CN109309216B - 一种锂硫电池正极材料的制备方法 - Google Patents

一种锂硫电池正极材料的制备方法 Download PDF

Info

Publication number
CN109309216B
CN109309216B CN201810948716.2A CN201810948716A CN109309216B CN 109309216 B CN109309216 B CN 109309216B CN 201810948716 A CN201810948716 A CN 201810948716A CN 109309216 B CN109309216 B CN 109309216B
Authority
CN
China
Prior art keywords
graphene
lithium
sulfur battery
carbon nanotube
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810948716.2A
Other languages
English (en)
Other versions
CN109309216A (zh
Inventor
燕绍九
王楠
彭思侃
陈翔
齐新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Graphene Technology Research Institute Co Ltd
Original Assignee
Beijing Graphene Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Graphene Technology Research Institute Co Ltd filed Critical Beijing Graphene Technology Research Institute Co Ltd
Priority to CN201810948716.2A priority Critical patent/CN109309216B/zh
Publication of CN109309216A publication Critical patent/CN109309216A/zh
Application granted granted Critical
Publication of CN109309216B publication Critical patent/CN109309216B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明是一种锂硫电池正极材料的制备方法。首先通过超声振荡方式将石墨烯/碳纳米管混合物分散到去离子水中;然后将高猛酸钾溶液逐滴加入分散液中,经氧化还原反应,二氧化锰纳米片均匀附着在石墨烯/碳纳米管表面,最后经熔化扩散方法使硫纳米颗粒均匀分布在石墨烯/碳纳米管@MnO2复合材料表面,得到石墨烯/碳纳米管@MnO2@S复合材料。该复合材料作为锂硫电池正极材料具有巨大比表面积、多孔结构、高导电性的优点,将其应用到锂硫电池中可显著提高正极材料倍率性能,有效解决电极反应过程中出现的容量衰减过快的问题。本发明简单易行,非常适用于工程化生产。

