CN116221015B - 一种基于叶片攻角的风力发电机组叶片失效保护方法 - Google Patents

一种基于叶片攻角的风力发电机组叶片失效保护方法 Download PDF

Info

Publication number
CN116221015B
CN116221015B CN202310480365.8A CN202310480365A CN116221015B CN 116221015 B CN116221015 B CN 116221015B CN 202310480365 A CN202310480365 A CN 202310480365A CN 116221015 B CN116221015 B CN 116221015B
Authority
CN
China
Prior art keywords
blade
attack angle
wind
angle
generating set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310480365.8A
Other languages
English (en)
Other versions
CN116221015A (zh
Inventor
蔡昭兵
罗战
刘瑞博
王浩然
周立博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Three Gorges Technology Co ltd
Three Gorges Zhikong Technology Co ltd
Original Assignee
Three Gorges Technology Co ltd
Three Gorges Zhikong Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Three Gorges Technology Co ltd, Three Gorges Zhikong Technology Co ltd filed Critical Three Gorges Technology Co ltd
Priority to CN202310480365.8A priority Critical patent/CN116221015B/zh
Publication of CN116221015A publication Critical patent/CN116221015A/zh
Application granted granted Critical
Publication of CN116221015B publication Critical patent/CN116221015B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/548Trigonometric functions; Co-ordinate transformations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/06Wind turbines or wind farms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Algebra (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种基于叶片攻角的风力发电机组叶片失效保护方法,包括以下步骤:利用机组运行在线数据,依据理论公式在线计算两个叶片截面的攻角;分析叶片异常机组离线数据,根据离线数据推算叶片异常时间段叶片攻角变化率,确定叶片失效攻角变化率阈值;确定基于叶片攻角的风机叶片失效保护控制保护逻辑。本发明可以实现在不需要额外安装检测设备的情况下,在叶片完全失效前进行降载或停机保护,提升风力发电机组整机安全保护能力,后期经济效益明显。

Description

一种基于叶片攻角的风力发电机组叶片失效保护方法
技术领域
本发明涉及风力发电机组叶片失效保护领域,具体涉及一种基于叶片攻角的风力发电机组叶片失效保护方法。
背景技术
现有技术对于风力发电机组针对叶片失效的整机安全保护有如下方法:1)依赖现有安装在机舱的振动加速度传感器监测数据设置相关故障保护,包括振动时域保护,如:机舱加速度值超限保护,振动冲击保护等;振动频域保护,如:叶轮平面模态异常等;2)在风力发电机组上新增智能传感设备,如在叶片根部安装振动以及载荷测量传感器,通过检测叶根振动、叶根载荷数据,或者在机舱安装叶片净空监测设备,来实现相关降载算法或设置相关故障保护。
仅仅依赖现有的机舱振动加速度传感器设置相关振动保护,考虑到叶片失效后的振动能量传递到机舱上有限,一旦机舱振动传感器检测到较大振动值,此时叶片可能已经出现严重开裂甚至断裂,并且存在很大倒塔风险;并且由于叶轮平面模态频率较多,有些频率可能还和塔架频率有重叠,因此即使从振动频率方面进行预警保护,也会存在保护不完善或过保护情况。通过新增叶根振动及载荷传感器或者叶片净空监测设备去直接监测叶片失效情况,但是由于风力发电机组所处环境的复杂性,一些智能传感设备的可靠性也受到一定限制,如市场上监测叶片净空普遍采用激光测距方式,而在大雾或者雨雪条件下,叶片净空测量可靠性大打折扣。
发明内容
为了解决现有技术存在的问题,本发明的目的在于提供了一种基于叶片攻角的风力发电机组叶片失效保护方法,可以实现在不需要额外安装检测设备的情况下,在叶片完全失效前进行降载或停机保护,提升风力发电机组整机安全保护能力,后期经济效益明显。
为进一步实现上述目的,本发明采用以下技术方案:
一种基于叶片攻角的风力发电机组叶片失效保护方法,包括以下步骤:
利用机组运行在线数据,依据理论公式在线计算两个叶片截面的攻角;
分析叶片异常机组离线数据,根据离线数据推算叶片异常时间段叶片攻角变化率,确定叶片失效攻角变化率阈值;
确定基于叶片攻角的风机叶片失效保护控制保护逻辑。
可选地,所述在线数据包括风速、风向、发电机转速、发电机转矩。
可选地,所述的叶片攻角计算,具体为:
(1)轴向诱导因子计算:
叶尖速比为:
根据公式:
计算理论功率:
风能利用系数为:
轴向诱导因子系数:
轴向诱导因子为:
式中:ω为风轮转速,V为风速,r为叶轮半径,ρ为空气密度,T为发电机转矩,S为风轮扫风面积;
2)不同叶片截面攻角计算:
选取距离叶根距离50%和80%的两个截面,通过查叶片翼型参数表,得到两个截面的扭角θ;
根据公式计算两个截面的平行于叶轮旋转面线速度和垂直于叶轮旋转面线速度;
考虑对风偏差后平行于叶轮旋转面线速度:
考虑对风偏差后分解至垂直叶轮旋转面的分解风速:
入流角为:
;
故不同叶片截面的叶片攻角为:
;
式中:为距离叶根的截面位置与叶片长度的百分比,分别为50%和80%;V为风速,为对风偏差角,一般是风向角-180°;a为轴向诱导因子,/>为桨距角,/>为叶尖线速度。
可选地,所述的叶片异常离线数据分析具体为:
选取一台因叶片失效导致叶片断裂的风力发电机组在叶片断裂前一段时间的离线数据,在Simulink中根据计算不同叶片截面的叶片攻角的公式搭建攻角计算模型,并将筛选过的离线数据读入Simulink中,运行模型得到一段时间内两个叶片截面的攻角值。
进一步地,所述的断裂前一段时间为从叶片断裂时间点起向前溯源找到叶片攻角异常的时间点。
可选地,所述的确定基于叶片攻角的风机叶片失效保护控制保护逻辑,具体为:
风力发电机组叶片攻角变化率绝对值的在线值大于阈值1,持续时间1,执行降载算法;
风力发电机组叶片攻角变化率绝对值的在线值大于阈值2,持续时间2,执行停机保护。
进一步地,所述的降载算法包括抬桨距角。
与现有技术相比,本发明所产生的有益的技术效果如下:本发明从叶片失效机理入手,在不需要额外安装检测设备的情况下,充分利用风力发电机组现有运行数据,依据风力发电机组理论公式,在线计算得到叶片不同截面的叶片攻角,采用叶片攻角变化率作为叶片失效保护监测量,参考已有风力发电机组叶片失效情况下的离线数据,对叶片因失速失稳导致叶片失效的情况进行精准预警保护,依据叶片失速不同程度,分别进行降载或停机保护,提升风力发电机组整机安全保护能力,后期经济效益明显。
附图说明
图1为本发明基于叶片攻角的风力发电机组叶片失效保护方法的实施流程图;
图2为翼型面上的气流速度与载荷示意图;
图3为叶片翼型升力与叶片攻角关系示意图,其中,横坐标表示攻角值,纵坐标表示叶片翼型升力;
图4为叶片损伤机组叶片攻角离线值示意图;
图5为叶片损伤机组叶片攻角离线值示意图。
具体实施方式
为了便于本领域普通技术人员理解和实施本发明,下面结合附图及实施示例对本发明作进一步的详细描述,应当理解,此处所描述的实施示例仅用于说明和解释本发明,并不用于限定本发明。
本发明中,叶片攻角(angle of attack of blade)为:叶片翼型中弦线与气流方向的夹角,攻角的大小决定了翼型升阻力系数的高低,从而影响翼型构成的叶片的气动性能。
一种基于叶片攻角的风力发电机组叶片失效保护方法,如图1所示,包括以下步骤:
利用机组运行在线数据,包括风速、风向、发电机转速、发电机转矩等,依据理论公式在线计算两个叶片截面的攻角; 分析叶片异常机组离线数据,根据离线数据推算叶片异常时间段叶片攻角变 化率,确定叶片失效攻角变化率阈值;
确定基于叶片攻角的风机叶片失效保护控制保护逻辑。
本发明中,叶片攻角计算如下:
(1)轴向诱导因子计算:
叶尖速比为:
根据公式:
计算理论功率:
风能利用系数为:
根据原公式为,因求解3次方程较为复杂,更改为如下相似表达式求解;
轴向诱导因子系数为:
轴向诱导因子为:
式中:ω为风轮转速,V为风速,r为叶轮半径,ρ为空气密度,T为发电机转矩,S为风轮扫风面积;
(2)不同叶片截面攻角计算:
选取距离叶根距离50%和80%的两个截面,通过查叶片翼型参数表,得到两个截面的扭角θ;其中,叶片翼型参数表来自于叶片模型,如Bladed的5MW_demo整机模型中长度为57m的叶片不同截面的扭角参数参看表1。
表1 Bladed的5MW_demo整机模型中长度为57m的叶片不同截面的扭角参数
根据公式计算两个截面的平行于叶轮旋转面线速度和垂直于叶轮旋转面线速度;
考虑对风偏差后平行于叶轮旋转面线速度:
;
考虑对风偏差后分解至垂直叶轮旋转面的分解风速:
;
入流角为:
;
故不同叶片截面的叶片攻角为:
;
式中:为距离叶根的截面位置与叶片长度的百分比,分别为50%和80%;V为风速,为对风偏差角,一般是风向角-180°;a为轴向诱导因子,/>为桨距角,/>为叶尖线速度,abs表示取绝对值函数,atan表示反正切函数。
本发明中,叶片翼型上载荷与不同叶片截面的叶片攻角的相关性:
图2为叶片一个翼型面上的气流速度与载荷的示意图,依据叶素动量理论,可知:翼型截面微观厚度的x,y方向载荷可以表示为:
其中:为单位升力与单位阻力,可通过查叶片翼型参数表得到;/>是不同叶片截面的叶片攻角。
本发明中,叶片翼型升力与不同叶片截面的叶片攻角的关系如图3所示。
由图3可知,叶片翼型升力(纵坐标)随着叶片攻角(横坐标)增加先增大后减小,一般风力发电机组运行在图中A点时升力最大,此时叶片吸收风能出力最大,同时也是叶片容易发生失稳的临界点,若此时叶片攻角进一步增加,翼型升力系数将减小,理论上,而带有攻角的升力系数的变化率为负会造成运行在失速流中的风轮产生摇摆,那么气动阻力也相应地为负,进而导致叶片气动不稳定性,并且叶片攻角变化率越大,翼型升力系数变化率越大,此时易导致叶片失效。
本发明中,叶片异常离线数据分析如下: 选取一台因叶片失效导致叶片断裂的风力发电机组在叶片断裂前一段时间(即从叶片断裂时间点起向前溯源找到叶片攻角异常的时间点,一般是一周以内的数据)的离线数据,在仿真软件Simulink中根据上文计算不同叶片截面的叶片攻角的公式搭建攻角计算模型,并将筛选过的离线数据读入Simulink中,运行模型得到一段时间内两个叶片截面的攻角值,如图4~图5所示,可以看到,在10分钟内出现了两次叶片攻角超过临界值(距叶根处50%长度的叶片截面的叶片攻 角失速临界值为15度,距叶根处80%长度的叶片截面的叶片攻角失速临界值为13.5度),并且上升速率较大,基于此可以得到叶片攻角变化率保护阈值。
本发明中,基于叶片攻角的叶片失效保护控制保护逻辑确定,具体为:
基于以上关于叶片攻角变化率对叶片失稳失效的影响,以及基于风力发电机组叶片失效离线数据得出的叶片失效的叶片攻角变化率阈值,最终确定基于叶片攻角的风机叶片失效保护控制保护逻辑。如:
风力发电机组叶片攻角变化率绝对值的在线值大于阈值1,持续时间1,执行降载算法(抬桨距角);
抬桨距角指风力发电机组的收桨过程,收桨到一个安全桨距角,如本实施例中机组的安全桨距角为10度;
如图4~图5所示,阈值1来自图4纵坐标叶片攻角的变化率,具体可以设置为0.75deg/s,持续时间1为20s;
风力发电机组叶片攻角变化率绝对值的在线值大于阈值2,持续时间2,执行停机保护;
如图4~图5所示,阈值2来自图5纵坐标叶片攻角的变化率,具体可以设置为1.5deg/s,持续时间2为10s。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解得到的变换或者替换,都应该涵盖在本发明的包含范围之内。

Claims (6)

1.一种基于叶片攻角的风力发电机组叶片失效保护方法,其特征在于,包括以下步骤:
利用机组运行在线数据,依据理论公式在线计算两个叶片截面的攻角;
分析叶片异常机组离线数据,根据离线数据推算叶片异常时间段叶片攻角变化率,确定叶片失效攻角变化率阈值;
风力发电机组叶片攻角变化率绝对值的在线值大于阈值1,持续时间1,执行降载算法;
风力发电机组叶片攻角变化率绝对值的在线值大于阈值2,持续时间2,执行停机保护。
2.根据权利要求1所述的基于叶片攻角的风力发电机组叶片失效保护方法,其特征在于,所述在线数据包括风速、风向、发电机转速、发电机转矩。
3.根据权利要求1所述的基于叶片攻角的风力发电机组叶片失效保护方法,其特征在于,所述的叶片攻角计算,具体为:
(1)轴向诱导因子计算:
叶尖速比为:
根据公式:
计算理论功率:
风能利用系数为:
轴向诱导因子系数:
轴向诱导因子为:
式中:为叶轮转速,V为风速,r为叶轮半径,/>为空气密度,T为发电机转矩,S为叶轮扫风面积;
(2)不同叶片截面攻角计算:
选取距离叶根距离50%和80%的两个截面,通过查叶片翼型参数表,得到两个截面的扭角θ;
根据公式计算两个截面的平行于叶轮旋转面线速度和垂直于叶轮旋转面线速度;
考虑对风偏差后平行于叶轮旋转面线速度:
考虑对风偏差后垂直于叶轮旋转面线速度:
入流角为:
故不同叶片截面的叶片攻角为:
式中:为叶根到截面位置的距离与叶片长度的百分比,两个截面对应的/>分别为50%和80%;V为风速,/>为对风偏差角,/>=风向角-180°;a为轴向诱导因子,/>为桨距角,/>为叶尖线速度。
4.根据权利要求1所述的基于叶片攻角的风力发电机组叶片失效保护方法,其特征在于,所述的分析叶片异常机组离线数据具体为:
选取一台因叶片失效导致叶片断裂的风力发电机组在叶片断裂前一段时间的离线数据,在Simulink中根据计算不同叶片截面的叶片攻角的公式搭建攻角计算模型,并将筛选过的离线数据读入Simulink中,运行模型得到一段时间内两个叶片截面的攻角值。
5.根据权利要求4所述的基于叶片攻角的风力发电机组叶片失效保护方法,其特征在于,所述的叶片断裂前一段时间为从叶片断裂时间点起至向前溯源找到叶片攻角异常的时间点。
6.根据权利要求1所述的基于叶片攻角的风力发电机组叶片失效保护方法,其特征在于,所述的降载算法包括抬桨距角。
CN202310480365.8A 2023-04-28 2023-04-28 一种基于叶片攻角的风力发电机组叶片失效保护方法 Active CN116221015B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310480365.8A CN116221015B (zh) 2023-04-28 2023-04-28 一种基于叶片攻角的风力发电机组叶片失效保护方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310480365.8A CN116221015B (zh) 2023-04-28 2023-04-28 一种基于叶片攻角的风力发电机组叶片失效保护方法

Publications (2)

Publication Number Publication Date
CN116221015A CN116221015A (zh) 2023-06-06
CN116221015B true CN116221015B (zh) 2023-07-28

Family

ID=86577204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310480365.8A Active CN116221015B (zh) 2023-04-28 2023-04-28 一种基于叶片攻角的风力发电机组叶片失效保护方法

Country Status (1)

Country Link
CN (1) CN116221015B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109322787A (zh) * 2018-09-10 2019-02-12 许继集团有限公司 一种风力发电机组停机控制方法和控制装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2162349B2 (de) * 1971-12-16 1973-09-27 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Aufbäumregler, insbesondere für Flugzeuge
US9316207B2 (en) * 2011-10-25 2016-04-19 Institute Of Nuclear Energy Research Fault detection device for wind power generator and means of judgment thereof
EP2679808A1 (en) * 2012-06-28 2014-01-01 Siemens Aktiengesellschaft Stall detection of wind turbine blades
CN104675621B (zh) * 2015-03-02 2017-07-14 中船重工(重庆)海装风电设备有限公司 确定变速变桨风电机组叶片控制参数的方法及系统
CN106286152B (zh) * 2016-09-14 2018-12-04 北京金风科创风电设备有限公司 风力发电机组的叶片状态监测装置及监测方法
CN112746929B (zh) * 2019-10-31 2022-07-26 江苏金风科技有限公司 叶片失速监控方法、装置、设备及存储介质
CN114076065B (zh) * 2020-08-13 2023-09-26 金风科技股份有限公司 识别风力发电机组的叶片失速的方法及设备
CN115478993A (zh) * 2022-10-11 2022-12-16 中车株洲电力机车研究所有限公司 风力发电机组叶片失速监测方法及系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109322787A (zh) * 2018-09-10 2019-02-12 许继集团有限公司 一种风力发电机组停机控制方法和控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
垂直轴风力机非对称翼型叶片变攻角方法;张立军等;可再生能源;第34卷(第2期);第232-237页 *

Also Published As

Publication number Publication date
CN116221015A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
EP3440348B1 (en) Method and system for controlling a wind turbine to manage edgewise blade vibrations
US10202965B2 (en) Method and system for estimating the surface condition of a rotating blade
CN101298864B (zh) 运行风力涡轮机的方法和风力涡轮机
CN110005581A (zh) 一种风电机组叶片与塔筒净空的监测与控制方法
CN103850876B (zh) 一种适用于无载荷测量的风电机组独立变桨控制方法
CN103890383A (zh) 控制风力涡轮机的方法及相关系统
CN104454386B (zh) 风力发电机组结冰控制方法和装置
CN105134510A (zh) 一种风力发电机组变桨系统的状态监测和故障诊断方法
CN105134488B (zh) 一种风电机组的启动方法
Johnson et al. Methods for increasing region 2 power capture on a variable speed HAWT
CN107725286B (zh) 一种基于反时限控制的风力发电机组结冰检测控制方法
Dong et al. Blades icing identification model of wind turbines based on SCADA data
CN110067708B (zh) 一种使用功率曲线识别偏航对风不正的方法
CN112065659A (zh) 风电机组独立变桨控制方法和变桨综合监控方法及系统
EP3599375A1 (en) System and method for protecting wind turbines during extreme wind direction change
EP3643914B1 (en) System and method for protecting wind turbines from extreme and fatigue loads
EP3502463A1 (en) System and method for protecting wind turbines during wind gusts
CN103925155A (zh) 一种风电机组输出功率异常的自适应检测方法
CN107100802A (zh) 一种风力发电机组叶片冰载运行安全控制方法及系统
CN116221015B (zh) 一种基于叶片攻角的风力发电机组叶片失效保护方法
CN109964030B (zh) 基于雨滴尺寸控制风力涡轮机
CN207960833U (zh) 一种低气动噪声风电机组
CN112761865B (zh) 风电机组叶片的防雨蚀控制方法、装置及风力发电机
CN115478993A (zh) 风力发电机组叶片失速监测方法及系统
CN112283051B (zh) 一种基于升力线模型的振动信号特征优化方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: Unit 1-20, 2nd Floor, 2nd Floor, Commercial Office Building, Plot 2, A-04, South Side of Shuiyuan Road, Miyun District, Beijing, 101500

Patentee after: Three Gorges Technology Co.,Ltd.

Patentee after: Three Gorges Zhikong Technology Co.,Ltd.

Address before: 430070 4th floor, Beigang Village Industrial Park, No. 36, Shucheng Road, Hongshan District, Wuhan City, Hubei Province

Patentee before: Three Gorges Zhikong Technology Co.,Ltd.

Patentee before: Three Gorges Technology Co.,Ltd.

CP03 Change of name, title or address