CN109322787A - 一种风力发电机组停机控制方法和控制装置 - Google Patents

一种风力发电机组停机控制方法和控制装置 Download PDF

Info

Publication number
CN109322787A
CN109322787A CN201811051224.XA CN201811051224A CN109322787A CN 109322787 A CN109322787 A CN 109322787A CN 201811051224 A CN201811051224 A CN 201811051224A CN 109322787 A CN109322787 A CN 109322787A
Authority
CN
China
Prior art keywords
angle
attack
blade
pitch
pitch rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811051224.XA
Other languages
English (en)
Other versions
CN109322787B (zh
Inventor
耿丽红
高亚春
王朝东
谢金娟
王建伟
武愈振
杨海锋
李英文
刘晓峰
宋海连
王新锋
张广辉
张志刚
刘军辉
张艳豪
穆军歌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuji Group Co Ltd
Xuchang Xuji Wind Power Technology Co Ltd
Original Assignee
Xuji Group Co Ltd
Xuchang Xuji Wind Power Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuji Group Co Ltd, Xuchang Xuji Wind Power Technology Co Ltd filed Critical Xuji Group Co Ltd
Priority to CN201811051224.XA priority Critical patent/CN109322787B/zh
Publication of CN109322787A publication Critical patent/CN109322787A/zh
Application granted granted Critical
Publication of CN109322787B publication Critical patent/CN109322787B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

本发明涉及一种风力发电机组停机控制方法和控制装置,先初步设定变桨速率;根据初步设定的变桨速率控制风力发电机组变桨停机,在此过程中,实时计算攻角值,并根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于攻角正常范围内。因此,以升力系数随攻角变化的规律为依据,根据攻角满足的范围控制调整停机过程中的变桨速率,保证在停机过程中气动阻尼一直为正,以避免停机过程中因气动阻尼为负使得机组发生失速振动的问题,进而避免发生非稳定现象,导致载荷大于设计的问题,降低了停机过程中叶根的载荷,减少了机组振动的概率,保证了整机安全。