Description

一种锂硫电池正极材料的制备方法
技术领域
本发明涉及的是一种锂硫电池正极材料制备方法,具体涉及一种石墨烯/碳纳米管@MnO2@S复合材料制备方法。
背景技术
锂硫电池理论比能量为2600WhKg-1,是目前锂离子电池理论比能量 (500WhKg-1)的5倍,被公认为下一代最具前景的锂二次电池。有望在便携式电子产品、电动汽车、航天飞行器以及电网传输等领域得到广泛应用,在当今社会、经济及科技的发展上发挥着巨大的作用,具有十分光明的应用前景。
但是室温条件下,单质硫电导率低,在锂硫电池充放电过程中生成可溶性的多硫化物,造成多种副反应与体积变化,导致锂硫电池正极活性物质利用率低、倍率性能差以及循环寿命短,制约着硫作为锂二次电池正极材料电池的发展。因而,提高锂硫电池正极活性物质利用率和循环寿命成为锂硫电池是今后的重点发展方向。
石墨烯是一种新型二维纳米材料,其纳米片是由sp2杂化碳原子组成的单原子层厚度的二维材料,是已知的世上最薄、最坚硬的纳米材料,强度高达 1.01Tpa,是结构钢的100倍,密度却是结构钢的1/5。导热系数高达5300W/m· K,高于碳纳米管和金刚石,常温下电子迁移率超过200000cm2/V·S,高于纳米碳管或硅晶体,电阻率只约1Ω·m,比铜或银更低,为世上电阻率最小的材料。碳纳米管作为一维纳米材料,具有优异的导电性能。石墨烯/碳纳米管杂化材料有机的将石墨烯与碳纳米管以共价键的形式结合在一起。既可以防止石墨烯发生堆叠现象,同时形成三维导电网络,极大的提升了复合材料的电导率。
石墨烯/碳纳米管杂化材料具有非常高的电导率,将其用于锂硫电池正极材料可以解决硫元素不导电的问题,提高正极材料导电性。由于石墨烯/碳纳米管杂化材料的韧性和强度,以石墨烯作为锂硫电池正极材料骨架,能有效解决锂硫电池正极材料体积变化问题。但碳材料自身为非极性材料,对固定多硫化物的贡献有限。以MnO2为代表的金属氧化物由于自身为极性材料,其与多硫化物之间为强烈的化学作用,能有效吸附多硫化物,因此石墨烯/碳纳米管@MnO2复合材料成为锂硫电池正极材料理想骨架。
发明内容
本发明的目的是:针对现有锂硫电池正极材料存在的上述问题,提供一种石墨烯/碳纳米管@MnO2复合材料的制备方法。该方法以共沉淀反应的方式,通过高锰酸钾与碳材料之间的氧化还原反应生成MnO2沉淀并附着在碳材料表面,形成石墨烯/碳纳米管@MnO2复合材料,解决锂硫电池正极材料存在的诸多问题。
本发明的技术方案是:
提供1、一种锂硫电池正极材料制备方法,其特征在于:该方法的步骤如下:
步骤一、将石墨烯/碳纳米管材料分散于去离子水中,超声分散30min,得到石墨烯/碳纳米管分散液,该分散液中石墨烯/碳纳米管的浓度为 0.1~5.0mg/ml;将高锰酸钾溶解于去离子水中,配置成浓度为1.0~10mg/ml的高锰酸钾溶液;
步骤二、将高猛酸钾溶液逐滴加入石墨烯/碳纳米管分散液中,滴定速度为 5~10ml/min,搅拌6~12h;
步骤三、对石墨烯/碳纳米管分散液进行过滤得到石墨烯/碳纳米管@MnO2复合材料,石墨烯/碳纳米管@MnO2复合材料清洗后干燥,作为锂硫电池正极材料的前驱体材料;
步骤四、将前驱体材料与升华硫粉混合均匀,装入密封容器内进行加热,前驱体材料与升华硫粉质量比为1:1~1:9。
进一步的,步骤四中的加热温度为150~165℃,加热时间为12~24小时;步骤三中用去离子水和无水乙醇作为清洗剂,干燥通过真空干燥炉进行,干燥的烘干温度为至少60℃,烘干时间为18~24小时;
进一步的,制备得到的锂硫电池正极材料中的石墨烯为褶皱片状,片厚度为2~5nm,碳纳米管为单壁碳纳米管,MnO2纳米片厚度为1~4nm,硫颗粒直径为 5~20nm。
本发明的优点是:首先,石墨烯/碳纳米管杂化材料的高电导率有利于提高锂硫电池正极材料的导电性;其次,石墨烯/碳纳米管杂化材料的高强度和高韧性能够能有效调节多硫化物在电极反应过程中产生的体积变化;最后,MnO2在电极反应过程中能有效固定多硫化物,提高电池循环寿命。因此,以石墨烯/碳纳米管@MnO2@S作为锂硫电池正极材料能够有效提高锂硫电池的电化学性能。
附图说明
图1是石墨烯/碳纳米管@MnO2@S复合材料扫描照片图;
图2是石墨烯/碳纳米管@MnO2@S复合材料透射照片图。
具体实施方式
下面对本发明做进一步详细说明。
本发明提供一种锂硫电池正极材料制备方法,该方法的步骤如下:
步骤一、将石墨烯/碳纳米管材料分散于去离子水中,超声分散30min,得到石墨烯/碳纳米管分散液,该分散液中石墨烯/碳纳米管的浓度为 0.1-5.0mg/ml;将高锰酸钾溶解于去离子水中,配置成浓度为1.0-10mg/ml的高锰酸钾溶液;
步骤二、将高猛酸钾溶液逐滴加入石墨烯/碳纳米管分散液中,滴定速度为 5-10ml/min,搅拌6-12h;
步骤三、对石墨烯/碳纳米管分散液进行过滤得到石墨烯/碳纳米管@MnO2复合材料,石墨烯/碳纳米管@MnO2复合材料清洗后干燥,作为锂硫电池正极材料的前驱体材料;
步骤四、将前驱体材料与升华硫粉混合均匀,装入密封容器内进行加热,前驱体材料与升华硫粉质量比为1:1-1:9。
进一步的,步骤四中的加热温度为150-165℃,加热时间为12-24小时;步骤三中用去离子水和无水乙醇作为清洗剂,干燥通过真空干燥炉进行,干燥的烘干温度为至少60℃,烘干时间为18-24小时;
进一步的,制备得到的锂硫电池正极材料中的石墨烯为褶皱片状,片厚度为2-5nm,碳纳米管为单壁碳纳米管,MnO2纳米片厚度为1-4nm,硫颗粒直径为 5-20nm。
实施例1:
制备一种石墨烯/碳纳米管@MnO2@S复合材料的方法,包括如下步骤:
步骤一、将100mg石墨烯/碳纳米管杂化材料分散于500ml去离子水中,超声分散30min,得到浓度为0.2mg/ml的石墨烯/碳纳米管分散液;
步骤二、将27mg高锰酸钾溶解于20ml去离子水中,配置成浓度为 1.35mg/ml的高锰酸钾溶液;
步骤三、将高猛酸钾溶液逐滴加入石墨烯/碳纳米管分散液中,滴定速度为 5ml/min,磁力搅拌12h;
步骤四、采用真空抽滤方法,用去离子水和无水乙醇反复清洗后,将石墨烯/碳纳米管@MnO2复核材料放入真空干燥炉中烘干,烘干温度为60℃,烘干时间为24h;
步骤五、在手套箱中将石墨烯/碳纳米管@MnO2@S复合材料与升华硫粉混合,装入密封容器内,复合材料与硫粉质量比为1:3;
步骤六、将密封容器在烘干炉中加热,加热温度为155℃,加热时间为12h。

Claims (2)

1.一种锂硫电池正极材料制备方法,其特征在于,该方法的步骤如下:
步骤一、将石墨烯/碳纳米管材料分散于去离子水中,超声分散30 min,得到石墨烯/碳纳米管分散液,该分散液中石墨烯/碳纳米管的浓度为0.1~5.0 mg/ml;将高锰酸钾溶解于去离子水中,配置成浓度为1.0~10 mg/ml的高锰酸钾溶液;其中,所述石墨烯/碳纳米管材料的石墨烯与碳纳米管以共价 键的形式结合在一起,形成三维导电网格;
步骤二、将高锰酸钾溶液逐滴加入石墨烯/碳纳米管分散液中,滴定速度为5~10 ml/min,搅拌6~12 h;
步骤三、对石墨烯/碳纳米管分散液进行过滤得到石墨烯/碳纳米管@MnO2复合材料,石墨烯/碳纳米管@MnO2复合材料清洗后干燥,作为锂硫电池正极材料的前驱体材料;
步骤四、将前驱体材料与升华硫粉混合均匀,装入密封容器内进行加热,前驱体材料与升华硫粉质量比为1:1~1:9;
所述制备得到的锂硫电池正极材料中的石墨烯为褶皱片状,片厚度为2~5 nm,碳纳米管为单壁碳纳米管,MnO2纳米片厚度为1~4 nm,硫颗粒直径为5~20 nm。
2.根据权利要求1所述的锂硫电池正极材料制备方法,其特征在于:步骤四中的加热温度为150~165 ℃,加热时间为12~24小时;步骤三中用去离子水和无水乙醇作为清洗剂,干燥通过真空干燥炉进行,干燥的烘干温度为至少60 ℃,烘干时间为18~24小时。
CN201810948716.2A 2018-08-20 2018-08-20 一种锂硫电池正极材料的制备方法 Active CN109309216B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810948716.2A CN109309216B (zh) 2018-08-20 2018-08-20 一种锂硫电池正极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810948716.2A CN109309216B (zh) 2018-08-20 2018-08-20 一种锂硫电池正极材料的制备方法

Publications (2)

Publication Number Publication Date
CN109309216A CN109309216A (zh) 2019-02-05
CN109309216B true CN109309216B (zh) 2022-11-29

Family

ID=65223749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810948716.2A Active CN109309216B (zh) 2018-08-20 2018-08-20 一种锂硫电池正极材料的制备方法

Country Status (1)

Country Link
CN (1) CN109309216B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180701B (zh) * 2020-01-06 2022-07-05 深圳大学 一种锂硫电池正极材料及其制备方法
CN111261873A (zh) * 2020-02-12 2020-06-09 西京学院 一种N-MnO2/S复合材料制备及应用
CN112436114A (zh) * 2020-11-16 2021-03-02 扬州大学 一种三维石墨烯/碳纳米管/磷钨酸/硫复合材料、制备方法及其应用
CN112375545B (zh) * 2020-11-16 2021-07-02 桂林电子科技大学 一种二氧化锰-三聚氰胺甲醛树脂双壳层复合相变材料及其制备方法
CN113964302B (zh) * 2021-09-22 2023-06-27 西安交通大学 一种分级结构的碳纳米管/水钠锰矿/石墨烯复合正极材料、制备方法和应用
CN113937418B (zh) * 2021-10-11 2023-11-17 中科南京绿色制造产业创新研究院 一种锂硫电池隔膜及其制备方法和锂硫电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304354A (zh) * 2015-10-28 2016-02-03 上海大学 一种二氧化锰/碳材料复合纳米材料的制备方法
CN106129384A (zh) * 2016-09-07 2016-11-16 中南大学 一种二氧化锰纳米片包覆的碳/硫的复合物、制备方法及其应用
CN106374087A (zh) * 2016-09-30 2017-02-01 上海空间电源研究所 一种长循环锂硫电池用正极材料及其制备方法
CN107978463A (zh) * 2017-12-08 2018-05-01 天津工业大学 一种超级电容器用碳@二氧化锰复合多孔纳米纤维的制备方法
KR101930395B1 (ko) * 2017-06-27 2018-12-18 한국과학기술연구원 폴리에틸렌이마인과 이산화망간을 포함하는 리튬-황 이차전지용 양극재료 및 이를 포함하는 리튬-황 이차전지

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826537B (zh) * 2016-05-23 2018-01-30 扬州大学 纳米硫分子覆载在二氧化锰包覆碳球材料的制备方法
CN108198700B (zh) * 2018-01-16 2019-09-03 武汉联维新材料科技有限公司 一种石墨烯-碳纳米管/钴锰合金氧化物纳米片复合物的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304354A (zh) * 2015-10-28 2016-02-03 上海大学 一种二氧化锰/碳材料复合纳米材料的制备方法
CN106129384A (zh) * 2016-09-07 2016-11-16 中南大学 一种二氧化锰纳米片包覆的碳/硫的复合物、制备方法及其应用
CN106374087A (zh) * 2016-09-30 2017-02-01 上海空间电源研究所 一种长循环锂硫电池用正极材料及其制备方法
KR101930395B1 (ko) * 2017-06-27 2018-12-18 한국과학기술연구원 폴리에틸렌이마인과 이산화망간을 포함하는 리튬-황 이차전지용 양극재료 및 이를 포함하는 리튬-황 이차전지
CN107978463A (zh) * 2017-12-08 2018-05-01 天津工业大学 一种超级电容器用碳@二氧化锰复合多孔纳米纤维的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A MnO2/Graphene Oxide/Multi-Walled Carbon Nanotubes-Sulfur Composite with Dual-Efficient Polysulfide Adsorption for Improving Lithium-Sulfur Batteries;LiYong;《ACS Appl. Mater. Interfaces》;20160729;第8卷;正文结果与讨论、小结和实验部分 *

Also Published As

Publication number Publication date
CN109309216A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
CN109309216B (zh) 一种锂硫电池正极材料的制备方法
Yan et al. Design, synthesis, and application of metal sulfides for Li–S batteries: progress and prospects
Shao et al. Facile synthesis of metal-organic framework-derived Co3O4 with different morphologies coated graphene foam as integrated anodes for lithium-ion batteries
Wang et al. Layer by layer assembly of sandwiched graphene/SnO 2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties
Sun et al. Catalytic Co 9 S 8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries
CN102299326B (zh) 一种石墨烯改性的磷酸铁锂/碳复合材料及其应用
Jiang et al. Enhanced electrochemical performances of FeO x–graphene nanocomposites as anode materials for alkaline nickel–iron batteries
Deng et al. Three-dimensional structure-based tin disulfide/vertically aligned carbon nanotube arrays composites as high-performance anode materials for lithium ion batteries
Huang et al. Synergetic restriction to polysulfides by hollow FePO4 nanospheres wrapped by reduced graphene oxide for lithium–sulfur battery
Kumar et al. Three-dimensional graphene-decorated copper-phosphide (Cu3P@ 3DG) heterostructure as an effective electrode for a supercapacitor
CN110957490A (zh) 一种中空结构的碳包覆磷酸铁钠电极材料的制备方法
Yang et al. Nickel cobalt selenides on black phosphorene with fast electron transport for high-energy density sodium-ion half/full batteries
Liu et al. Self‐Supported Transition Metal‐Based Nanoarrays for Efficient Energy Storage
Huang et al. Al3+-doped FeNb11O29 anode materials with enhanced lithium-storage performance
CN104716307A (zh) 负极活性物质、其制备方法以及包含它的可再充电锂电池
Geng et al. Porous Fe 3 O 4 hollow spheres with chlorine-doped-carbon coating as superior anode materials for lithium ion batteries
Zhu et al. Yolk-void-shell Si–C nano-particles with tunable void size for high-performance anode of lithium ion batteries
Gu et al. Hydrolysis-coupled redox reaction to 3D Cu/Fe3O4 nanorod array electrodes for high-performance lithium-ion batteries
Li et al. Preparation of Fe3O4/FexSy heterostructures via electrochemical deposition method and their enhanced electrochemical performance for lithium-sulfur batteries
Lin et al. Solvothermal alcoholysis synthesis of hierarchically porous TiO2-carbon tubular composites as high-performance anodes for lithium-ion batteries
Xiang et al. Nitrogen-doped carbon–cobalt-modified MnO nanowires as cathodes for high-performance lithium sulfur batteries
Han et al. Dual carbon-confined Sb 2 Se 3 nanoparticles with pseudocapacitive properties for high-performance lithium-ion half/full batteries
Majeed et al. Silicon-based anode materials for lithium batteries: recent progress, new trends, and future perspectives
Shen et al. Facile preparation of unique three-dimensional (3D) α-MnO 2/MWCNTs macroporous hybrid as the high-performance cathode of rechargeable Li-O 2 batteries
Xuan et al. Synthesis of NiMoO 4@ Co 3 O 4 hierarchical nanostructure arrays on reduced graphene oxide/Ni foam as binder-free electrode for asymmetric supercapacitor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20211209

Address after: No. 108, 1f, building 1, yard 3, Fengzhi East Road, Haidian District, Beijing 100094

Applicant after: BEIJING GRAPHENE TECHNOLOGY RESEARCH INSTITUTE Co.,Ltd.

Address before: Science and technology development department, No.81 box, Haidian District, Beijing 100095

Applicant before: AECC BEIJING INSTITUTE OF AERONAUTICAL MATERIALS

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant