采用以下步骤:
(1)将钴酸锌和氧化石墨烯分散于去离子水中,超声1h,形成均匀混合溶液,其中,钴酸锌在溶液中的浓度为2-4mg/mL,氧化石墨烯在溶液中的浓度为0.5-0.7mg/mL;
(2)将步骤(1)得到的均匀溶液作为液相靶,连续搅拌的情况下,在不同的脉冲激光条件下对液相靶进行激光辐照/烧蚀,经离心分离出固体,即可制得石墨烯包覆钴酸锌复合材料。其中,激光辐照/烧蚀条件为:频率5~10 Hz,能量密度300~400 mJ pulse-1cm-2,辐照时间 20~100 min。
优选地,步骤(1)中所用的钴酸锌为实验室合成的钴酸锌纳米片,钴酸锌纳米片是由纳米颗粒组成的。
优选地,步骤(1)中所述的钴酸锌在溶液中的浓度为3mg/mL,氧化石墨烯在溶液中的浓度为0.6mg/mL。
优选地,步骤(2)中所述的激光辐照/烧蚀条件为:频率5 Hz,能量密度350 mJpulse-1cm-2,辐照时间 60 min。
有益效果
(1)本发明采用激光辐照/烧蚀法合成石墨烯包覆钴酸锌复合电极材料。钴酸锌颗粒均匀,所制备的石墨烯包覆钴酸锌结构有利于充分发挥石墨烯和钴酸锌的协同作用,具有优异的电化学性能。
(2)本发明制备方法简单,产物纯度高,适用于制备高质量电极材料。
附图说明
图1 为本发明实施例1制备的石墨烯包覆钴酸锌复合电极材料的扫描显微镜(SEM)照片;
图2 为本发明实施例1制备的石墨烯包覆钴酸锌复合电极材料的X-射线衍射(XRD)图谱;
图3 为本发明实施例1制备的石墨烯包覆钴酸锌复合电极材料在电流密度为200mAg-1时的循环寿命曲线;
图4 为本发明实施例1制备的石墨烯包覆钴酸锌复合电极材料在电流密度为500mAg-1时的循环寿命曲线。
具体实施方式
下面列举实施例对本发明进行说明,但本发明并不局限于这些实施例。
实施例1
将30mg钴酸锌和6mg氧化石墨烯分散于10mL去离子水中,超声1h,形成均匀混合溶液。将得到的均匀溶液作为液相靶,连续搅拌的情况下,在波长为248 nm,能量密度为350 mJpulse-1cm-2, 频率为5 Hz的激光下辐照60 min;反应完成后离心洗涤、干燥,得到石墨烯包覆钴酸锌复合材料。
图1为本实施例制备的石墨烯包覆钴酸锌复合电极材料的扫描显微镜(SEM)照片,从图中可以看出,生成的钴酸锌纳米颗粒被石墨烯均匀包覆,钴酸锌纳米颗粒呈球状结构,粒径尺寸分布均匀,约为200nm;X射线衍射图(图2)证明了所合成的石墨烯包覆钴酸锌为纯相。
实施例2
将20mg钴酸锌和5mg氧化石墨烯分散于10mL去离子水中,超声1h,形成均匀混合溶液。将得到的均匀溶液作为液相靶,连续搅拌的情况下,在波长为248 nm,能量密度为300 mJpulse-1cm-2, 频率为5 Hz的激光下辐照100 min;反应完成后离心洗涤、干燥,得到石墨烯包覆钴酸锌复合材料。
实施例3
将30mg钴酸锌和6mg氧化石墨烯分散于10mL去离子水中,超声1h,形成均匀混合溶液。将得到的均匀溶液作为液相靶,连续搅拌的情况下,在波长为248 nm,能量密度为400 mJpulse-1cm-2, 频率为10 Hz的激光下辐照60 min;反应完成后离心洗涤、干燥,得到石墨烯包覆钴酸锌复合材料。
实施例4
将40mg钴酸锌和7mg氧化石墨烯分散于10mL去离子水中,超声1h,形成均匀混合溶液。将得到的均匀溶液作为液相靶,连续搅拌的情况下,在波长为248 nm,能量密度为400 mJpulse-1cm-2, 频率为5 Hz的激光下辐照40 min;反应完成后离心洗涤、干燥,得到石墨烯包覆钴酸锌复合材料。
本发明制备的石墨烯包覆钴酸锌电极材料的性能评价方式:将本发明制备的石墨烯包覆钴酸锌、超级P-Li导电炭黑和羧甲基纤维素钠粘合剂分别按照8:1:1的比例充分研磨混匀,其中炭黑充当导电剂,羧甲基纤维素钠充当粘结剂,加入去离子水形成均匀浆料,并调成均匀浆料,涂覆Cu 箔上,烘干,压实。在高纯氩气( 纯度大于99.99%)气氛的手套箱中组装成2025型扣式电池(H2O含量小于1ppm,O2含量小于3ppm),其中金属锂片作为负极。
对石墨烯包覆钴酸锌材料制备的电极进行电化学性能测试,图3为本发明实施例1制备的石墨烯包覆钴酸锌复合电极材料在200mAg-1电流密度下充放电曲线。从图中可发现,其首次放电比容量约为949mAhg-1,首次充电比容量约为676mAhg-1,容量较高;经过一段时间的活化后,容量保持稳定,50周循环后放电比容量高达865mAhg-1,且每次循环的库伦效率均大于99%。图4为本发明实施例1制备的石墨烯包覆钴酸锌复合电极材料在500mAg-1电流密度下充放电曲线。从图中可以看出,其首次放电比容量约为717mAhg-1,首次充电比容量约为470mAhg-1;经过一段时间的活化后,容量保持稳定,120周循环后放电比容量高达766mAhg-1,且每次循环的库伦效率均大于99%,表明材料具有优异的循环稳定性。