Description

一种风力发电机组停机控制方法和控制装置
技术领域
本发明涉及一种风力发电机组停机控制方法和控制装置。
背景技术
随着风力发电机组叶片向大型化方向发展,机组承受巨大载荷冲击导致出现极限载荷的问题越来越突出,尤其是在电网掉电和紧急停机过程中,变流器直接脱网,完全依靠叶片收桨完成机组停机,机组承受的载荷冲击主要依靠变桨停机策略的规划来降低。
气动阻尼的大小与叶片翼型升力系数随攻角变化曲线的斜率存在着密切联系,非失速时,气动阻尼为正,失速后,升力系数曲线斜率为负,气动阻尼减小,甚至可能下降为负值。当负气动阻尼为振动提供的能量大于结构阻尼可以吸收的能量时,容易引起失速振动,造成叶片损坏。
图1为非对称翼型的升力系数和阻力系数随攻角变化曲线图,图中,实线曲线表示升力系数曲线,虚线曲线表示阻力系数曲线。升力系数Cl先是随着攻角的增大几乎线性增大,之后Cl曲线缓慢增大至最大值Clmax,如果攻角继续增大,气流沿翼型的流动不再平滑,开始分离,此时,升力变小,而阻力系数Cd随攻角增大而急剧增大。负攻角时,Cl呈曲线变化,Cl通过一最低点Clmin
现有的停机策略没有考虑攻角的变化情况,导致气动阻尼出现负值的情况,进而在停机过程中对机组造成损坏。因此,在停机过程中,合理的停机策略能够使得攻角处于合适的角度,能够避免出现气动阻尼为负值的情况,降低机组载荷,减少停机过程中对机组的危害。
发明内容
本发明的目的是提供一种风力发电机组停机控制方法和控制装置,用以解决在停机过程中若气动阻尼出现负值的情况,会对机组造成损坏的问题。
为实现上述目的,本发明包括以下技术方案:
一种风力发电机组停机控制方法,包括以下步骤:
(1)初步设定变桨速率;
(2)根据初步设定的变桨速率控制风力发电机组变桨停机,在此过程中,实时计算攻角值,并设定一个攻角正常范围,所述攻角正常范围的最小值为下限设定值,所述攻角正常范围的最大值为上限设定值,所述下限设定值大于或者等于0,所述上限设定值大于0,所述下限设定值小于上限设定值;
(3)根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于所述攻角正常范围内,以保证在停机过程中气动阻尼一直为正。
先初步设定变桨速率,然后,计算攻角值,并在控制风力发电机组变桨停机过程中根据计算得到的攻角值实时调整设定的变桨速率,使攻角值始终处于攻角正常范围内,由于攻角正常范围是一个攻角大于或者等于0的取值区间,因此,通过该控制方式能够保证攻角始终大于或者等于0,使得攻角处于合适的角度,避免攻角为负的情况发生,进而避免气动阻尼减小,也就避免了气动阻尼出现负值的情况,很大程度上降低了机组载荷,避免叶片出现失速振动的情况,减少停机过程中对机组的危害。因此,该方法以升力系数随攻角变化的规律为依据,根据攻角满足的范围控制调整停机过程中的变桨速率,保证在停机过程中气动阻尼一直为正,以避免停机过程中因气动阻尼为负使得机组发生失速振动的问题,进而避免发生非稳定现象以至于导致载荷大于设计的问题,降低了停机过程中叶根的载荷,减少了机组振动的概率,保证了整机安全。
进一步地,所述下限设定值等于0,所述上限设定值为升力系数最大值对应的攻角值。
在该攻角范围内能够保证攻角处于一个合适的角度,进而保证气动阻尼处于一个合适的范围,进一步避免气动阻尼减小,也就避免了气动阻尼出现负值的情况,进一步提升机组变桨停机过程的安全性。
进一步地,所述攻角的计算公式为:
α=Φ-β
其中,α为攻角,β为风力发电机组的桨距角,Φ为相对入流角;
相对入流角Φ的计算公式为:
其中,V为实际来流风速,Ω为叶片的旋转角速度,r为叶素绕风轮旋转中心的半径。
通过该攻角计算公式能够计算得到攻角值。
进一步地,根据变桨速率控制风力发电机组变桨停机的过程中,设定两个桨距角,根据这两个桨距角将变桨停机过程划分为三个阶段,在变桨过程中,当实际的桨距角处于某一个阶段时,按照该阶段对应的控制策略进行变桨控制,其中:
第一阶段,变桨速率为风力发电机组能够承受的最大变桨速率,以该变桨速率控制变桨停机;
第二阶段,设定该阶段对应的变桨速率,为第二阶段设定变桨速率,以该第二阶段设定变桨速率控制变桨停机,并根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于所述攻角正常范围内;
第三阶段,设定该阶段对应的变桨速率,为第三阶段设定变桨速率,以该第三阶段设定变桨速率控制变桨停机,并根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于所述攻角正常范围内。
根据叶片气动阻尼变化趋势分阶段进行变桨控制,分三个阶段主要是因为阻尼曲线变化趋势:先是较大,在大约20deg~40deg处较小,然后再变大,类似“V”形的曲线,那么,设定两个桨距角,根据这两个桨距角就能够将变桨停机过程划分为三个阶段,为了达到快速停机的目的,第一阶段中的变桨速率为风力发电机组能够承受的最大变桨速率,第二阶段和第三阶段中均先设定相应的变桨速率,然后根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于攻角正常范围内。通过这种控制策略,不但能够加快停机的速度,而且,还能够避免攻角为负的情况发生,进而避免气动阻尼减小,也就避免了气动阻尼出现负值的情况。
进一步地,变桨速率的设定过程为:
1)计算桨叶截面上气动升力Fl和气动阻力Fd
其中,Cl为升力系数,Cd为阻力系数,ρ为空气密度,S为桨叶面积,S等于弦长*桨叶长度,V为实际来流风速,Ω为叶片的旋转角速度,r为叶素绕风轮旋转中心的半径;
2)将气动升力Fl和气动阻力Fd分解为垂直于旋转平面的推力Fx和平行于旋转平面的切向力Fy
Fx=FlcosΦ+FdsinΦ
Fy=FlsinΦ-FdcosΦ
其中,Φ为相对入流角;
相对入流角Φ的计算公式为:
3)计算叶素局部气动阻尼矩阵计算公式为:
其中,为由叶素在挥舞方向动态变形引起的叶素挥舞气动阻尼,为由叶素在摆振方向动态变形引起的叶素挥舞气动阻尼,为由叶素在挥舞方向动态变形引起的叶素摆振气动阻尼,为由叶素在摆阵方向动态变形引起的叶素摆振气动阻尼;
4)计算风轮旋转坐标系下,第i阶叶片模态气动阻尼计算公式为:
其中,uRi为第i阶模态振型在风轮旋转坐标系下对应的模态坐标;
5)根据公式将风轮旋转坐标系转换至叶根坐标系,θ为两种坐标系的夹角,对应叶根坐标系下叶片模态气动阻尼的计算公式为:
其中,为叶片第i阶模态在叶根坐标系xB方向上的坐标,为叶片第i阶模态在叶根坐标系yB方向上的坐标;
6)叶片模态阻尼比的计算公式为:
其中,ξ为叶片模态阻尼比,Mi为第i阶叶片模态质量,ω′i为第i阶叶片模态角频率;
7)根据计算出的叶片模态气动阻尼及叶片模态阻尼比获取叶片模态气动阻尼及叶片模态阻尼比随桨距角变化的曲线,然后根据叶片模态气动阻尼大小设定相应的变桨速率,设定的变桨速率与叶片模态气动阻尼大小成正比。
根据该计算过程能够得到气动阻尼及叶片模态阻尼比,然后得到气动阻尼及叶片模态阻尼比随桨距角变化的曲线,由于阻尼大小与变桨速率的设定存在着一定的关系,因此,根据阻尼大小设定变桨速率,其中,阻尼较大时,停机过程中可设定较大的变桨速率;阻尼较小时,停机过程中需设定较小的变桨速率,如果设置较大的变桨速率,容易导致攻角为负,造成气动阻尼减小,引起叶片失速振动。
一种风力发电机组停机控制装置,包括存储器、处理器以及存储在所述存储器中并可在处理器上运行的计算机程序,所述处理器在执行所述计算机程序时实现的控制过程包括:
(1)初步设定变桨速率;
(2)根据初步设定的变桨速率控制风力发电机组变桨停机,在此过程中,实时计算攻角值,并设定一个攻角正常范围,所述攻角正常范围的最小值为下限设定值,所述攻角正常范围的最大值为上限设定值,所述下限设定值大于或者等于0,所述上限设定值大于0,所述下限设定值小于上限设定值;
(3)根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于所述攻角正常范围内,以保证在停机过程中气动阻尼一直为正。
先初步设定变桨速率,然后,计算攻角值,并在控制风力发电机组变桨停机过程中根据计算得到的攻角值实时调整设定的变桨速率,使攻角值始终处于攻角正常范围内,由于攻角正常范围是一个攻角大于或者等于0的取值区间,因此,通过该控制方式能够保证攻角始终大于或者等于0,使得攻角处于合适的角度,避免攻角为负的情况发生,进而避免气动阻尼减小,也就避免了气动阻尼出现负值的情况,很大程度上降低了机组载荷,避免叶片出现失速振动的情况,减少停机过程中对机组的危害。因此,该方法以升力系数随攻角变化的规律为依据,根据攻角满足的范围控制调整停机过程中的变桨速率,保证在停机过程中气动阻尼一直为正,以避免停机过程中因气动阻尼为负使得机组发生失速振动的问题,进而避免发生非稳定现象以至于导致载荷大于设计的问题,降低了停机过程中叶根的载荷,减少了机组振动的概率,保证了整机安全。
进一步地,所述下限设定值等于0,所述上限设定值为升力系数最大值对应的攻角值。
在该攻角范围内能够保证攻角处于一个合适的角度,进而保证气动阻尼处于一个合适的范围,进一步避免气动阻尼减小,也就避免了气动阻尼出现负值的情况,进一步提升机组变桨停机过程的安全性。
进一步地,所述攻角的计算公式为:
α=Φ-β
其中,α为攻角,β为风力发电机组的桨距角,Φ为相对入流角;
相对入流角Φ的计算公式为:
其中,V为实际来流风速,Ω为叶片的旋转角速度,r为叶素绕风轮旋转中心的半径。
通过该攻角计算公式能够计算得到攻角值。
进一步地,根据变桨速率控制风力发电机组变桨停机的过程中,设定两个桨距角,根据这两个桨距角将变桨停机过程划分为三个阶段,在变桨过程中,当实际的桨距角处于某一个阶段时,按照该阶段对应的控制策略进行变桨控制,其中:
第一阶段,变桨速率为风力发电机组能够承受的最大变桨速率,以该变桨速率控制变桨停机;
第二阶段,设定该阶段对应的变桨速率,为第二阶段设定变桨速率,以该第二阶段设定变桨速率控制变桨停机,并根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于所述攻角正常范围内;
第三阶段,设定该阶段对应的变桨速率,为第三阶段设定变桨速率,以该第三阶段设定变桨速率控制变桨停机,并根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于所述攻角正常范围内。
根据叶片气动阻尼变化趋势分阶段进行变桨控制,分三个阶段主要是因为阻尼曲线变化趋势:先是较大,在大约20deg~40deg处较小,然后再变大,类似“V”形的曲线,那么,设定两个桨距角,根据这两个桨距角就能够将变桨停机过程划分为三个阶段,为了达到快速停机的目的,第一阶段中的变桨速率为风力发电机组能够承受的最大变桨速率,第二阶段和第三阶段中均先设定相应的变桨速率,然后根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于攻角正常范围内。通过这种控制策略,不但能够加快停机的速度,而且,还能够避免攻角为负的情况发生,进而避免气动阻尼减小,也就避免了气动阻尼出现负值的情况。
进一步地,变桨速率的设定过程为:
1)计算桨叶截面上气动升力Fl和气动阻力Fd
其中,Cl为升力系数,Cd为阻力系数,ρ为空气密度,S为桨叶面积,S等于弦长*桨叶长度,V为实际来流风速,Ω为叶片的旋转角速度,r为叶素绕风轮旋转中心的半径;
2)将气动升力Fl和气动阻力Fd分解为垂直于旋转平面的推力Fx和平行于旋转平面的切向力Fy
Fx=FlcosΦ+FdsinΦ
Fy=FlsinΦ-FdcosΦ
其中,Φ为相对入流角;
相对入流角Φ的计算公式为:
3)计算叶素局部气动阻尼矩阵计算公式为:
其中,为由叶素在挥舞方向动态变形引起的叶素挥舞气动阻尼,为由叶素在摆振方向动态变形引起的叶素挥舞气动阻尼,为由叶素在挥舞方向动态变形引起的叶素摆振气动阻尼,为由叶素在摆阵方向动态变形引起的叶素摆振气动阻尼;
4)计算风轮旋转坐标系下,第i阶叶片模态气动阻尼计算公式为:
其中,uRi为第i阶模态振型在风轮旋转坐标系下对应的模态坐标;
5)根据公式将风轮旋转坐标系转换至叶根坐标系,θ为两种坐标系的夹角,对应叶根坐标系下叶片模态气动阻尼的计算公式为:
其中,为叶片第i阶模态在叶根坐标系xB方向上的坐标,为叶片第i阶模态在叶根坐标系yB方向上的坐标;
6)叶片模态阻尼比的计算公式为:
其中,ξ为叶片模态阻尼比,Mi为第i阶叶片模态质量,ω′i为第i阶叶片模态角频率;
7)根据计算出的叶片模态气动阻尼及叶片模态阻尼比获取叶片模态气动阻尼及叶片模态阻尼比随桨距角变化的曲线,然后根据叶片模态气动阻尼大小设定相应的变桨速率,设定的变桨速率与叶片模态气动阻尼大小成正比。
根据该计算过程能够得到气动阻尼及叶片模态阻尼比,然后得到气动阻尼及叶片模态阻尼比随桨距角变化的曲线,由于阻尼大小与变桨速率的设定存在着一定的关系,因此,根据阻尼大小设定变桨速率,其中,阻尼较大时,停机过程中可设定较大的变桨速率;阻尼较小时,停机过程中需设定较小的变桨速率,如果设置较大的变桨速率,容易导致攻角为负,造成气动阻尼减小,引起叶片失速振动。
附图说明
图1是非对称翼型的升力系数和阻力系数随攻角变化曲线图;
图2是叶素速度三角形关系图;
图3是叶片翼型截面流速与受力分析图;
图4是风力发电机组停机控制方法的整体控制流程图;
图5是停机过程中变桨速率为6deg/s-6deg/s-1deg/s的变桨速率曲线图;
图6是图5所示变桨速率下的攻角变化曲线图;
图7是停机过程中变桨速率为6deg/s-2deg/s-1deg/s的变桨速率曲线图;
图8是图7所示变桨速率下的攻角变化曲线图;
图9是不同变桨速率下叶根My仿真结果对比图;
图10是不同变桨速率下轮毂中心载荷Myz仿真结果对比图。
具体实施方式
一种风力发电机组停机控制方法,包括以下步骤:
(1)初步设定变桨速率;
(2)根据初步设定的变桨速率控制风力发电机组变桨停机,在此过程中,实时计算攻角值,并设定一个攻角正常范围,攻角正常范围的最小值为下限设定值,攻角正常范围的最大值为上限设定值,下限设定值大于或者等于0,上限设定值大于0,下限设定值小于上限设定值;
(3)根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于攻角正常范围内,以保证在停机过程中气动阻尼一直为正。
下面结合附图,对本发明提供的风力发电机组停机控制方法的具体实现过程做进一步详细的说明。
首先,在风力发电机组变桨停机过程开始之前,要先初步设定一个变桨速率,先以该初步设定的变桨速率控制风力发电机组变桨停机。该初步设定的变桨速率可以根据经验值进行设定,也可以根据相关的设定过程进行设定,以下给出一种具体的设定过程,当然,本发明并不局限下述具体的设定过程。
1)对翼型截面上气动力进行分析,计算桨叶截面上气动升力Fl和气动阻力Fd
其中,Cl为升力系数,Cd为阻力系数,ρ为空气密度,S为桨叶面积,S等于弦长*桨叶长度;图2是叶素速度三角形关系图,风速W可以分解成轴向速度和切向速度,那么,V为实际来流风速,Ω为叶片的旋转角速度,r为叶素绕风轮旋转中心的半径。
2)将气动升力Fl和气动阻力Fd分解为垂直于旋转平面的推力Fx和平行于旋转平面的切向力Fy,即进行坐标变换;
Fx=FlcosΦ+FdsinΦ
Fy=FlsinΦ-FdcosΦ
其中,Φ为相对入流角;
相对入流角Φ的计算公式为:
叶片翼型截面流速与受力分析如图3所示。
3)计算叶素局部气动阻尼矩阵计算公式为:
其中,为由叶素在挥舞方向动态变形引起的叶素挥舞气动阻尼,为由叶素在摆振方向动态变形引起的叶素挥舞气动阻尼,为由叶素在挥舞方向动态变形引起的叶素摆振气动阻尼,为由叶素在摆阵方向动态变形引起的叶素摆振气动阻尼。
4)计算风轮旋转坐标系下,第i阶叶片模态气动阻尼计算公式为:
其中,uRi为第i阶模态振型在风轮旋转坐标系下对应的模态坐标。
5)根据公式将风轮旋转坐标系转换至叶根坐标系,θ为两种坐标系的夹角,对应叶根坐标系下叶片模态气动阻尼的计算公式为:
其中,为叶片第i阶模态在叶根坐标系xB方向上的坐标,为叶片第i阶模态在叶根坐标系yB方向上的坐标。
6)叶片模态阻尼比的计算公式为:
其中,ξ为叶片模态阻尼比,Mi为第i阶叶片模态质量,ω′为第i阶叶片模态角频率。
7)根据计算出的叶片模态气动阻尼及叶片模态阻尼比获取叶片模态气动阻尼及叶片模态阻尼比随桨距角变化的曲线,可以利用编程实现,同样地,也可以利用编程对叶片模态气动阻尼及叶片模态阻尼比随桨距角变化的曲线进行分析,然后根据叶片模态气动阻尼大小对上述初步设定变桨速率进行设定,两者的关系为:初步设定变桨速率与叶片模态气动阻尼大小成正比,即叶片模态气动阻尼较大时,可设置较大的变桨速率,叶片模态气动阻尼较小时,需设置较小的变桨速率,如果设置较大,容易导致攻角为负,造成气动阻尼减小,引起叶片失速振动。
在完成初步设定变桨速率之后,根据该初步设定的变桨速率控制风力发电机组变桨停机,在该变桨停机过程中,实时计算从叶根至叶尖的攻角值,以下给出攻角α的计算公式:
α=Φ-β
其中,β为风力发电机组的桨距角,由于在变桨停机过程中桨距角时刻发生变化,那么,β为持续变化的机组桨距角的实际值,Φ为相对入流角,上文中给出了计算公式,这里就不再赘述。
设定一个攻角正常范围,该攻角正常范围的设定要求是:攻角在该攻角正常范围内能够保证攻角不能为负值,进而保证在停机过程中气动阻尼一直为正,以避免停机过程中气动阻尼为负使得机组发生失速振动的情况。该攻角正常范围包括最大值和最小值,最大值和最小值构成该攻角正常范围,其中,将最小值称为下限设定值,将最大值称为上限设定值,且下限设定值为一个大于或者等于0的数值,上限设定值为一个大于0的数值,当然,下限设定值小于上限设定值。而下限设定值与上限设定值的具体数值根据实际情况进行设定,当然,需要满足上述攻角正常范围的设定要求。因此,该攻角正常范围是一个能够使气动阻尼一直为正值的数值范围。为了进一步保证攻角不能为负值以及气动阻尼一直为正,以下给出下限设定值与上限设定值的一种具体取值,下限设定值等于0,上限设定值为升力系数最大值Clmax对应的攻角值。
那么,根据初步设定的变桨速率控制风力发电机组变桨停机时,计算得到的攻角α可能不满足攻角正常范围,那么,在整个变桨停机过程中,根据计算得到的攻角α实时调整变桨速率,使攻角α始终处于攻角正常范围内,即保证在停机过程中攻角α在0deg和升力系数最大值Clmax对应的攻角值之间。如图4所示,当攻角α不满足要求时,即攻角α小于0时,重新调节变桨速率。
本实施例中,阻尼曲线具有以下变化趋势:先是较大,接着在大约20deg~40deg处较小,然后再变大,类似“V”形曲线。那么,根据上述变化趋势,本实施例将整个变桨停机过程分为三个阶段,为了划分三个阶段,需要设定两个桨距角,这两个桨距角可以根据经验值设定,一般设定为20deg和50deg,并且叶片不同,叶片气动特性不一样,桨距角有所变化;也可以根据上述阻尼曲线的具体变化趋势进行设定,即通过分析叶片气动阻尼变化趋势进行设定。那么,根据这两个桨距角将变桨停机过程划分为三个阶段,在变桨过程中,实际的桨距角实时变化,当实际的桨距角变化到某一个阶段时,按照该阶段对应的控制策略进行变桨控制,实现分阶段规划变桨速率,其中:
第一阶段,当实际的桨距角处于该阶段过程中,变桨速率始终为一个定值,为风力发电机组能够承受的最大变桨速率,以该变桨速率控制变桨停机,能够达到快速停机的目的。
第二阶段,当实际的桨距角处于该阶段过程中,设定该阶段对应的变桨速率,为第二阶段设定变桨速率,以该第二阶段设定变桨速率控制变桨停机,并根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于攻角正常范围内,避免发生攻角小于0,甚至更小的情况,保证在停机过程中攻角在0deg和升力系数最大值Clmax对应的攻角值之间。
第三阶段,设定该阶段对应的变桨速率,为第三阶段设定变桨速率,以该第三阶段设定变桨速率控制变桨停机,并根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于攻角正常范围内,避免发生攻角小于0,甚至更小的情况,保证在停机过程中攻角在0deg和升力系数最大值Clmax对应的攻角值之间。
其中,第二阶段设定变桨速率和第三阶段设定变桨速率也可以根据经验进行设定,当然,也可以按照上述给出的变桨速率具体设定过程进行设定。
另外,分三阶段变桨停机主要是由具体的机型、叶片翼型、机组载荷等因素决定,并不是其他所有的风力发电机组都必须这样规划,如果停机过程中气动阻尼一直比较大,机组以能承受的最大变桨速率收桨不会造成失速振动,且机组载荷满足设计要求,那么机组完全可以不用分阶段变速停机,直接以最大变桨速率收桨至停机位置。而且,不同的机组由于叶片的气动特性不一样,那么,升力系数、阻力系数随攻角变化的曲线也发生相应的改变,最终相关的变桨速率设定值也会发生相应的改变。
为了进一步提升控制可靠性,在通过不断调整变桨速率过程得到变桨速率之后,还可以将得到的若干组符合条件的变桨速率进行载荷仿真计算,选取最优载荷结果对应的变桨速率作为最终规划停机策略中的变桨速率。
因此,本发明提供的风力发电机组停机控制方法能够有效降低停机过程中机组的载荷,特别是针对在阵风时电网掉电工况和叶片卡住工况下因停机策略规划不合理使得气动阻尼降低,甚至发生负阻尼的情况,进而避免出现机组振动增大以至于载荷超过设计限值的情况,降低了机组振动概率。该方法能够将载荷降低至安全范围内,提高风力发电机组的可靠性,延长机组各部件的使用寿命,增强对环境的适应性。
以下以GL标准DLC1.5电网掉电工况实际停机过程中变桨速率的设置过程为例进行说明。
根据叶片的翼型信息,在Bladed(Bladed为风力发电机组专用的计算载荷的软件)外部控制器中编程计算叶根至叶尖的攻角α,同时设定一组停机过程中的变桨速率,然后利用Bladed进行仿真计算。
在Bladed仿真结果中查看攻角α变化情况,根据仿真结果调整变桨速率,原则是:攻角α在0deg和升力系数最大值Clmax对应的攻角值之间(因为攻角为负,容易导致阻尼减小甚至负阻尼,引起叶片失速振动)。如果攻角不合适,则调整变桨速率,重新进行Bladed仿真计算。
图5、图6、图7和图8所示为Bladed仿真结果,其中,图5和图6为一组仿真,图7和图8为一组仿真。图5为给出了停机过程中设定的一组变桨速率,为6deg/s-6deg/s-1deg/s(即第一阶段的变桨速率为6deg/s,第二阶段的变桨速率为6deg/s,第三阶段的变桨速率为1deg/s),图6为图5所示变桨速率下,停机过程中攻角α的变化曲线。图7给出了停机过程中设定的一组变桨速率,为6deg/s-2deg/s-1deg/s(第一阶段的变桨速率为6deg/s,第二阶段的变桨速率为2deg/s,第三阶段的变桨速率为1deg/s),图8为图7所示变桨速率下,停机过程中攻角α的变化曲线。
图6和图8中攻角α的曲线中:对某一型叶片,从叶根至叶尖按一定间隔选取40个点,attackang[23]表示第23个点处的攻角,例如:第23个点处距离叶根37.5m,弦长1.83388m,气动扭角0.8732228deg,停机过程中攻角变化如图中曲线所示。实际仿真中,叶根至叶尖选取了40个点,这里只选取了几条主要曲线呈现出来。
图5和图6中,按图5设置变桨速率仿真时,图6显示第二阶段由于变桨速率设置太大,导致约29s时攻角小于0,故该组变桨速率不合适;图7和图8中,按图7设置变桨速率仿真时,图8中攻角满足要求,符合调整原则,该组变桨速率合适,予以保存。
按照上述方法,选取多组变桨速率进行仿真(机组能承受的最大变桨速率是一定的,故能选择的变桨速率组合也是有限的),将满足要求的进行保存,不合适的进行剔除。
对于上述保存的几组变桨速率,进行Bladed载荷计算仿真,对比机组的载荷,选取最优载荷对应的那组变桨速率作为最终确定的停机变桨速率。如图9和图10所示,对比了叶根载荷My和轮毂中心载荷Myz,选取载荷较小对应的那组变桨速率。图9和图10中的两组数据对比比较明显,故选取这两组以示根据载荷选取最优变桨速率的过程。
上述控制方法可以作为一种计算机程序,由处理器执行。
以上给出了具体的实施方式,但本发明不局限于所描述的实施方式。本发明的基本思路在于上述基本方案,对本领域普通技术人员而言,根据本发明的教导,设计出各种变形的模型、公式、参数并不需要花费创造性劳动。在不脱离本发明的原理和精神的情况下对实施方式进行的变化、修改、替换和变型仍落入本发明的保护范围内。

Claims (10)

1.一种风力发电机组停机控制方法,其特征在于,包括以下步骤:
(1)初步设定变桨速率;
(2)根据初步设定的变桨速率控制风力发电机组变桨停机,在此过程中,实时计算攻角值,并设定一个攻角正常范围,所述攻角正常范围的最小值为下限设定值,所述攻角正常范围的最大值为上限设定值,所述下限设定值大于或者等于0,所述上限设定值大于0,所述下限设定值小于上限设定值;
(3)根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于所述攻角正常范围内,以保证在停机过程中气动阻尼一直为正。
2.根据权利要求1所述的风力发电机组停机控制方法,其特征在于,所述下限设定值等于0,所述上限设定值为升力系数最大值对应的攻角值。
3.根据权利要求1或2所述的风力发电机组停机控制方法,其特征在于,所述攻角的计算公式为:
α=Φ-β
其中,α为攻角,β为风力发电机组的桨距角,Φ为相对入流角;
相对入流角Φ的计算公式为:
其中,V为实际来流风速,Ω为叶片的旋转角速度,r为叶素绕风轮旋转中心的半径。
4.根据权利要求1所述的风力发电机组停机控制方法,其特征在于,根据变桨速率控制风力发电机组变桨停机的过程中,设定两个桨距角,根据这两个桨距角将变桨停机过程划分为三个阶段,在变桨过程中,当实际的桨距角处于某一个阶段时,按照该阶段对应的控制策略进行变桨控制,其中:
第一阶段,变桨速率为风力发电机组能够承受的最大变桨速率,以该变桨速率控制变桨停机;
第二阶段,设定该阶段对应的变桨速率,为第二阶段设定变桨速率,以该第二阶段设定变桨速率控制变桨停机,并根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于所述攻角正常范围内;
第三阶段,设定该阶段对应的变桨速率,为第三阶段设定变桨速率,以该第三阶段设定变桨速率控制变桨停机,并根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于所述攻角正常范围内。
5.根据权利要求1或2或4所述的风力发电机组停机控制方法,其特征在于,变桨速率的设定过程为:
1)计算桨叶截面上气动升力Fl和气动阻力Fd
其中,Cl为升力系数,Cd为阻力系数,ρ为空气密度,S为桨叶面积,S等于弦长*桨叶长度,V为实际来流风速,Ω为叶片的旋转角速度,r为叶素绕风轮旋转中心的半径;
2)将气动升力Fl和气动阻力Fd分解为垂直于旋转平面的推力Fx和平行于旋转平面的切向力Fy
Fx=FlcosΦ+FdsinΦ
Fy=FlsinΦ-FdcosΦ
其中,Φ为相对入流角;
相对入流角Φ的计算公式为:
3)计算叶素局部气动阻尼矩阵计算公式为:
其中,为由叶素在挥舞方向动态变形引起的叶素挥舞气动阻尼,为由叶素在摆振方向动态变形引起的叶素挥舞气动阻尼,为由叶素在挥舞方向动态变形引起的叶素摆振气动阻尼,为由叶素在摆阵方向动态变形引起的叶素摆振气动阻尼;
4)计算风轮旋转坐标系下,第i阶叶片模态气动阻尼计算公式为:
其中,uRi为第i阶模态振型在风轮旋转坐标系下对应的模态坐标;
5)根据公式将风轮旋转坐标系转换至叶根坐标系,θ为两种坐标系的夹角,对应叶根坐标系下叶片模态气动阻尼的计算公式为:
其中,为叶片第i阶模态在叶根坐标系xB方向上的坐标,为叶片第i阶模态在叶根坐标系yB方向上的坐标;
6)叶片模态阻尼比的计算公式为:
其中,ξ为叶片模态阻尼比,Mi为第i阶叶片模态质量,ω′i为第i阶叶片模态角频率;
7)根据计算出的叶片模态气动阻尼及叶片模态阻尼比获取叶片模态气动阻尼及叶片模态阻尼比随桨距角变化的曲线,然后根据叶片模态气动阻尼大小设定相应的变桨速率,设定的变桨速率与叶片模态气动阻尼大小成正比。
6.一种风力发电机组停机控制装置,包括存储器、处理器以及存储在所述存储器中并可在处理器上运行的计算机程序,其特征在于,所述处理器在执行所述计算机程序时实现的控制过程包括:
(1)初步设定变桨速率;
(2)根据初步设定的变桨速率控制风力发电机组变桨停机,在此过程中,实时计算攻角值,并设定一个攻角正常范围,所述攻角正常范围的最小值为下限设定值,所述攻角正常范围的最大值为上限设定值,所述下限设定值大于或者等于0,所述上限设定值大于0,所述下限设定值小于上限设定值;
(3)根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于所述攻角正常范围内,以保证在停机过程中气动阻尼一直为正。
7.根据权利要求6所述的风力发电机组停机控制装置,其特征在于,所述下限设定值等于0,所述上限设定值为升力系数最大值对应的攻角值。
8.根据权利要求6或7所述的风力发电机组停机控制装置,其特征在于,所述攻角的计算公式为:
α=Φ-β
其中,α为攻角,β为风力发电机组的桨距角,Φ为相对入流角;
相对入流角Φ的计算公式为:
其中,V为实际来流风速,Ω为叶片的旋转角速度,r为叶素绕风轮旋转中心的半径。
9.根据权利要求6所述的风力发电机组停机控制装置,其特征在于,根据变桨速率控制风力发电机组变桨停机的过程中,设定两个桨距角,根据这两个桨距角将变桨停机过程划分为三个阶段,在变桨过程中,当实际的桨距角处于某一个阶段时,按照该阶段对应的控制策略进行变桨控制,其中:
第一阶段,变桨速率为风力发电机组能够承受的最大变桨速率,以该变桨速率控制变桨停机;
第二阶段,设定该阶段对应的变桨速率,为第二阶段设定变桨速率,以该第二阶段设定变桨速率控制变桨停机,并根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于所述攻角正常范围内;
第三阶段,设定该阶段对应的变桨速率,为第三阶段设定变桨速率,以该第三阶段设定变桨速率控制变桨停机,并根据计算得到的攻角值实时调整变桨速率,使攻角值始终处于所述攻角正常范围内。
10.根据权利要求6或7或9所述的风力发电机组停机控制装置,其特征在于,变桨速率的设定过程为:
1)计算桨叶截面上气动升力Fl和气动阻力Fd
其中,Cl为升力系数,Cd为阻力系数,ρ为空气密度,S为桨叶面积,S等于弦长*桨叶长度,V为实际来流风速,Ω为叶片的旋转角速度,r为叶素绕风轮旋转中心的半径;
2)将气动升力Fl和气动阻力Fd分解为垂直于旋转平面的推力Fx和平行于旋转平面的切向力Fy
Fx=FlcosΦ+FdsinΦ
Fy=FlsinΦ-FdcosΦ
其中,Φ为相对入流角;
相对入流角Φ的计算公式为:
3)计算叶素局部气动阻尼矩阵计算公式为:
其中,为由叶素在挥舞方向动态变形引起的叶素挥舞气动阻尼,为由叶素在摆振方向动态变形引起的叶素挥舞气动阻尼,为由叶素在挥舞方向动态变形引起的叶素摆振气动阻尼,为由叶素在摆阵方向动态变形引起的叶素摆振气动阻尼;
4)计算风轮旋转坐标系下,第i阶叶片模态气动阻尼计算公式为:
其中,uRi为第i阶模态振型在风轮旋转坐标系下对应的模态坐标;
5)根据公式将风轮旋转坐标系转换至叶根坐标系,θ为两种坐标系的夹角,对应叶根坐标系下叶片模态气动阻尼的计算公式为:
其中,为叶片第i阶模态在叶根坐标系xB方向上的坐标,为叶片第i阶模态在叶根坐标系yB方向上的坐标;
6)叶片模态阻尼比的计算公式为:
其中,ξ为叶片模态阻尼比,Mi为第i阶叶片模态质量,ω′i为第i阶叶片模态角频率;
7)根据计算出的叶片模态气动阻尼及叶片模态阻尼比获取叶片模态气动阻尼及叶片模态阻尼比随桨距角变化的曲线,然后根据叶片模态气动阻尼大小设定相应的变桨速率,设定的变桨速率与叶片模态气动阻尼大小成正比。
CN201811051224.XA 2018-09-10 2018-09-10 一种风力发电机组停机控制方法和控制装置 Active CN109322787B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811051224.XA CN109322787B (zh) 2018-09-10 2018-09-10 一种风力发电机组停机控制方法和控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811051224.XA CN109322787B (zh) 2018-09-10 2018-09-10 一种风力发电机组停机控制方法和控制装置

Publications (2)

Publication Number Publication Date
CN109322787A true CN109322787A (zh) 2019-02-12
CN109322787B CN109322787B (zh) 2019-10-25

Family

ID=65264874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811051224.XA Active CN109322787B (zh) 2018-09-10 2018-09-10 一种风力发电机组停机控制方法和控制装置

Country Status (1)

Country Link
CN (1) CN109322787B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110552837A (zh) * 2019-07-22 2019-12-10 国电联合动力技术有限公司 柔性塔筒风电机组停机控制方法、装置及风电机组
CN112283051A (zh) * 2020-12-25 2021-01-29 浙江中自庆安新能源技术有限公司 一种基于升力线模型的振动信号特征优化方法及系统
CN112746929A (zh) * 2019-10-31 2021-05-04 江苏金风科技有限公司 叶片失速监控方法、装置、设备及存储介质
CN113446149A (zh) * 2020-03-27 2021-09-28 新疆金风科技股份有限公司 风力发电机组的控制方法和装置
CN114076065A (zh) * 2020-08-13 2022-02-22 新疆金风科技股份有限公司 识别风力发电机组的叶片失速的方法及设备
CN116221015A (zh) * 2023-04-28 2023-06-06 三峡智控科技有限公司 一种基于叶片攻角的风力发电机组叶片失效保护方法
US11959460B2 (en) 2019-11-21 2024-04-16 Vestas Wind Systems A/S Stopping a wind turbine rotor using pre-set pitch rates

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100068057A1 (en) * 2008-09-18 2010-03-18 Gamesa Innovation & Technology, S.L. Method for stopping a wind turbine in two stages
WO2014173417A1 (en) * 2013-04-22 2014-10-30 Vestas Wind Systems A/S A method for controlling a wind turbine during shutdown
CN106121914A (zh) * 2016-08-26 2016-11-16 三重型能源装备有限公司 极端状态下风机的停机方法和系统
CN106884760A (zh) * 2016-11-25 2017-06-23 科诺伟业风能设备(北京)有限公司 一种风力发电机组紧急顺桨控制方法
CN106968886A (zh) * 2017-05-18 2017-07-21 国电联合动力技术有限公司 一种风电机组的紧急收桨方法
CN107701368A (zh) * 2017-09-06 2018-02-16 国电联合动力技术有限公司 一种风电机组的叶片顺桨方法
CN108150350A (zh) * 2017-11-24 2018-06-12 南京风电科技有限公司 一种风力发电机组变速率收桨控制方法
CN208380747U (zh) * 2018-06-04 2019-01-15 南京风电科技有限公司 一种风力发电机组变速率顺桨的变桨系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100068057A1 (en) * 2008-09-18 2010-03-18 Gamesa Innovation & Technology, S.L. Method for stopping a wind turbine in two stages
WO2014173417A1 (en) * 2013-04-22 2014-10-30 Vestas Wind Systems A/S A method for controlling a wind turbine during shutdown
CN106121914A (zh) * 2016-08-26 2016-11-16 三重型能源装备有限公司 极端状态下风机的停机方法和系统
CN106884760A (zh) * 2016-11-25 2017-06-23 科诺伟业风能设备(北京)有限公司 一种风力发电机组紧急顺桨控制方法
CN106968886A (zh) * 2017-05-18 2017-07-21 国电联合动力技术有限公司 一种风电机组的紧急收桨方法
CN107701368A (zh) * 2017-09-06 2018-02-16 国电联合动力技术有限公司 一种风电机组的叶片顺桨方法
CN108150350A (zh) * 2017-11-24 2018-06-12 南京风电科技有限公司 一种风力发电机组变速率收桨控制方法
CN208380747U (zh) * 2018-06-04 2019-01-15 南京风电科技有限公司 一种风力发电机组变速率顺桨的变桨系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110552837A (zh) * 2019-07-22 2019-12-10 国电联合动力技术有限公司 柔性塔筒风电机组停机控制方法、装置及风电机组
CN112746929A (zh) * 2019-10-31 2021-05-04 江苏金风科技有限公司 叶片失速监控方法、装置、设备及存储介质
CN112746929B (zh) * 2019-10-31 2022-07-26 江苏金风科技有限公司 叶片失速监控方法、装置、设备及存储介质
US11959460B2 (en) 2019-11-21 2024-04-16 Vestas Wind Systems A/S Stopping a wind turbine rotor using pre-set pitch rates
CN113446149A (zh) * 2020-03-27 2021-09-28 新疆金风科技股份有限公司 风力发电机组的控制方法和装置
CN113446149B (zh) * 2020-03-27 2022-10-21 新疆金风科技股份有限公司 风力发电机组的控制方法和装置
CN114076065A (zh) * 2020-08-13 2022-02-22 新疆金风科技股份有限公司 识别风力发电机组的叶片失速的方法及设备
CN114076065B (zh) * 2020-08-13 2023-09-26 金风科技股份有限公司 识别风力发电机组的叶片失速的方法及设备
CN112283051A (zh) * 2020-12-25 2021-01-29 浙江中自庆安新能源技术有限公司 一种基于升力线模型的振动信号特征优化方法及系统
CN116221015A (zh) * 2023-04-28 2023-06-06 三峡智控科技有限公司 一种基于叶片攻角的风力发电机组叶片失效保护方法
CN116221015B (zh) * 2023-04-28 2023-07-28 三峡智控科技有限公司 一种基于叶片攻角的风力发电机组叶片失效保护方法

Also Published As

Publication number Publication date
CN109322787B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
CN109322787B (zh) 一种风力发电机组停机控制方法和控制装置
Johnson et al. Wind turbine performance in controlled conditions: BEM modeling and comparison with experimental results
JP5979887B2 (ja) ピッチ角オフセット信号を決定するための、および、速度回避制御のための風力タービンロータのロータ周波数を制御するための方法およびシステム
CN106919749B (zh) 一种低噪声风力机叶片设计方法及低噪声风力机叶片
CN106224162B (zh) 风电机组的载荷模型建立方法及载荷控制方法
CN108843489B (zh) 基于限转速平滑功率控制的风机变桨优化方法
USH2057H1 (en) Load attenuating passively adaptive wind turbine blade
Ikeda et al. A robust biomimetic blade design for micro wind turbines
Shen et al. Multi-objective optimization of wind turbine blades using lifting surface method
Noyes et al. Pre-aligned downwind rotor for a 13.2 MW wind turbine
CN108488035B (zh) 永磁直驱风力发电机组失速和变桨混合控制方法
CN107559143A (zh) 一种大型风力机尾缘襟翼结构参数寻优及多目标襟翼优化控制方法
EP2350439A1 (en) Method for optimising the shape of an aerofoil and corresponding aerofoil
CN108843494B (zh) 基于斜线平滑功率控制的风机变桨优化方法
WO2023040141A1 (zh) 用于大湍流工况的风力发电机防超速组控制方法及系统
CN106762415A (zh) 一种降低风力发电机组叶轮不平衡极限载荷的方法
CN109268205B (zh) 一种基于智能风力机的风电场优化控制方法
CN108825434B (zh) 基于风轮动能平滑功率控制的风机变桨优化方法
CN106777499A (zh) 一种双馈异步风力发电机组的整机动态建模方法
Ye et al. Effect of serrated trailing-edge blades on aerodynamic noise of an axial fan
CN117592388A (zh) 一种基于cfd的风电场多机尾流模拟方法
Mahrous Computational fluid dynamics study of a modified Savonius rotor blade by universal consideration of blade shape factor concept
Anstock et al. A new approach for comparability of two-and three-bladed 20 MW offshore wind turbines
Sun et al. Control of corner separation to enhance stability in a linear compressor cascade by boundary layer suction
Frunzulica et al. Numerical investigations of passive flow control elements for vertical axis wind turbine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant