CN109319840B - 一种制备铌酸锶/碳酸锶复合纳米材料的方法 - Google Patents

一种制备铌酸锶/碳酸锶复合纳米材料的方法 Download PDF

Info

Publication number
CN109319840B
CN109319840B CN201811360133.4A CN201811360133A CN109319840B CN 109319840 B CN109319840 B CN 109319840B CN 201811360133 A CN201811360133 A CN 201811360133A CN 109319840 B CN109319840 B CN 109319840B
Authority
CN
China
Prior art keywords
strontium
niobate
nano material
composite nano
snnb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811360133.4A
Other languages
English (en)
Other versions
CN109319840A (zh
Inventor
杜玉成
靳翠鑫
侯瑞琴
吴俊书
牛炎
方小军
梁嘉昕
李生辉
谷恒学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing special engineering design and research institute
Beijing University of Technology
Original Assignee
Beijing special engineering design and research institute
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing special engineering design and research institute, Beijing University of Technology filed Critical Beijing special engineering design and research institute
Priority to CN201811360133.4A priority Critical patent/CN109319840B/zh
Publication of CN109319840A publication Critical patent/CN109319840A/zh
Application granted granted Critical
Publication of CN109319840B publication Critical patent/CN109319840B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/186Strontium or barium carbonate
    • C01F11/187Strontium carbonate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供一种制备铌酸锶/碳酸锶复合纳米材料的方法,所述方法包括:以SnNb2O6纳米材料为原料,在氢氧化钾与氢氧化锶混合碱溶液中以及CO2存在下进行水热反应。本发明提供的方法可重复性好、操作简单,利于批量生产,可大大降低成本,提高效率,制备得到的SrNb2O6/SrCO3复合纳米材料质量稳定,在光催化水处理领域具有较好的应用前景,并且可以推动亚稳态铌酸盐结晶方法的发展,促进铌酸盐的实际应用研究。

Description

一种制备铌酸锶/碳酸锶复合纳米材料的方法
技术领域
本发明涉及功能材料制备领域,尤其涉及一种制备铌酸锶/碳酸锶复合纳米材料的方法。
背景技术
当前,寻找新型的二维纳米材料在纳米器件与光电催化领域具有重要意义,这归因于二维纳米材料具有纳米级的厚度,具有较好的小尺寸效应,且便于光生载流子的传输。
铌酸锶是一种新型的光催化材料,在气敏、催化、光学等领域具有巨大的应用潜力。但是由于氧化铌往往表现出了化学惰性,性质较为稳定,因此铌酸锶的合成多以固相合成为主,往往需要较高的固相反应温度,因此需要寻找温和的制备方法获取铌酸锶。
此外,考虑到目前在光降解移除抗生素的使用过程中,需要在液相体系中添加碳酸根以及双氧水,往往成本较高,因此将新型可见光催化剂铌酸锶与固态碳酸盐结合就成了一条有效的解决途径。为了简化复合材料的化学组分,本发明设计了一种铌酸锶/碳酸锶复合结构,通过液相化学手段加以合成,在不添加任何有机表面活性剂的条件下获得了铌酸锶/碳酸锶复合纳米材料。
发明内容
针对现有技术存在的问题,本发明提供一种制备铌酸锶/碳酸锶复合纳米材料的方法。
本发明提供一种制备铌酸锶/碳酸锶复合纳米材料的方法,包括:以SnNb2O6纳米材料为原料,在氢氧化钾与氢氧化锶混合碱溶液中以及CO2存在下进行水热反应。
所述SnNb2O6纳米材料可以为纳米片状或粉末状。
上述技术方案中,利用亚稳态的SnNb2O6纳米材料为原料,氢氧化钾用于溶解SnNb2O6纳米材料,氢氧化锶提供锶源,在CO2存在下反应生成二维片状结构的铌酸锶/碳酸锶复合纳米材料。该方法中氢氧化钾无可替代,若选用其他强碱如氢氧化钠,则只能得到铌酸钠与碳酸锶的混合物,而非异质结构。通过该方法制备的铌酸锶/碳酸锶复合纳米片形貌均一、稳定性好,在光电催化领域有较好的应用前景。
优选地,所述方法具体包括以下步骤:
(1)将SnNb2O6纳米材料分散于去离子水中,并添加氢氧化钾与氢氧化锶调成浆糊状;
(2)以步骤(1)得到的浆糊状混合物为反应前驱体,在含有CO2的密闭反应釜中进行热处理,即得所述铌酸锶/碳酸锶复合纳米材料。
优选地,步骤(1)中各物料用量关系为:每10mL去离子水中溶解0.1~0.2g SnNb2O6纳米材料、0.4~0.9g氢氧化钾和0.2~0.8g氢氧化锶。
进一步优选地,步骤(1)中各物料用量关系为:每10mL去离子水中溶解0.2gSnNb2O6纳米材料、0.9g氢氧化钾和0.2g氢氧化锶。
优选地,步骤(2)中所述热处理的温度为180~200℃,时间为12~24h。
进一步优选地,步骤(2)中所述热处理的温度为180℃,时间为24h。
步骤(2)生成的铌酸锶/碳酸锶复合纳米材料中碳酸锶与铌酸锶的比例可通过调节CO2的输入量实现。优选地,当SnNb2O6纳米材料用量为0.1~0.2g时,步骤(2)中CO2的输入量为0.2m3/h,自进行热处理开始起,维持1~4h。
作为本发明的一种优选方案,所述方法包括以下步骤:
(1)将SnNb2O6纳米材料分散于去离子水中,并添加氢氧化钾与氢氧化锶调成浆糊状;
其中,各物料用量关系为:每10mL去离子水中溶解0.1~0.2g SnNb2O6纳米材料、0.4~0.9g氢氧化钾和0.2~0.8g氢氧化锶;
(2)以步骤(1)得到的浆糊状混合物为反应前驱体,在含有CO2的密闭反应釜中进行热处理,温度为180~200℃,时间为12~24h,即得所述铌酸锶/碳酸锶复合纳米材料。
本发明第二目的为提供一种由上述方法制得的铌酸锶/碳酸锶复合纳米材料。该复合纳米材料为二维片状结构,碳酸锶负载在铌酸锶表面。
本发明第三目的为提供上述铌酸锶/碳酸锶复合纳米材料在光电催化领域的应用,例如可用于重金属离子六价铬的光催化还原,进而消除六价铬的水污染。
本发明提供的方法可重复性好、操作简单,利于批量生产,可大大降低成本,提高效率,制备得到的SrNb2O6/SrCO3复合纳米材料质量稳定,在光催化水处理领域具有较好的应用前景,并且可以推动亚稳态铌酸盐结晶方法的发展,促进铌酸盐的实际应用研究。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1制备得到的SrNb2O6/SrCO3复合纳米材料的X射线衍射图;
图2为实施例1制备得到的SrNb2O6/SrCO3复合纳米材料的低倍率扫描电镜图;
图3为实施例1制备得到的SrNb2O6/SrCO3复合纳米材料的高倍率扫描电镜图;
图4为实施例1制备得到的SrNb2O6/SrCO3复合纳米材料在光催化还原六价铬中的应用。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供一种制备铌酸锶/碳酸锶复合纳米材料的方法,包括以下步骤:
(1)将0.2g SnNb2O6纳米片分散于10mL去离子水中,并添加0.9g氢氧化钾与0.2g氢氧化锶,调成浆糊状;
(2)以步骤(1)得到的浆糊状混合物为反应前驱体,在含有CO2(输入量为0.2m3/h,自进行热处理开始起,维持输入4h)的密闭反应釜(容积为20mL)中进行热处理,温度为180℃,时间为24h,即得所述铌酸锶/碳酸锶(SrNb2O6/SrCO3)复合纳米材料。
图1为本实施例制备得到的SrNb2O6/SrCO3复合纳米材料的X射线衍射图。
图2和图3分别为本实施例制备得到的SrNb2O6/SrCO3复合纳米材料的低倍率扫描电镜图和高倍率扫描电镜图。
从图中可以看出,纳米片状的SrNb2O6负载于SrCO3表面生长,分散性好,形貌均一。
实施例2
本实施例提供一种制备铌酸锶/碳酸锶复合纳米材料的方法,包括以下步骤:
(1)将0.1g SnNb2O6纳米片分散于10mL去离子水中,并添加0.4g氢氧化钾与0.8g氢氧化锶,调成浆糊状;
(2)以步骤(1)得到的浆糊状混合物为反应前驱体,在含有CO2(输入量为0.2m3/h,自进行热处理开始起,维持输入2h)的密闭反应釜(容积为20mL)中进行热处理,温度为200℃,时间为12h,即得所述铌酸锶/碳酸锶(SrNb2O6/SrCO3)复合纳米材料。
实施例3
本实施例提供一种制备铌酸锶/碳酸锶复合纳米材料的方法,包括以下步骤:
(1)将0.2g SnNb2O6纳米片分散于10mL去离子水中,并添加0.6g氢氧化钾与0.5g氢氧化锶,调成浆糊状;
(2)以步骤(1)得到的浆糊状混合物为反应前驱体,在含有CO2(输入量为0.2m3/h,自进行热处理开始起,维持输入1h)的密闭反应釜(容积为20mL)中进行热处理,温度为180℃,时间为12h,即得所述铌酸锶/碳酸锶(SrNb2O6/SrCO3)复合纳米材料。
实施例4
本实施例提供一种制备铌酸锶/碳酸锶复合纳米材料的方法,包括以下步骤:
(1)将0.15g SnNb2O6纳米片分散于10mL去离子水中,并添加0.8g氢氧化钾与0.3g氢氧化锶,调成浆糊状;
(2)以步骤(1)得到的浆糊状混合物为反应前驱体,在含有CO2(输入量为0.2m3/h,自进行热处理开始起,维持输入3h)的密闭反应釜(容积为20mL)中进行热处理,温度为190℃,时间为24h,即得所述铌酸锶/碳酸锶(SrNb2O6/SrCO3)复合纳米材料。
通过扫描电镜观察,实施例1~4中实施例1制备得到的产品最好;实施例2~4制备得到的SrNb2O6/SrCO3复合纳米材料的形貌与实施例1中的大致相同,只是由于CO2的输入量不同而导致具体的碳酸锶的生成量不同,进而导致碳酸锶与铌酸锶的比例不同。
对比例1
本对比例与实施例1的区别在于,将氢氧化钾替换为等量的氢氧化钠,其余步骤相同,最后得到的产物为铌酸钠与碳酸锶的混合物,而非异质结构。
应用例1
称取实施例1制得的SrNb2O6/SrCO3复合纳米材料粉末20mg,分散于含有10mg草酸助剂的60mL 80mg/L的K2Cr2O7水溶液中,室温下300W氙灯(λ≥420nm)辐照1h,即可完全实现六价铬离子的光还原,具体如图4所示。
可见,按照本发明方法制得的铌酸锶/碳酸锶复合纳米材料在光电催化领域有良好的应用。将实施例2~4制得的SrNb2O6/SrCO3复合纳米材料按照应用例1中的相同方法进行应用,结果实施例1制备得到的SrNb2O6/SrCO3复合纳米材料应用效果最好。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

1.一种制备铌酸锶/碳酸锶复合纳米材料的方法,其特征在于,包括以下步骤:
(1)将SnNb2O6纳米材料分散于去离子水中,并添加氢氧化钾与氢氧化锶调成浆糊状;其中各物料用量关系为:每10mL去离子水中溶解0.1~0.2g SnNb2O6纳米材料、0.4~0.9g氢氧化钾和0.2~0.8g氢氧化锶;
(2)以步骤(1)得到的浆糊状混合物为反应前驱体,在含有CO2的密闭反应釜中进行热处理,所述热处理的温度为180~200℃,时间为12~24h,即得所述铌酸锶/碳酸锶复合纳米材料。
2.根据权利要求1所述的方法,其特征在于,步骤(1)中各物料用量关系为:每10mL去离子水中溶解0.2g SnNb2O6纳米材料、0.9g氢氧化钾和0.2g氢氧化锶。
3.根据权利要求1所述的方法,其特征在于,步骤(2)中所述热处理的温度为180℃,时间为24h。
4.根据权利要求1所述的方法,其特征在于,步骤(2)中生成的碳酸锶与铌酸锶的比例可通过调节CO2的输入量实现。
5.根据权利要求4所述的方法,其特征在于,当SnNb2O6纳米材料用量为0.1~0.2g时,步骤(2)中CO2的输入量为0.2m3/h,自进行热处理开始起,维持1~4h。
6.一种铌酸锶/碳酸锶复合纳米材料,其特征在于,由如权利要求1~5任一项所述的方法制得。
7.权利要求6所述的铌酸锶/碳酸锶复合纳米材料在光电催化领域的应用。
CN201811360133.4A 2018-11-15 2018-11-15 一种制备铌酸锶/碳酸锶复合纳米材料的方法 Expired - Fee Related CN109319840B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811360133.4A CN109319840B (zh) 2018-11-15 2018-11-15 一种制备铌酸锶/碳酸锶复合纳米材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811360133.4A CN109319840B (zh) 2018-11-15 2018-11-15 一种制备铌酸锶/碳酸锶复合纳米材料的方法

Publications (2)

Publication Number Publication Date
CN109319840A CN109319840A (zh) 2019-02-12
CN109319840B true CN109319840B (zh) 2020-11-06

Family

ID=65257734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811360133.4A Expired - Fee Related CN109319840B (zh) 2018-11-15 2018-11-15 一种制备铌酸锶/碳酸锶复合纳米材料的方法

Country Status (1)

Country Link
CN (1) CN109319840B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110354880B (zh) * 2019-08-05 2022-06-07 桂林电子科技大学 一种锶铋氧-碳酸锶复合光催化剂及其制备方法和催化还原六价铬的应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102616852B (zh) * 2012-03-21 2013-11-06 西北工业大学 一种针状铌酸锶钾微晶粉体的制备方法
CN105669197A (zh) * 2016-02-01 2016-06-15 浙江大学 改进溶胶-凝胶法制备铌酸锶钡纳米粉体的方法
CN106634992A (zh) * 2016-12-30 2017-05-10 陕西科技大学 一种立方状铌酸锶钠红色荧光粉及其制备方法
CN107233909B (zh) * 2017-07-20 2020-02-21 江苏大学 一种铌酸锶/氮化碳复合纳米材料的制备方法及其用途
CN107903072B (zh) * 2017-11-01 2020-04-28 浙江大学 两步共沉淀法制备铌酸锶钡纳米粉体的方法

Also Published As

Publication number Publication date
CN109319840A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
Husin et al. Green fabrication of La-doped NaTaO3 via H2O2 assisted sol–gel route for photocatalytic hydrogen production
Duo et al. Enhanced visible light photocatalytic activity and stability of CQDs/BiOBr composites: the upconversion effect of CQDs
Allured et al. Enhancing the visible light absorbance of Bi2Ti2O7 through Fe-substitution and its effects on photocatalytic hydrogen evolution
Liu et al. Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation
Zhang et al. Atomically dispersed iron cathode catalysts derived from binary ligand-based zeolitic imidazolate frameworks with enhanced stability for PEM fuel cells
Wang et al. Ultrasonic-assisted fabrication of Cs2AgBiBr6/Bi2WO6 S-scheme heterojunction for photocatalytic CO2 reduction under visible light
Chen et al. Uniformly bimetal-decorated holey carbon nanorods derived from metal− organic framework for efficient hydrogen evolution
Zhou et al. Controllable doping of nitrogen and tetravalent niobium affords yellow and black calcium niobate nanosheets for enhanced photocatalytic hydrogen evolution
Acharya et al. MoS2-mesoporous LaFeO3 hybrid photocatalyst: Highly efficient visible-light driven photocatalyst
Ullah et al. Photocatalytic oxidation of water and air contaminants with metal doped BiTaO4 irradiated with visible light
Carvalho Jr et al. Stability of highly supersaturated vanadium electrolyte solution and characterization of precipitated phases for vanadium redox flow battery
Li et al. Influence of the precipitation pH on the compositions and properties of Bi-based oxyiodide photocatalysts
Husin et al. Photocatalytic hydrogen production over Ni/La-NaTaO3 nanoparticles from NaCl-water Solution in the presence of glucose as electron donor
Cai et al. Microwave-assisted synthesis of La–Cr co-doped SrTiO 3 nano-particles and their use in photocatalytic hydrogen evolution under visible light
CN109319840B (zh) 一种制备铌酸锶/碳酸锶复合纳米材料的方法
Duan et al. Secondary growth of hierarchical nanostructures composed only of Nb 3 O 7 F single-crystalline nanorods as a new photocatalyst for hydrogen production
Gao et al. A facile in situ hydrothermal etching method to CaTiO 3/TiO 2 heterostructure for efficient photocatalytic N 2 reduction
Yang et al. Facile microwave-assisted synthesis and effective photocatalytic hydrogen generation of Zn 2 GeO 4 with different morphology
Juntrapirom et al. Boosting photocatalytic coupling of amines to imines over BiOBr: Synergistic effects derived from hollow microsphere morphology
CN107840366B (zh) 暴露(110)晶面的BiOX微米棒及其合成方法
Luo et al. The TiO 2 (B) nano-belts with excellent performance prepared via alkaline stirring hydrothermal method and its application to remove 17α-ethynylestradiol
Yu et al. Mesoporous single crystal titanium oxide microparticles for enhanced visible light photodegradation
Du et al. Facile synthesis of β-PbO2 nanoparticles range from 10–30 nm and their application for ozone generation
Zhao et al. Visible light driven photocatalytic hydrogen evolution over CdS incorporated mesoporous anatase TiO 2 beads
US20040204313A1 (en) Phosphate photocatalyst comprising metal ion in d10 or d0 electron state

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201106

CF01 Termination of patent right due to non-payment of annual fee