Claims (5)

1.一种石墨烯包覆钴酸锌复合电极材料及其制备方法,其特征在于采用以下步骤:
(1)将钴酸锌和氧化石墨烯分散于去离子水中,超声1h,形成均匀混合溶液,其中,钴酸锌在溶液中的浓度为2-4mg/mL,氧化石墨烯在溶液中的浓度为0.5-0.7mg/mL;
(2)将步骤(1)得到的均匀溶液作为液相靶,连续搅拌的情况下,在不同的脉冲激光条件下对液相靶进行激光辐照/烧蚀,经离心分离出固体,即可制得石墨烯包覆钴酸锌复合材料 ,
其中,激光辐照/烧蚀条件为:频率5~10 Hz,能量密度300~400 mJ pulse-1cm-2,辐照时间 20~100 min。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所用的钴酸锌为实验室合成的钴酸锌纳米片,钴酸锌纳米片是由纳米颗粒组成的。
3.根据权利要求1所述的一种石墨烯包覆钴酸锌电极材料的制备方法,其特征在于步骤(1)中所述的钴酸锌在溶液中的浓度为3mg/mL。
4.根据权利要求1所述的一种石墨烯包覆钴酸锌电极材料的制备方法,其特征在于步骤(1)中所述氧化石墨烯在溶液中的浓度为0.6mg/mL。
5.根据权利要求1所述的一种石墨烯包覆钴酸锌电极材料的制备方法,其特征在于步骤(2)中所述的激光辐照/烧蚀条件为:频率优选为5 Hz,能量密度为350 mJ pulse-1cm-2,辐照时间为 60 min。
CN201811508168.8A 2018-12-11 2018-12-11 一种石墨烯包覆钴酸锌复合电极材料及其制备方法 Active CN109326789B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811508168.8A CN109326789B (zh) 2018-12-11 2018-12-11 一种石墨烯包覆钴酸锌复合电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811508168.8A CN109326789B (zh) 2018-12-11 2018-12-11 一种石墨烯包覆钴酸锌复合电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109326789A true CN109326789A (zh) 2019-02-12
CN109326789B CN109326789B (zh) 2021-11-30

Family

ID=65257010

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811508168.8A Active CN109326789B (zh) 2018-12-11 2018-12-11 一种石墨烯包覆钴酸锌复合电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109326789B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105239093A (zh) * 2015-10-09 2016-01-13 广州大学 一种纳米复合阳极材料及其制备方法与应用
US20160218353A1 (en) * 2013-09-09 2016-07-28 Ajou University Industry-Academic Cooperation Foun Dation Method for preparing metal oxide-graphene nanocomposite and method for preparing electrode using metal oxide-graphene nanocomposite
CN105895384A (zh) * 2016-05-10 2016-08-24 济南大学 一种石墨烯/超微四氧化三钴颗粒复合电极材料制备方法
CN106887575A (zh) * 2017-03-14 2017-06-23 深圳先进技术研究院 一种钴酸锌/石墨烯复合负极材料及其制备方法和锂离子电池
CN107275105A (zh) * 2017-08-04 2017-10-20 南京理工大学 超级电容器电极材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160218353A1 (en) * 2013-09-09 2016-07-28 Ajou University Industry-Academic Cooperation Foun Dation Method for preparing metal oxide-graphene nanocomposite and method for preparing electrode using metal oxide-graphene nanocomposite
CN105239093A (zh) * 2015-10-09 2016-01-13 广州大学 一种纳米复合阳极材料及其制备方法与应用
CN105895384A (zh) * 2016-05-10 2016-08-24 济南大学 一种石墨烯/超微四氧化三钴颗粒复合电极材料制备方法
CN106887575A (zh) * 2017-03-14 2017-06-23 深圳先进技术研究院 一种钴酸锌/石墨烯复合负极材料及其制备方法和锂离子电池
CN107275105A (zh) * 2017-08-04 2017-10-20 南京理工大学 超级电容器电极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BEIHONG LIU等: "Controlled synthesis of hollow octahedral ZnCo2O4 nanocages assembled from ultrathin 2D nanosheets for enhanced lithium storage", 《NANOSCALE》 *

Also Published As

Publication number Publication date
CN109326789B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
Li et al. An integral interface with dynamically stable evolution on micron-sized SiOx particle anode
Wang et al. Polar and conductive iron carbide@ N-doped porous carbon nanosheets as a sulfur host for high performance lithium sulfur batteries
CN102142541B (zh) 一种高容量和循环性能稳定的锂离子电池电极及制备方法
CN106532014A (zh) 一种制备氧化石墨烯上附着二氧化锡纳米颗粒的复合材料的方法
Yang et al. Cathodically induced antimony for rechargeable Li-ion and Na-ion batteries: The influences of hexagonal and amorphous phase
CN106229479B (zh) 一种锂离子电池用活性炭复合负极材料、制备方法及锂离子电池
Tang et al. Mg0. 6Ni0. 4O hollow nanofibers prepared by electrospinning as additive for improving electrochemical performance of lithium–sulfur batteries
CN106654221A (zh) 用于锂离子电池负极的三维多孔碳包覆硒化锌材料及其制备方法
CN106848199A (zh) 一种锂离子电池纳米硅/多孔碳复合负极材料及其制备方法和应用
CN105355875B (zh) 一种氧化钨纳米线缠绕复合材料、制备方法和应用
Ruan et al. Enabling rapid polysulfide conversion kinetics by using functionalized carbon nanosheets as metal-free electrocatalysts in durable lithium-sulfur batteries
Chen et al. Bamboo-like Co3O4 nanofiber as host materials for enhanced lithium-sulfur battery performance
Huang et al. Silver decorated beta-manganese oxide nanorods as an effective cathode electrocatalyst for rechargeable lithium–oxygen battery
Xu et al. Co 3 O 4-based binder-free cathodes for lithium–oxygen batteries with improved cycling stability
Wang et al. Controllable synthesis of CNT@ ZnO composites with enhanced electrochemical properties for lithium-ion battery
Pourali et al. Li2S/transition metal carbide composite as cathode material for high performance lithium-sulfur batteries
CN107579219A (zh) 用于二次锌基电池的石墨烯/氧化锌负极材料及其制备
CN107611411A (zh) 一种三维分级多孔氮掺杂碳包硅复合材料的制备方法及应用
Saito et al. Surfactant-assisted synthesis of Sn nanoparticles via solution plasma technique
Yu et al. CoS/N-doped carbon core/shell nanocrystals as an anode material for potassium-ion storage
Li et al. A dendrite-free Li plating host towards high utilization of Li metal anode in Li–O2 battery
Chen et al. Boosting electrochemical performance of Li-S batteries by cerium-based MOFs coated with polypyrrole
Ma et al. Ultrafine NbN nanoparticle decorated nitrogen-doped carbon nanosheets with efficient polysulfide catalytic conversion for superior Li–S batteries
Qian et al. ZIF-8/Ketjen Black derived ZnO/N/KB composite for separator modification of lithium sulfur batteries
CN104577126A (zh) 一种形貌均匀的MWCNT@a-C@Co9S8复合电极材料的制备方法及在锂电中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant