CN109302709A - 面向移动边缘计算的车联网任务卸载与资源分配策略 - Google Patents

面向移动边缘计算的车联网任务卸载与资源分配策略 Download PDF

Info

Publication number
CN109302709A
CN109302709A CN201811075238.5A CN201811075238A CN109302709A CN 109302709 A CN109302709 A CN 109302709A CN 201811075238 A CN201811075238 A CN 201811075238A CN 109302709 A CN109302709 A CN 109302709A
Authority
CN
China
Prior art keywords
vehicle
cue
capacity
channel
link
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811075238.5A
Other languages
English (en)
Other versions
CN109302709B (zh
Inventor
张海波
荆昆仑
刘开健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201811075238.5A priority Critical patent/CN109302709B/zh
Publication of CN109302709A publication Critical patent/CN109302709A/zh
Application granted granted Critical
Publication of CN109302709B publication Critical patent/CN109302709B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

针对移动边缘计算(MEC)提供IT服务环境和云计算能力带来的高带宽、低时延优势,同时结合LTE免授权频谱(LTE‑U)技术,该文研究了车辆异构网络中基于(MEC)的任务卸载模式决策和资源分配问题。考虑链路差异化要求,即车辆到路边单元(V2I)链路的高容量和车辆到车辆(V2V)链路的高可靠性,我们将用户服务质量(QoS)建模为容量与时延的组合形式。首先采用改进的K‑means算法依据不同的QoS对请求车辆进行聚类从而确定通信模式,其次利用基于无竞争期(CFP)的LTE‑U,结合载波聚合(CA)技术,使用分布式Q‑Learning算法进行信道和功率分配。仿真结果表明,我们所提机制在保证了V2V链路可靠性的同时,而且最大化V2I遍历容量。

Description

面向移动边缘计算的车联网任务卸载与资源分配策略
技术领域
本发明涉及车辆异构网络中基于(MEC)的任务卸载模式决策和资源分配问题技术领域,特别涉及基于移动边缘计算的V2V、V2I任务卸载问题。
背景技术
车载通信可以提高道路安全和交通效率,为车辆提供更丰富的信息娱乐体验,最近得到了广泛研究。车辆到车辆(V2V)通信被认为是D2D(设备间通信)技术在车联网中的扩展模式,分为车对基础设施通信(V2I)、车对车通信(V2V)和V2I2V通信。车辆请求任务类型统一分为商娱类和智能交通类。商娱类任务涉及大量数据交换,需要频繁访问互联网或远程服务器,V2I链路可为该类任务提供高QoS(服务质量)的通信。而智能交通类需要以周期性访问的形式向周围车辆传播安全消息,V2V链路会对其提供较好的支持。
车载单元计算资源和计算能力有限,故可以借助周围的有线或无线泛在网络环境将其计算任务卸载到云服务器。联合4G LTE蜂窝网络和车辆自组织网(VANET)提出了基于协作的业务传输算法,评估了车辆可卸载数据大小,制定了卸载决策,使用V2I和V2V通信来量化最大数据内容。然而,VANET需要更短的等待时间以实现更实时和更可靠的响应。因此,移动边缘计算(MEC)作为一种新计算范例,通过将MEC服务器部署在路边单元(RSU)侧,为车辆提供高带宽、低时延的高质量服务。
发明内容
现有文献中用户仅通过授权频带与非授权频带的统筹划分来分配资源从而改善用户QoS,却很少考虑到为用户提供因自身需求不同的差异化服务。基于以上讨论,本文首先考虑如何为不同车辆提供差异化服务进而确定通信模式;其次,考虑到频谱资源的有限性,如何为车辆高效分配资源,保证系统稳健性。本文主要工作如下:
(1)构建一个部署有多个MEC和多个请求车辆的网络场景,其中服务节点(MEC和车辆)都配备有限的无线和计算资源。
(2)引入有效容量的概念,并将用户QoS要求建模为容量和延迟因子,组合这两个物理量为判定标准并采用K-means算法对QoS较低的车载单元进行聚类从而确定任务卸载方案。
(3)为了减轻授权频谱上的同频干扰并保证与非授权频谱上的WiFi用户共存,结合无竞争期(CFP)的LTE-U模式,制定了联合频谱分配、功率控制和频谱共享策略,利用Q-learning算法实现无线资源最优分配,最大化V2I链路遍历容量,并保证V2V链路可靠性。
具体实现方案包括以下步骤:
步骤101:构建基于MEC服务的车辆网络;
步骤102:确立通信模型建立目标规划问题;
步骤103:最大化V2I链路遍历容量,并保证V2V链路可靠性问题,具体由三个步骤组成:首先联合建模容量和时延因子作为K-means算法特征输入进行分簇,从而确定车辆通信模式;最后基于分簇结果,采用Q-learning算法作为增强型解决方案合理高效地配置资源从而最大化系统性能。
优选地,所述步骤101构建基于MEC服务的车辆网络框架包括:
考虑RSU与WiFi节点共存的V2X异构网络场景,MEC服务器部署于RSU侧。采用正交频分多址(OFDMA)来支持由RSU控制的授权频带中的车辆多路访问。对于非授权频带,采用载波侦听多址接入和冲突避免(CSMA/CA)机制实现与WiFi共存的模式。车辆密集部署且服从泊松分布,任务类型不同的车辆其通信模式不同。这里将车辆分为四种类型。授权频带中存在需要高容量V2I通信的M个车辆(CUE),表示为C={1,2,…,M},以及对时延要求高的K个V2V车辆(DUE),用D={1,2,…,K}表示。在WiFi节点与LTE-U共同部署的通信范围内,有U个WiFi用户(WUE)将任务卸载到WiFi节点,WiFi用户集合为W={1,2,…,U},在WiFi与RSU覆盖范围重叠区域的V2V车辆(VUE)表示为V={1,2,…,L}。
CUE因计算能力有限,计算任务ni需要通过RSU卸载到MEC服务器,由MEC服务器计算后将结果回传,任务上传需要RSU调度正交的资源块RB。RSU总的频率资源表示为R={1,2,…,F}。DUE能有效利用V2V链路的可靠性优势,将任务卸载到周边车辆进行计算。离CUE较远的DUE复用CUE的RB,因此与CUE存在一定的同层干扰。而离CUE较近的DUE使用与CUE正交的RB。关于LTE-U技术,接入信道间隙可分为竞争期(CP)和静默期(CFP)。在CP期间,VUE通过LTE-U技术与WUE竞争非授权频谱。然而,在CFP期间VUE可以充分利用基于LTE-U技术的非授权频谱。本文主要对基于CFP的LTE-U模式进行分析,VUE使用CA技术复用授权频谱和非授权频谱,从而提供系统容量。不难得出,VUE任务类型对时延有较高的容忍度。
假设本文中的所有车辆都配备单个天线,为了提高频谱利用率,DUE复用部分CUE上行链路的RBf,因此DUE与CUE之间存在干扰。而VUE在基于CFP的LTE-U技术支持下,复用授权频带CUE的RBf,因此CUE与VUE之间也存在干扰。因为RSU集中调度正交RB,所以我们假设VUE与DUE之间不存在干扰。
我们考虑到基于瞬时信道统计信息(CSI)进行资源管理时无法及时跟踪快速变化的无线信道,本文考虑缓慢衰落参数和CSI,定义CUEm与RSU之间信道增益hB,m如下:
其中,gB,m表示小尺度快速衰落功率参数,服从指数分布,βB,m是标准偏差为ζ的对数正态阴影衰落随机变量,A是路径损耗常数,Lm,B是第m个CUE与RSU之间的距离,α为衰减指数。第k个DUE到RSU的信道增益hB,k以及从第m个CUE到第k个DUE的干扰信道增益的定义表达式与hB,m类似。假设信道的大尺度衰落分量在RSU处是已知的,因为它们通常取决于用户的位置。基站可以预测V2I车辆衰落参数。V2V车辆的衰落参数在接收车辆处检测得到并定期报告给RSU。
对于资源块f,CUEm在RSU侧接收SINR(信干噪比)表示为:
其中,分别表示CUEm与DUEk的发射功率,σ2为噪声功率,ρk,m=1表示第k个DUE复用第m个CUE的RB,否则为0。同理,可类似定义DUEk在RSU侧接收SINR以及非授权频带中V2V链路的VUEl复用CUEm的资源块f'时的接收SINR
因此,用b0表示授权频带每个RB的带宽,b1表示非授权频带每个RB的带宽,则CUEm、DUEk、VUEl的容量分别表示为:
本文没有考虑VUE与WUE之间的干扰,只考虑VUE复用CUE资源时两者之间的干扰。
现有的物理层信道模型无法明确度量QoS,因此结合时延因子形成有效容量(EC)的链路层信道模型来量化QoS,用累积量生成函数表示容量与时延如下:
EC(ψ)=logE{e-ψQ(t)}
其中,ψ为时延因子,表示帧持续时间t内容量R(t)累积和,考虑到信道系数在t内保持不变并且对于每个帧独立变化的情况,在持续时间t内容量为一常量R。EC可表示为:
EC(ψ)=logE{e-ψtR}
因为信道是缓慢变化的,因此定义车辆可容忍的时延满足以下公式:
式中,Emax表示车辆可以容忍的最大时延。从上式可以看出,ψ越大表示链路质量越好,当ψ≈0时,EC收敛于遍历容量。
优选地,所述步骤102确立通信模型建立目标规划问题,建立目标优化问题;针对不同类型链路的差异化需求,即大容量的V2I链路和高可靠性的V2V链路需求,我们制定有效策略来最大化V2I总遍历容量,同时保证每个V2V链路的可靠通信。本文通过控制中断概率来保证V2V链路的可靠性,设置接收SINR低于预定阈值概率的门限值。系统的遍历容量是通过快衰落的长期平均值来计算的,这意味着在慢衰落的时间范围内码字长度跨越几个相干周期。应该指出,系统性能与遍历容量的接近程度取决于车载信道的时间变化快慢以及可容忍的延迟大小。在给定的时间段内,更快的变化会导致更多的信道状态,这使得系统性能更快地接近计算的遍历容量,因为码字需要遍历大部分(如果不是全部的话)信道状态来平均衰落效应。为此,将车载网络中的无线资源分配问题表述为:
优化目标的第一部分表示V2I链路没有复用RB的CUE容量,第二部分表示授权频带DUE复用V2I链路RB的容量,第三部分表示频带重叠区域D2D用户即VUE复用V2I链路CUE的RB的容量;C1(C2)通过控制CUE(DUE)的SINR低于设定阈值的中断概率p0(p1)来保证车辆的QoS;C3、C4和C5分别表示CUE、DUE和VUE的发射功率限定,表示V2I(V2V)链路上行最大发射功率;C6、C7为通信模式的数学模型,C1(C2)表示表示一个资源块至多可以同时被一个CUE和一个VUE复用,ρm,k表示一个资源块至多同时被一个CUE和一个DUE复用。
优选地,所述步骤103最大化V2I链路遍历容量,并保证V2V链路可靠性问题包括:联合建模容量和时延因子作为K-means算法特征输入进行分簇,从而确定车辆通信模式;其次基于分簇结果,采用Q-learning算法作为增强型解决方案合理高效地配置资源来最大化系统性能。
当车辆部署密度增加时,会有越来越多的D2D对复用CUE资源,随之产生强烈的同层干扰。本节将优化问题分解为模式选择和资源分配两部分。首先联合建模容量和时延因子作为K-means算法特征输入进行分簇,从而确定车辆通信模式;其次基于分簇结果,采用Q-learning算法作为增强型解决方案合理高效地配置资源来最大化系统性能。
K-means作为一种无监督的机器学习算法,广泛用于聚类问题,我们在RSU覆盖范围内结合车辆任务请求类型,依据联合建模后的QoS量化因子EC进行聚类,聚类形成V2I簇与V2V簇。对于V2V簇,建模车辆任务卸载为匹配模型来选择邻近车辆形成D2D对,下面详细介绍基于改进K-means算法的通信模式选择机制:
其中,Uj表示第j个簇,E表示最大簇数。num(Uj)表示簇j中车辆数目,Uj的簇心uj可由下式得到:
两个车辆基于欧式距离判断两者之间特征差额tr:
其中,xid、xjd表示d维欧式空间中的两个车辆。算法目标是最小化的目标函数平方误差和(SSE),由以下等式给出:
利用K-means进行模式选择算法的时间复杂度接近线性,为O(MET),其中M表示车辆的数量,E代表簇的数量,T表示迭代次数。设置最大迭代次数为it,则算法如下:
103-1-A:输入:请求车辆QoS数据集合为{EC1,EC2,…,ECmax},最大簇为E
103-1-B:输出:连簇集合{U1,U2,…,UE},且Ui={x1,x2,x3,…}
103-1-C:所有数据集分为一个簇。
for r=1:it
while num(U)≤E
for i=1:E
随机选择ui作为初始簇心。
while ui
根据式(1)计算从车辆j到ui之间的tr,
并划分j到tr最短的簇,重新计算每个簇的簇心。
end while
根据式(2)计算E个簇两两之间的SSE。
end for
选择最小的SSE作为划分的簇。
end while
end for
基于用户QoS的分簇结果,我们提出频谱和功率分配方案以改善车载通信性能。同时考虑到支持D2D的车载网络的独特特性,所提出的方案仅依赖于缓慢变化的大规模信道参数,并且仅需要每隔几百毫秒更新一次,从而与在车辆网络中直接应用传统的资源分配方案相比,显著降低了信令开销。我们借助Q-learning算法来实现最优资源调度。算法模型由以下参数构成:S={s1,s2,s3,…}表示个体状态集合;行为集合为A={a1,a2,a3,…};Q函数Q(s,a)矩阵中元素代表状态与行为一一对应的值;折扣因子θ反映未来回报相对当前回报的重要性且满足0<θ<1;学习速率δ(0<δ<1)定义为当前学习知识对先前学习知识的影响;策略π;回报函数r(s,a)。每个个体与环境交互得s∈S,按照策略π选择行为a∈A并继续与环境交互,随之更新s'∈S,同时产生回报函数r(s,a)反馈给学习个体,个体据此更新π和Q函数,经过多次学习后收敛,个体可以找到最优策略π*使优化目标达到最大。预期累计奖励函数由下式给出:
其中,rt π(s,a)表示t时刻采用策略π得到的回报。最优策略假设在st状态下采取行为at后,状态变为st+1,则依据贝叶斯最优准则,矩阵Q(s,a)可更新如下:
Q*(s,a)=E{rt+1+θmaxa'Q*(st+1,a')|st=s,at=a}
根据t时刻状态对{st,at}得到的回报函数rt,预测t+1时刻状态st+1,并更新Q矩阵如下所示:
在这里我们讨论一个分布式场景,每个车辆无从得知其他车辆信息,系统经过学习来更新行为和回报函数使性能资源配置最佳。为了在兼顾效率的同时遍历所有(s,a),在迭代过程中本文采用ε贪婪算法来选择行为。我们用信道与功率矩阵表示每个车辆i的行为,即ai=[ai,channel,ai,power],我们定义行为函数:
由上式可知,车辆以1-ε的概率选择使Q矩阵值最大的行为,而选择其他行为时服从均匀分布。将每次车辆选择的行为索引为状态矩阵,以此得出t时刻回报函数ri,t,我们将ri,t定义为车辆当前吞吐量与最大吞吐量比值:
其中,是车辆发射功率为Pmax且无干扰状态下的吞吐量。分布式无状态Q学习详细步骤如以下算法所述。该算法工作在物理层,允许操作当前的MAC层协议,在IEEE 802.11中,信道访问由CSMA/CA机制来控制,因此该算法可以促进物理层资源复用,提高系统性能。具体实现步骤如下:
103-3-A:输入:可用信道channel,可用功率power,SINR,
{U1,U2,…,UE},Ui={x1,x2,x3,…,xG}。
103-3-B:输出:每个车辆吞吐量Ri,t
103-3-C:初始化:t=1;折扣因子θ;学习率δ;探索速率ε;Q=0;最大迭代次数max_convergence_time。
for e=1:1:E
while t<max_convergence_time+1
顺序排列每一个车辆。
for g=1:1:G
根据式(4)给车辆xg选择行为ag=[ag,channel,ag,power],更新状态矩阵S。
更新
根据式(5)计算回报函数。
根据式(3)更新Q矩阵。
end for
计算车辆xg的遍历吞吐量。
t=t+1。
end while
end for
在基于分布式无状态Q-learning的资源分配策略中,假设每个车辆按顺序选择行为,以便在每次学习迭代时,以有序的方式进行资源分配,因此每次迭代时首先选择行为的顺序在其开始时随机选择,车辆根据初始化参数决定当前所有可能行为以及下一刻行为A={a1,a2,a3,…},得出状态矩阵S,更新Q(s,a)矩阵。基于此,车辆以1-ε的概率在所有可能状态中选择使Q值达到最大的行为,计算即刻回报函数,更新探索速率ε,继续执行下一次学习直至收敛或达到最大收敛次数。
本发明的有益效果在于:本发明针对车辆网系统中基于MEC任务卸载问题,考虑到资源有限、资源异构、任务多样化以及通信要求,构建一个基于MEC的卸载框架,提出一种多轮顺序组合拍卖机制,由层次分析法(AHP)排序、任务投标、获胜者决策三个阶段组成。实验结果表明,所提机制可以在时延和容量约束下,使请求车辆效益提高的同时最大化服务节点的效益。
附图说明
图1本发明所使用车联网系统任务卸载与资源分配模型图;
图2本发明所提车辆异构网中基于MEC的任务卸载与资源分配实施流程图;
图3本发明所提基于K-means模式选择图;
图4本发明所提参数δ、θ、ε对网络性能影响图;
图5本发明迭代次数与遍历容量关系图;
图6本发明不同β下车辆数目与系统性能关系图;
具体实施方式
为使本发明的目的、技术方案和优点表达得更加清楚明白,下面结合附图及具体实施案例对本发明做进一步详细说明。
图1本发明所使用车联网系统任务卸载与资源分配模型图,具体包括:
考虑RSU与WiFi节点共存的V2X异构网络场景,MEC服务器部署于RSU侧。采用正交频分多址(OFDMA)来支持由RSU控制的授权频带中的车辆多路访问。对于非授权频带,采用载波侦听多址接入和冲突避免(CSMA/CA)机制实现与WiFi共存的模式。车辆密集部署且服从泊松分布,任务类型不同的车辆其通信模式不同。这里将车辆分为四种类型。授权频带中存在需要高容量V2I通信的M个车辆(CUE),表示为C={1,2,…,M},以及对时延要求高的K个V2V车辆(DUE),用D={1,2,…,K}表示。在WiFi节点与LTE-U共同部署的通信范围内,有U个WiFi用户(WUE)将任务卸载到WiFi节点,WiFi用户集合为W={1,2,…,U},在WiFi与RSU覆盖范围重叠区域的V2V车辆(VUE)表示为V={1,2,…,L}。
图2本发明所提车辆异构网中基于MEC的任务卸载与资源分配实施流程图,包括以下步骤:
步骤101:构建基于MEC服务的车辆网络;
步骤102:确立通信模型建立目标规划问题;
步骤103:最大化V2I链路遍历容量,并保证V2V链路可靠性问题,具体由三个步骤组成:首先联合建模容量和时延因子作为K-means算法特征输入进行分簇,从而确定车辆通信模式;最后基于分簇结果,采用Q-learning算法作为增强型解决方案合理高效地配置资源从而最大化系统性能。
所述步骤101构建基于MEC服务的车辆网络框架包括:
考虑RSU与WiFi节点共存的V2X异构网络场景,MEC服务器部署于RSU侧。采用正交频分多址(OFDMA)来支持由RSU控制的授权频带中的车辆多路访问。对于非授权频带,采用载波侦听多址接入和冲突避免(CSMA/CA)机制实现与WiFi共存的模式。车辆密集部署且服从泊松分布,任务类型不同的车辆其通信模式不同。这里将车辆分为四种类型。授权频带中存在需要高容量V2I通信的M个车辆(CUE),表示为C={1,2,…,M},以及对时延要求高的K个V2V车辆(DUE),用D={1,2,…,K}表示。在WiFi节点与LTE-U共同部署的通信范围内,有U个WiFi用户(WUE)将任务卸载到WiFi节点,WiFi用户集合为W={1,2,…,U},在WiFi与RSU覆盖范围重叠区域的V2V车辆(VUE)表示为V={1,2,…,L}。
CUE因计算能力有限,计算任务ni需要通过RSU卸载到MEC服务器,由MEC服务器计算后将结果回传,任务上传需要RSU调度正交的资源块RB。RSU总的频率资源表示为R={1,2,…,F}。DUE能有效利用V2V链路的可靠性优势,将任务卸载到周边车辆进行计算。离CUE较远的DUE复用CUE的RB,因此与CUE存在一定的同层干扰。而离CUE较近的DUE使用与CUE正交的RB。关于LTE-U技术,接入信道间隙可分为竞争期(CP)和静默期(CFP)。在CP期间,VUE通过LTE-U技术与WUE竞争非授权频谱。然而,在CFP期间VUE可以充分利用基于LTE-U技术的非授权频谱。本文主要对基于CFP的LTE-U模式进行分析,VUE使用CA技术复用授权频谱和非授权频谱,从而提供系统容量。不难得出,VUE任务类型对时延有较高的容忍度。
假设本文中的所有车辆都配备单个天线,为了提高频谱利用率,DUE复用部分CUE上行链路的RBf,因此DUE与CUE之间存在干扰。而VUE在基于CFP的LTE-U技术支持下,复用授权频带CUE的RBf,因此CUE与VUE之间也存在干扰。因为RSU集中调度正交RB,所以我们假设VUE与DUE之间不存在干扰。
我们考虑到基于瞬时信道统计信息(CSI)进行资源管理时无法及时跟踪快速变化的无线信道,本文考虑缓慢衰落参数和CSI,定义CUEm与RSU之间信道增益hB,m如下:
其中,gB,m表示小尺度快速衰落功率参数,服从指数分布,βB,m是标准偏差为ζ的对数正态阴影衰落随机变量,A是路径损耗常数,Lm,B是第m个CUE与RSU之间的距离,α为衰减指数。第k个DUE到RSU的信道增益hB,k以及从第m个CUE到第k个DUE的干扰信道增益的定义表达式与hB,m类似。假设信道的大尺度衰落分量在RSU处是已知的,因为它们通常取决于用户的位置。基站可以预测V2I车辆衰落参数。V2V车辆的衰落参数在接收车辆处检测得到并定期报告给RSU。
对于资源块f,CUEm在RSU侧接收SINR(信干噪比)表示为:
其中,分别表示CUEm与DUEk的发射功率,σ2为噪声功率,ρk,m=1表示第k个DUE复用第m个CUE的RB,否则为0。同理,可类似定义DUEk在RSU侧接收SINR以及非授权频带中V2V链路的VUEl复用CUEm的资源块f'时的接收SINR
因此,用b0表示授权频带每个RB的带宽,b1表示非授权频带每个RB的带宽,则CUEm、DUEk、VUEl的容量分别表示为:
本文没有考虑VUE与WUE之间的干扰,只考虑VUE复用CUE资源时两者之间的干扰。
现有的物理层信道模型无法明确度量QoS,因此结合时延因子形成有效容量(EC)的链路层信道模型来量化QoS,用累积量生成函数表示容量与时延如下:
EC(ψ)=logE{e-ψQ(t)}
其中,ψ为时延因子,表示帧持续时间t内容量R(t)累积和,考虑到信道系数在t内保持不变并且对于每个帧独立变化的情况,在持续时间t内容量为一常量R。EC可表示为:
EC(ψ)=logE{e-ψtR}
因为信道是缓慢变化的,因此定义车辆可容忍的时延满足以下公式:
式中,Emax表示车辆可以容忍的最大时延。从上式可以看出,ψ越大表示链路质量越好,当ψ≈0时,EC收敛于遍历容量。
所述步骤102确立通信模型建立目标规划问题,建立目标优化问题包括:
针对不同类型链路的差异化需求,即大容量的V2I链路和高可靠性的V2V链路需求,我们制定有效策略来最大化V2I总遍历容量,同时保证每个V2V链路的可靠通信。本文通过控制中断概率来保证V2V链路的可靠性,设置接收SINR低于预定阈值概率的门限值。系统的遍历容量是通过快衰落的长期平均值来计算的,这意味着在慢衰落的时间范围内码字长度跨越几个相干周期。应该指出,系统性能与遍历容量的接近程度取决于车载信道的时间变化快慢以及可容忍的延迟大小。在给定的时间段内,更快的变化会导致更多的信道状态,这使得系统性能更快地接近计算的遍历容量,因为码字需要遍历大部分(如果不是全部的话)信道状态来平均衰落效应。为此,将车载网络中的无线资源分配问题表述为:
优化目标的第一部分表示V2I链路没有复用RB的CUE容量,第二部分表示授权频带DUE复用V2I链路RB的容量,第三部分表示频带重叠区域D2D用户即VUE复用V2I链路CUE的RB的容量;C1(C2)通过控制CUE(DUE)的SINR低于设定阈值的中断概率p0(p1)来保证车辆的QoS;C3、C4和C5分别表示CUE、DUE和VUE的发射功率限定,表示V2I(V2V)链路上行最大发射功率;C6、C7为通信模式的数学模型,C1(C2)表示表示一个资源块至多可以同时被一个CUE和一个VUE复用,ρm,k表示一个资源块至多同时被一个CUE和一个DUE复用。
所述步骤103最大化V2I链路遍历容量,并保证V2V链路可靠性问题包括:
联合建模容量和时延因子作为K-means算法特征输入进行分簇,从而确定车辆通信模式;其次基于分簇结果,采用Q-learning算法作为增强型解决方案合理高效地配置资源来最大化系统性能。
当车辆部署密度增加时,会有越来越多的D2D对复用CUE资源,随之产生强烈的同层干扰。本节将优化问题分解为模式选择和资源分配两部分。首先联合建模容量和时延因子作为K-means算法特征输入进行分簇,从而确定车辆通信模式;其次基于分簇结果,采用Q-learning算法作为增强型解决方案合理高效地配置资源来最大化系统性能。
K-means作为一种无监督的机器学习算法,广泛用于聚类问题,我们在RSU覆盖范围内结合车辆任务请求类型,依据联合建模后的QoS量化因子EC进行聚类,聚类形成V2I簇与V2V簇。对于V2V簇,建模车辆任务卸载为匹配模型来选择邻近车辆形成D2D对,下面详细介绍基于改进K-means算法的通信模式选择机制:
其中,Uj表示第j个簇,E表示最大簇数。num(Uj)表示簇j中车辆数目,Uj的簇心uj可由下式得到:
两个车辆基于欧式距离判断两者之间特征差额tr:
其中,xid、xjd表示d维欧式空间中的两个车辆。算法目标是最小化的目标函数平方误差和(SSE),由以下等式给出:
利用K-means进行模式选择算法的时间复杂度接近线性,为O(MET),其中M表示车辆的数量,E代表簇的数量,T表示迭代次数。设置最大迭代次数为it,则算法如下:
103-1-A:输入:请求车辆QoS数据集合为{EC1,EC2,…,ECmax},最大簇为E
103-1-B:输出:连簇集合{U1,U2,…,UE},且Ui={x1,x2,x3,…}
103-1-C:所有数据集分为一个簇。
for r=1:it
while num(U)≤E
for i=1:E
随机选择ui作为初始簇心。
while ui
根据式(1)计算从车辆j到ui之间的tr,
并划分j到tr最短的簇,重新计算每个簇的簇心。
end while
根据式(2)计算E个簇两两之间的SSE。
end for
选择最小的SSE作为划分的簇。
end while
end for
基于用户QoS的分簇结果,我们提出频谱和功率分配方案以改善车载通信性能。同时考虑到支持D2D的车载网络的独特特性,所提出的方案仅依赖于缓慢变化的大规模信道参数,并且仅需要每隔几百毫秒更新一次,从而与在车辆网络中直接应用传统的资源分配方案相比,显著降低了信令开销。我们借助Q-learning算法来实现最优资源调度。算法模型由以下参数构成:S={s1,s2,s3,…}表示个体状态集合;行为集合为A={a1,a2,a3,…};Q函数Q(s,a)矩阵中元素代表状态与行为一一对应的值;折扣因子θ反映未来回报相对当前回报的重要性且满足0<θ<1;学习速率δ(0<δ<1)定义为当前学习知识对先前学习知识的影响;策略π;回报函数r(s,a)。每个个体与环境交互得s∈S,按照策略π选择行为a∈A并继续与环境交互,随之更新s'∈S,同时产生回报函数r(s,a)反馈给学习个体,个体据此更新π和Q函数,经过多次学习后收敛,个体可以找到最优策略π*使优化目标达到最大。预期累计奖励函数由下式给出:
其中,是车辆发射功率为Pmax且无干扰状态下的吞吐量。分布式无状态Q学习详细步骤如以下算法所述。该算法工作在物理层,允许操作当前的MAC层协议,在IEEE 802.11中,信道访问由CSMA/CA机制来控制,因此该算法可以促进物理层资源复用,提高系统性能。具体实现步骤如下:
103-3-A:输入:可用信道channel,可用功率power,SINR,
{U1,U2,…,UE},Ui={x1,x2,x3,…,xG}。
103-3-B:输出:每个车辆吞吐量Ri,t
103-3-C:初始化:t=1;折扣因子θ;学习率δ;探索速率ε;Q=0;最大迭代次数max_convergence_time。
for e=1:1:E
while t<max_convergence_time+1
顺序排列每一个车辆。
for g=1:1:G
根据式(4)给车辆xg选择行为ag=[ag,channel,ag,power],更新状态矩阵S。
更新
根据式(5)计算回报函数。
根据式(3)更新Q矩阵。
end for
计算车辆xg的遍历吞吐量。
t=t+1。
end while
end for
在基于分布式无状态Q-learning的资源分配策略中,假设每个车辆按顺序选择行为,以便在每次学习迭代时,以有序的方式进行资源分配,因此每次迭代时首先选择行为的顺序在其开始时随机选择,车辆根据初始化参数决定当前所有可能行为以及下一刻行为A={a1,a2,a3,…},得出状态矩阵S,更新Q(s,a)矩阵。基于此,车辆以1-ε的概率在所有可能状态中选择使Q值达到最大的行为,计算即刻回报函数,更新探索速率ε,继续执行下一次学习直至收敛或达到最大收敛次数。
图3本发明所提基于K-means模式选择图,具体包括:
通过K-means算法决定哪些车辆将任务通过RSU卸载到MEC服务器,哪些车辆通过V2V链路卸载任务到临近车辆。从图可知,距离RSU近的车辆(CUE)因容量需求选择V2I通信方式,部分车辆(DUE)因对时延要求相比容量要求较高,因此选择V2V通信方式,DUE1与DUE2复用不同CUE资源,两者之间不存在干扰。而距离RSU较远车辆(VUE)为保证通信质量,通过RSU集中调度,在授权频带与非授权频带共存技术支持下感知并同时复用两种无线资源。
图4本发明所提参数δ、θ、ε对网络性能影响图,具体包括:
评估了学习速率δ、折扣因子θ、探索速率ε三者对系统遍历容量的影响。我们运行10000次迭代,并将每次迭代重复100次取平均结果。图4上方虚线表示网络最优遍历容量(无干扰)。从图可知,当θ=0.95、δ=1、ε=0.9时网络性能最好,意味着为实现性能最优,必须考虑给定动作的直接回报(δ=1),而不是以前的信息。θ=0.95表明最佳行动与当前行动之间要有足够的差额。另外当θ≈δ并且ε>0.5时有较好的系统性能。
图5本发明迭代次数与遍历容量关系图,具体包括:
将本文所提分布式Q-learning(QLRA)算法与随机资源分配算法(RRA)、穷举资源分配算法(EARA)进行性能比较。EARA算法通过牺牲运行时间遍历所有情况找到最优的分配解,因此在每次迭代中收敛到几乎最优。QLRA算法可在车辆密集部署无线网络中改善资源复用机制,通过利用最有益的分配行为来提高性能,随着迭代次数的增加接近并收敛到最优。而RRA算法随机分配资源,因此存在干扰导致性能最差。
图6本发明不同β下车辆数目与系统性能关系图,具体包括:
假设某时刻有T个车辆位于LTE与LTE-U技术重合区域,定义VUE在基于CFP的LTE-U模式下运行,运行比例为β,即有βT个车辆基于CA技术复用两种无线资源,有(1-β)T个车辆运行于CP的LTE-U模式下。图6表明,当β固定时,由于复用频谱造成的同频干扰,总和速率随着车辆数目数量的增加而减少。当β从0.2增加到0.4时,性能大幅度增加,因为基于CFP的LTE-U模式中存在更多的VUE以实现更高的吞吐量。RRA没有有效的资源调度,因此性能最差。所提QLRA算法不仅有较优的性能,而且与EARA相比,具有更低的计算复杂度而没有显著的性能损失。

Claims (4)

1.面向移动边缘计算的车联网任务卸载与资源分配策略,其特征在于,包括以下步骤:
步骤101:构建基于MEC服务的车辆网络;
步骤102:确立通信模型建立目标规划问题;
步骤103:最大化V2I链路遍历容量,并保证V2V链路可靠性问题,具体由三个步骤组成:首先联合建模容量和时延因子作为K-means算法特征输入进行分簇,从而确定车辆通信模式;最后基于分簇结果,采用Q-learning算法作为增强型解决方案合理高效地配置资源从而最大化系统性能。
2.根据权利要求1所述的面向移动边缘计算的车联网任务卸载与资源分配策略,其特征在于,所述步骤101构建基于MEC服务的车辆网络框架包括:
考虑RSU与WiFi节点共存的V2X异构网络场景,MEC服务器部署于RSU侧,采用正交频分多址(OFDMA)来支持由RSU控制的授权频带中的车辆多路访问,对于非授权频带,采用载波侦听多址接入和冲突避免(CSMA/CA)机制实现与WiFi共存的模式,车辆密集部署且服从泊松分布,任务类型不同的车辆其通信模式不同,这里将车辆分为四种类型,授权频带中存在需要高容量V2I通信的M个车辆(CUE),表示为C={1,2,L,M},以及对时延要求高的K个V2V车辆(DUE),用D={1,2,L,K}表示,在WiFi节点与LTE-U共同部署的通信范围内,有U个WiFi用户(WUE)将任务卸载到WiFi节点,WiFi用户集合为W={1,2,L,U},在WiFi与RSU覆盖范围重叠区域的V2V车辆(VUE)表示为V={1,2,L,L};
CUE因计算能力有限,计算任务ni需要通过RSU卸载到MEC服务器,由MEC服务器计算后将结果回传,任务上传需要RSU调度正交的资源块RB,RSU总的频率资源表示为R={1,2,L,F},DUE能有效利用V2V链路的可靠性优势,将任务卸载到周边车辆进行计算;离CUE较远的DUE复用CUE的RB,因此与CUE存在一定的同层干扰,而离CUE较近的DUE使用与CUE正交的RB,关于LTE-U技术,接入信道间隙可分为竞争期(CP)和静默期(CFP),在CP期间,VUE通过LTE-U技术与WUE竞争非授权频谱,然而在CFP期间VUE可以充分利用基于LTE-U技术的非授权频谱,本文主要对基于CFP的LTE-U模式进行分析,VUE使用CA技术复用授权频谱和非授权频谱,从而提供系统容量,不难得出,VUE任务类型对时延有较高的容忍度;
假设本文中的所有车辆都配备单个天线,为了提高频谱利用率,DUE复用部分CUE上行链路的RBf,因此DUE与CUE之间存在干扰,而VUE在基于CFP的LTE-U技术支持下,复用授权频带CUE的RBf,因此CUE与VUE之间也存在干扰,因为RSU集中调度正交RB,所以我们假设VUE与DUE之间不存在干扰;
我们考虑到基于瞬时信道统计信息(CSI)进行资源管理时无法及时跟踪快速变化的无线信道,本文考虑缓慢衰落参数和CSI,定义CUEm与RSU之间信道增益hB,m如下:
其中,gB,m表示小尺度快速衰落功率参数,服从指数分布,βB,m是标准偏差为ζ的对数正态阴影衰落随机变量,A是路径损耗常数,Lm,B是第m个CUE与RSU之间的距离,α为衰减指数,第k个DUE到RSU的信道增益hB,k以及从第m个CUE到第k个DUE的干扰信道增益的定义表达式与hB,m类似,假设信道的大尺度衰落分量在RSU处是已知的,因为它们通常取决于用户的位置,基站可以预测V2I车辆衰落参数,V2V车辆的衰落参数在接收车辆处检测得到并定期报告给RSU;
对于资源块f,CUEm在RSU侧接收SINR(信干噪比)表示为:
其中,分别表示CUEm与DUEk的发射功率,σ2为噪声功率,ρk,m=1表示第k个DUE复用第m个CUE的RB,否则为0;同理,可类似定义DUEk在RSU侧接收SINR以及非授权频带中V2V链路的VUEl复用CUEm的资源块f'时的接收SINR
因此,用b0表示授权频带每个RB的带宽,b1表示非授权频带每个RB的带宽,则CUEm、DUEk、VUEl的容量分别表示为:
本文没有考虑VUE与WUE之间的干扰,只考虑VUE复用CUE资源时两者之间的干扰;
现有的物理层信道模型无法明确度量QoS,因此结合时延因子形成有效容量(EC)的链路层信道模型来量化QoS,用累积量生成函数表示容量与时延如下:
EC(ψ)=logE{e-ψQ(t)}
其中,ψ为时延因子,表示帧持续时间t内容量R(t)累积和,考虑到信道系数在t内保持不变并且对于每个帧独立变化的情况,在持续时间t内容量为一常量R,EC可表示为:
EC(ψ)=log E{e-ψtR}
因为信道是缓慢变化的,因此定义车辆可容忍的时延满足以下公式:
式中,Emax表示车辆可以容忍的最大时延,从上式可以看出,ψ越大表示链路质量越好,当ψ≈0时,EC收敛于遍历容量。
3.根据权利要求1所述的面向移动边缘计算的车联网任务卸载与资源分配策略,其特征在于,所述步骤102确立通信模型建立目标规划问题,建立目标优化问题;针对不同类型链路的差异化需求,即大容量的V2I链路和高可靠性的V2V链路需求,我们制定有效策略来最大化V2I总遍历容量,同时保证每个V2V链路的可靠通信,本文通过控制中断概率来保证V2V链路的可靠性,设置接收SINR低于预定阈值概率的门限值,系统的遍历容量是通过快衰落的长期平均值来计算的,这意味着在慢衰落的时间范围内码字长度跨越几个相干周期,应该指出,系统性能与遍历容量的接近程度取决于车载信道的时间变化快慢以及可容忍的延迟大小,在给定的时间段内,更快的变化会导致更多的信道状态,这使得系统性能更快地接近计算的遍历容量,因为码字需要遍历大部分(如果不是全部的话)信道状态来平均衰落效应,为此,将车载网络中的无线资源分配问题表述为:
s.t.C1:
C2:
C3:
C4:
C5:
C6:
C7:
优化目标的第一部分表示V2I链路没有复用RB的CUE容量,第二部分表示授权频带DUE复用V2I链路RB的容量,第三部分表示频带重叠区域D2D用户即VUE复用V2I链路CUE的RB的容量;C1(C2)通过控制CUE(DUE)的SINR低于设定阈值的中断概率p0(p1)来保证车辆的QoS;C3、C4和C5分别表示CUE、DUE和VUE的发射功率限定,表示V2I(V2V)链路上行最大发射功率;C6、C7为通信模式的数学模型,C1(C2)表示表示一个资源块至多可以同时被一个CUE和一个VUE复用,ρm,k表示一个资源块至多同时被一个CUE和一个DUE复用。
4.根据权利要求1所述的面向移动边缘计算的车联网任务卸载与资源分配策略,其特征在于,所述步骤103包括:联合建模容量和时延因子作为K-means算法特征输入进行分簇,从而确定车辆通信模式;其次基于分簇结果,采用Q-learning算法作为增强型解决方案合理高效地配置资源来最大化系统性能;
当车辆部署密度增加时,会有越来越多的D2D对复用CUE资源,随之产生强烈的同层干扰,本节将优化问题分解为模式选择和资源分配两部分,首先联合建模容量和时延因子作为K-means算法特征输入进行分簇,从而确定车辆通信模式;其次基于分簇结果,采用Q-learning算法作为增强型解决方案合理高效地配置资源来最大化系统性能;
K-means作为一种无监督的机器学习算法,广泛用于聚类问题,我们在RSU覆盖范围内结合车辆任务请求类型,依据联合建模后的QoS量化因子EC进行聚类,聚类形成V2I簇与V2V簇,对于V2V簇,建模车辆任务卸载为匹配模型来选择邻近车辆形成D2D对,下面详细介绍基于改进K-means算法的通信模式选择机制:
其中,Uj表示第j个簇,E表示最大簇数,num(Uj)表示簇j中车辆数目,Uj的簇心uj可由下式得到:
两个车辆基于欧式距离判断两者之间特征差额tr:
其中,xid、xjd表示d维欧式空间中的两个车辆,算法目标是最小化的目标函数平方误差和(SSE),由以下等式给出:
利用K-means进行模式选择算法的时间复杂度接近线性,为O(MET),其中M表示车辆的数量,E代表簇的数量,T表示迭代次数,设置最大迭代次数为it,则算法如下:
103-1-A:输入:请求车辆QoS数据集合为{EC1,EC2,L,ECmax},最大簇为E
103-1-B:输出:连簇集合{U1,U2,L,UE},且Ui={x1,x2,x3,L}
103-1-C:所有数据集分为一个簇;
for r=1:it
while num(U)≤E
for i=1:E
随机选择ui作为初始簇心
while ui
根据式(1)计算从车辆j到ui之间的tr,
并划分j到tr最短的簇,重新计算每个簇的簇心
end while
根据式(2)计算E个簇两两之间的SSE
end for
选择最小的SSE作为划分的簇
end while
end for
基于用户QoS的分簇结果,我们提出频谱和功率分配方案以改善车载通信性能;同时考虑到支持D2D的车载网络的独特特性,所提出的方案仅依赖于缓慢变化的大规模信道参数,并且仅需要每隔几百毫秒更新一次,从而与在车辆网络中直接应用传统的资源分配方案相比,显著降低了信令开销,我们借助Q-learning算法来实现最优资源调度;算法模型由以下参数构成:S={s1,s2,s3,L}表示个体状态集合;行为集合为A={a1,a2,a3,L};Q函数Q(s,a)矩阵中元素代表状态与行为一一对应的值;折扣因子θ反映未来回报相对当前回报的重要性且满足0<θ<1;学习速率δ(0<δ<1)定义为当前学习知识对先前学习知识的影响;策略π;回报函数r(s,a);每个个体与环境交互得s∈S,按照策略π选择行为a∈A并继续与环境交互,随之更新s'∈S,同时产生回报函数r(s,a)反馈给学习个体,个体据此更新π和Q函数,经过多次学习后收敛,个体可以找到最优策略π*使优化目标达到最大,预期累计奖励函数由下式给出:
其中,表示t时刻采用策略π得到的回报;最优策略假设在st状态下采取行为at后,状态变为st+1,则依据贝叶斯最优准则,矩阵Q(s,a)可更新如下:
Q*(s,a)=E{rt+1+θmaxa'Q*(st+1,a')|st=s,at=a}
根据t时刻状态对{st,at}得到的回报函数rt,预测t+1时刻状态st+1,并更新Q矩阵如下所示:
在这里我们讨论一个分布式场景,每个车辆无从得知其他车辆信息,系统经过学习来更新行为和回报函数使性能资源配置最佳;为了在兼顾效率的同时遍历所有(s,a),在迭代过程中本文采用ε贪婪算法来选择行为,我们用信道与功率矩阵表示每个车辆i的行为,即ai=[ai,channel,ai,power],我们定义行为函数:
由上式可知,车辆以1-ε的概率选择使Q矩阵值最大的行为,而选择其他行为时服从均匀分布,将每次车辆选择的行为索引为状态矩阵,以此得出t时刻回报函数ri,t,我们将ri,t定义为车辆当前吞吐量与最大吞吐量比值:
其中,是车辆发射功率为Pmax且无干扰状态下的吞吐量;分布式无状态Q学习详细步骤如以下算法所述,该算法工作在物理层,允许操作当前的MAC层协议,在IEEE802.11中,信道访问由CSMA/CA机制来控制,因此该算法可以促进物理层资源复用,提高系统性能,具体实现步骤如下:
103-3-A:输入:可用信道channel,可用功率power,SINR,
{U1,U2,L,UE},Ui={x1,x2,x3,L,xG}
103-3-B:输出:每个车辆吞吐量Ri,t
103-3-C:初始化:t=1;折扣因子θ;学习率δ;探索速率ε;Q=0;最大迭代次数max_convergence_time
for e=1:1:E
while t<max_convergence_time+1
顺序排列每一个车辆
for g=1:1:G
根据式(4)给车辆xg选择行为ag=[ag,channel,ag,power],更新状态矩阵S
更新
根据式(5)计算回报函数
根据式(3)更新Q矩阵
end for
计算车辆xg的遍历吞吐量
t=t+1
end while
end for
在基于分布式无状态Q-learning的资源分配策略中,假设每个车辆按顺序选择行为,在每次学习迭代时,以有序的方式进行资源分配,因此每次迭代时首先选择行为的顺序在其开始时随机选择,车辆根据初始化参数决定当前所有可能行为以及下一刻行为A={a1,a2,a3,L},得出状态矩阵S,更新Q(s,a)矩阵,基于此,车辆以1-ε的概率在所有可能状态中选择使Q值达到最大的行为,计算即刻回报函数,更新探索速率ε,继续执行下一次学习直至收敛或达到最大收敛次数。
CN201811075238.5A 2018-09-14 2018-09-14 面向移动边缘计算的车联网任务卸载与资源分配策略 Active CN109302709B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811075238.5A CN109302709B (zh) 2018-09-14 2018-09-14 面向移动边缘计算的车联网任务卸载与资源分配策略

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811075238.5A CN109302709B (zh) 2018-09-14 2018-09-14 面向移动边缘计算的车联网任务卸载与资源分配策略

Publications (2)

Publication Number Publication Date
CN109302709A true CN109302709A (zh) 2019-02-01
CN109302709B CN109302709B (zh) 2022-04-05

Family

ID=65163142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811075238.5A Active CN109302709B (zh) 2018-09-14 2018-09-14 面向移动边缘计算的车联网任务卸载与资源分配策略

Country Status (1)

Country Link
CN (1) CN109302709B (zh)

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109788069A (zh) * 2019-02-27 2019-05-21 电子科技大学 物联网中基于移动边缘计算的计算卸载方法
CN109905470A (zh) * 2019-02-18 2019-06-18 南京邮电大学 一种基于边缘网关系统的开销优化任务调度方法
CN109951821A (zh) * 2019-02-26 2019-06-28 重庆邮电大学 基于移动边缘计算的最小化车辆能耗任务卸载方案
CN110012507A (zh) * 2019-04-02 2019-07-12 华南理工大学 一种用户体验优先的车联网资源分配方法及系统
CN110035410A (zh) * 2019-03-07 2019-07-19 中南大学 一种软件定义车载边缘网络中联合资源分配和计算卸载的方法及系统
CN110087318A (zh) * 2019-04-24 2019-08-02 重庆邮电大学 基于5g移动边缘计算的任务卸载和资源分配联合优化方法
CN110113190A (zh) * 2019-04-24 2019-08-09 西北工业大学 一种移动边缘计算场景中卸载时延优化方法
CN110113195A (zh) * 2019-04-26 2019-08-09 山西大学 一种移动边缘计算系统中联合卸载判决和资源分配的方法
CN110290510A (zh) * 2019-05-07 2019-09-27 天津大学 支持d2d通信的分层无线网络下的边缘协作缓存方法
CN110351754A (zh) * 2019-07-15 2019-10-18 北京工业大学 基于Q-learning的工业互联网机器设备用户数据计算卸载决策方法
CN110401931A (zh) * 2019-08-23 2019-11-01 重庆大学 一种网络架构和基于该网络架构的资源调度与分配方法
CN110475224A (zh) * 2019-07-01 2019-11-19 南京邮电大学 一种基于边缘计算的传感器数据处理与协同预测方法
CN110519776A (zh) * 2019-08-07 2019-11-29 东南大学 一种雾计算系统中的均衡聚类和联合资源分配方法
CN110536264A (zh) * 2019-08-12 2019-12-03 大连理工大学 一种提高5g车联网通信服务质量的边缘计算方法
CN110582072A (zh) * 2019-08-16 2019-12-17 北京邮电大学 蜂窝车联网中基于模糊匹配的资源分配方法及装置
CN110784882A (zh) * 2019-10-28 2020-02-11 南京邮电大学 一种基于强化学习的能量采集d2d通信资源分配方法
CN110798849A (zh) * 2019-10-10 2020-02-14 西北工业大学 一种超密网边缘计算的计算资源分配与任务卸载方法
CN110855563A (zh) * 2019-10-29 2020-02-28 南京邮电大学 一种基于链路可靠性和稳定性的车辆分簇方法
CN110856227A (zh) * 2019-11-19 2020-02-28 三峡大学 基于贪婪算法和反向拍卖的WiFi卸载激励方法
CN110933157A (zh) * 2019-11-26 2020-03-27 重庆邮电大学 一种面向工业物联网的边缘计算任务卸载方法
CN111010684A (zh) * 2019-12-17 2020-04-14 重庆邮电大学 一种基于mec缓存服务的车联网资源分配方法
CN111132077A (zh) * 2020-02-25 2020-05-08 华南理工大学 车联网环境下基于d2d的多接入边缘计算任务卸载方法
CN111142883A (zh) * 2019-12-03 2020-05-12 沈阳航空航天大学 基于sdn架构的车辆计算任务卸载方法
CN111181611A (zh) * 2019-12-25 2020-05-19 深圳大学 一种数据传输处理方法及系统
CN111240821A (zh) * 2020-01-14 2020-06-05 华南理工大学 一种基于车联网应用安全性分级的协同云计算迁移方法
CN111246485A (zh) * 2020-02-27 2020-06-05 华南理工大学 一种高密度车载通信环境下的车联网资源分配方法
CN111314889A (zh) * 2020-02-26 2020-06-19 华南理工大学 车联网中基于移动边缘计算的任务卸载与资源分配方法
CN111328023A (zh) * 2020-01-18 2020-06-23 重庆邮电大学 一种基于预测机制的移动设备多任务竞争卸载方法
CN111327480A (zh) * 2020-03-02 2020-06-23 河海大学 移动边缘环境下的Web服务多元QoS监控方法
CN111343238A (zh) * 2020-02-10 2020-06-26 深圳清华大学研究院 移动边缘计算中联合计算和带宽资源分配实现方法
CN111354193A (zh) * 2020-02-26 2020-06-30 江苏大学 一种基于5g通信的高速公路车辆异常行为预警系统
CN111372219A (zh) * 2020-02-19 2020-07-03 重庆邮电大学 一种车联网链路选择和资源分配方法
CN111372217A (zh) * 2020-03-02 2020-07-03 厦门大学 车联网环境中的计算任务卸载方法、介质及装置
CN111405569A (zh) * 2020-03-19 2020-07-10 三峡大学 基于深度强化学习的计算卸载和资源分配方法及装置
CN111462487A (zh) * 2020-03-31 2020-07-28 长安大学 一种车联网环境下的最优化边缘计算节点选择方法及系统
CN111479238A (zh) * 2020-04-14 2020-07-31 东华大学 一种车联网信息处理时延优化方法
CN111542074A (zh) * 2020-04-20 2020-08-14 贵州师范大学 一种移动云计算学习的智能异构无线接入方法
CN111614657A (zh) * 2020-05-18 2020-09-01 北京邮电大学 基于模式选择的移动边缘安全服务方法及系统
CN111741448A (zh) * 2020-06-21 2020-10-02 天津理工大学 一种基于边缘计算策略的分簇aodv路由方法
CN111741478A (zh) * 2020-06-19 2020-10-02 哈尔滨工业大学 一种基于大尺度衰落跟踪的业务卸载方法
WO2020199812A1 (zh) * 2019-03-29 2020-10-08 山东省计算中心(国家超级计算济南中心) 一种基于边缘计算的资源分配的方法和装置
CN111786839A (zh) * 2020-07-15 2020-10-16 南通大学 一种车载边缘计算网络中能效优化的计算卸载方法及系统
CN111835827A (zh) * 2020-06-11 2020-10-27 北京邮电大学 物联网边缘计算任务卸载方法及系统
CN111866811A (zh) * 2020-08-07 2020-10-30 中国联合网络通信集团有限公司 信息传输方法及系统
CN111885155A (zh) * 2020-07-22 2020-11-03 大连理工大学 一种车联网资源融合的车载任务协作迁移方法
CN111918339A (zh) * 2020-07-17 2020-11-10 西安交通大学 移动边缘网络中基于强化学习的ar任务卸载和资源分配方法
CN111935677A (zh) * 2020-08-10 2020-11-13 无锡太湖学院 车联网v2i模式任务卸载方法及系统
CN111970323A (zh) * 2020-07-10 2020-11-20 北京大学 边缘计算网络中云边多层协作的时延优化方法及装置
CN112055329A (zh) * 2020-08-03 2020-12-08 广东工业大学 一种适用于rsu覆盖切换的边缘车联网任务卸载方法
CN112203228A (zh) * 2020-07-20 2021-01-08 重庆邮电大学 一种基于车辆数预测的双层蜂窝车联网频谱分配方法
CN112511614A (zh) * 2020-11-20 2021-03-16 福建师范大学 基于强化学习的车载边缘环境下智能网联车辆任务卸载方法
CN112654058A (zh) * 2020-12-17 2021-04-13 中国刑事警察学院 D2d多播网络中的移动边缘计算卸载与资源分配算法
CN112698940A (zh) * 2020-12-17 2021-04-23 北京交通大学 用于车路协同的车辆辅助边缘计算任务分配系统
CN112714416A (zh) * 2020-11-30 2021-04-27 中南大学 一种基于信任的任务卸载方法
CN112788605A (zh) * 2020-12-25 2021-05-11 威胜信息技术股份有限公司 基于双延迟深度确定性策略边缘计算资源调度方法和系统
CN112822781A (zh) * 2021-01-20 2021-05-18 重庆邮电大学 一种基于q学习的资源分配方法
CN112860350A (zh) * 2021-03-15 2021-05-28 广西师范大学 一种边缘计算中基于任务缓存的计算卸载方法
CN112888021A (zh) * 2021-01-29 2021-06-01 重庆邮电大学 一种车联网中避免中断的任务卸载方法
CN113099418A (zh) * 2021-03-26 2021-07-09 深圳供电局有限公司 一种用于车联网数据传输的区块链任务的优化方法
CN113115367A (zh) * 2021-03-23 2021-07-13 三峡大学 基于贪婪助手选择算法的数据卸载激励方法及装置
CN113163368A (zh) * 2021-05-19 2021-07-23 浙江凡双科技有限公司 一种低时延高可靠v2v系统的资源分配方法
CN113207081A (zh) * 2021-03-29 2021-08-03 网络通信与安全紫金山实验室 通信的方法、装置、电子设备及介质
CN113316156A (zh) * 2021-05-26 2021-08-27 重庆邮电大学 免授权频段上的一种智能共存方法
CN113315806A (zh) * 2021-04-14 2021-08-27 深圳大学 一种面向云网融合的多接入边缘计算架构
CN113316174A (zh) * 2021-05-26 2021-08-27 重庆邮电大学 一种非授权频谱智能接入方法
CN113364859A (zh) * 2021-06-03 2021-09-07 吉林大学 车联网中面向mec的联合计算资源分配和卸载决策优化方案
CN113395684A (zh) * 2021-08-17 2021-09-14 南京智能信通科技发展有限公司 一种基于可变带宽信道的分布式运算卸载方法
CN113411779A (zh) * 2021-06-10 2021-09-17 西南交通大学 一种保证可靠性的车联网用户容量最大化设计方法与装置
CN113423087A (zh) * 2021-06-17 2021-09-21 天津大学 面向车辆队列控制需求的无线资源分配方法
CN113473484A (zh) * 2021-06-30 2021-10-01 中信科移动通信技术股份有限公司 调整小区覆盖范围的方法和装置
CN113473408A (zh) * 2021-06-07 2021-10-01 山东师范大学 一种车联网中实现视频传输的用户关联方法及系统
CN113472426A (zh) * 2021-07-01 2021-10-01 云南大学 一种公平感知任务调度和资源分配方法
CN113543067A (zh) * 2021-06-07 2021-10-22 北京邮电大学 一种基于车载网络的数据下发方法及装置
CN113543271A (zh) * 2021-06-08 2021-10-22 西安交通大学 一种面向有效容量的资源分配方法及系统
CN113613207A (zh) * 2020-06-12 2021-11-05 南京理工大学 一种基于多智能体强化学习的车联网频谱共享方法
CN113687875A (zh) * 2021-08-10 2021-11-23 北京科技大学 一种车联网中车辆任务卸载方法及装置
CN113709705A (zh) * 2021-08-23 2021-11-26 华南师范大学 双向车道行驶车辆的通信网络的频谱分配管理方法及装置
CN113743012A (zh) * 2021-09-06 2021-12-03 山东大学 一种多用户场景下的云-边缘协同模式任务卸载优化方法
CN113747507A (zh) * 2021-08-16 2021-12-03 北京信息科技大学 一种面向5g超密集网络的计算资源管理方法及装置
CN113778682A (zh) * 2021-09-13 2021-12-10 电子科技大学 一种mec系统资源分配方法
CN113965961A (zh) * 2021-10-27 2022-01-21 中国科学院计算技术研究所 一种车联网环境下的边缘计算任务卸载方法与系统
CN114138373A (zh) * 2021-12-07 2022-03-04 吉林大学 一种基于强化学习的边缘计算任务卸载方法
CN114257988A (zh) * 2021-11-22 2022-03-29 西安电子科技大学 超可靠车联网中面向不完美csi的资源分配方法及系统
CN114449478A (zh) * 2022-03-11 2022-05-06 天津理工大学 一种增强车载网络性能的信道资源分配方法
CN114513515A (zh) * 2022-01-12 2022-05-17 重庆大学 一种边缘环境下移动偏差感知的任务迁移方法
CN114637608A (zh) * 2022-05-17 2022-06-17 之江实验室 一种计算任务分配和更新方法、终端及网络设备
CN114760646A (zh) * 2022-04-18 2022-07-15 北京理工大学 一种基于多层聚合上下文mab的链路决策方法
CN114973673A (zh) * 2022-05-24 2022-08-30 华南理工大学 车路协同系统中结合noma和内容缓存的任务卸载方法
CN115065964A (zh) * 2022-07-07 2022-09-16 西安电子科技大学 车辆事故信息定向发布方法
CN115765920A (zh) * 2022-10-12 2023-03-07 西安电子科技大学 基于Nakagami-m参数的二维链路自适应方法及通信方法和设备
CN116257361A (zh) * 2023-03-15 2023-06-13 北京信息科技大学 无人机辅助的易故障移动边缘计算资源调度优化方法
EP4297372A1 (en) * 2022-06-21 2023-12-27 Volvo Truck Corporation Method for managing message transmissions between vehicle and off-board system
CN117793805A (zh) * 2024-02-27 2024-03-29 厦门宇树康信息技术有限公司 动态用户随机接入的移动边缘计算资源分配方法与系统
CN117979430A (zh) * 2024-03-29 2024-05-03 厦门大学 一种基于v2v链路隐私安全的c-v2x系统资源分配方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106470449A (zh) * 2015-08-14 2017-03-01 电信科学技术研究院 一种数据收发、中继方法、装置及通信系统
WO2017176329A1 (en) * 2016-04-05 2017-10-12 Intel IP Corporation Devices and methods for mec v2x
WO2017196249A1 (en) * 2016-05-13 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN107682838A (zh) * 2017-11-20 2018-02-09 哈尔滨工业大学 车联网通信联合集中式资源调度和自组织资源分配方法
CN107819658A (zh) * 2016-09-14 2018-03-20 中兴通讯股份有限公司 一种报文传输方法、mec设备和系统
CN107846708A (zh) * 2016-09-19 2018-03-27 中国移动通信有限公司研究院 V2x数据传输方法及装置
CN108282635A (zh) * 2018-02-11 2018-07-13 中国联合网络通信集团有限公司 全景图像生成方法及系统、车联网大数据服务平台

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106470449A (zh) * 2015-08-14 2017-03-01 电信科学技术研究院 一种数据收发、中继方法、装置及通信系统
WO2017176329A1 (en) * 2016-04-05 2017-10-12 Intel IP Corporation Devices and methods for mec v2x
TW201742476A (zh) * 2016-04-05 2017-12-01 英特爾智財公司 用於行動邊緣運算(mec)車聯網(v2x)的裝置及方法
WO2017196249A1 (en) * 2016-05-13 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN107819658A (zh) * 2016-09-14 2018-03-20 中兴通讯股份有限公司 一种报文传输方法、mec设备和系统
CN107846708A (zh) * 2016-09-19 2018-03-27 中国移动通信有限公司研究院 V2x数据传输方法及装置
CN107682838A (zh) * 2017-11-20 2018-02-09 哈尔滨工业大学 车联网通信联合集中式资源调度和自组织资源分配方法
CN108282635A (zh) * 2018-02-11 2018-07-13 中国联合网络通信集团有限公司 全景图像生成方法及系统、车联网大数据服务平台

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FEI SUN ,FEN HOU ,NAN CHENG: ""Cooperative Task Scheduling for Computation Offloading in Vehicular Cloud"", 《IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY》 *
KE ZHANG, YUMING MAO AND SUPENG LENG,SABITA MAHARJAN,YAN ZHANG: ""Optimal Delay Constrained Offloading for Vehicular Edge Computing Networks"", 《IEEE ICC 2017 AD-HOC AND SENSOR NETWORKING SYMPOSIUM》 *

Cited By (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109905470A (zh) * 2019-02-18 2019-06-18 南京邮电大学 一种基于边缘网关系统的开销优化任务调度方法
CN109951821A (zh) * 2019-02-26 2019-06-28 重庆邮电大学 基于移动边缘计算的最小化车辆能耗任务卸载方案
CN109951821B (zh) * 2019-02-26 2022-03-11 重庆邮电大学 基于移动边缘计算的最小化车辆能耗任务卸载方案
CN109788069B (zh) * 2019-02-27 2021-02-12 电子科技大学 物联网中基于移动边缘计算的计算卸载方法
CN109788069A (zh) * 2019-02-27 2019-05-21 电子科技大学 物联网中基于移动边缘计算的计算卸载方法
CN110035410B (zh) * 2019-03-07 2021-07-13 中南大学 一种软件定义车载边缘网络中联合资源分配和计算卸载的方法
CN110035410A (zh) * 2019-03-07 2019-07-19 中南大学 一种软件定义车载边缘网络中联合资源分配和计算卸载的方法及系统
WO2020199812A1 (zh) * 2019-03-29 2020-10-08 山东省计算中心(国家超级计算济南中心) 一种基于边缘计算的资源分配的方法和装置
US11977929B2 (en) 2019-03-29 2024-05-07 Shandong Computer Science Center (National Supercomputer Center In Jinan) Resource allocation method and apparatus based on edge computing
CN110012507B (zh) * 2019-04-02 2021-01-26 华南理工大学 一种用户体验优先的车联网资源分配方法及系统
CN110012507A (zh) * 2019-04-02 2019-07-12 华南理工大学 一种用户体验优先的车联网资源分配方法及系统
CN110087318B (zh) * 2019-04-24 2022-04-01 重庆邮电大学 基于5g移动边缘计算的任务卸载和资源分配联合优化方法
CN110113190A (zh) * 2019-04-24 2019-08-09 西北工业大学 一种移动边缘计算场景中卸载时延优化方法
CN110087318A (zh) * 2019-04-24 2019-08-02 重庆邮电大学 基于5g移动边缘计算的任务卸载和资源分配联合优化方法
CN110113195A (zh) * 2019-04-26 2019-08-09 山西大学 一种移动边缘计算系统中联合卸载判决和资源分配的方法
CN110290510A (zh) * 2019-05-07 2019-09-27 天津大学 支持d2d通信的分层无线网络下的边缘协作缓存方法
CN110475224B (zh) * 2019-07-01 2022-03-11 南京邮电大学 一种基于边缘计算的传感器数据处理与协同预测方法
CN110475224A (zh) * 2019-07-01 2019-11-19 南京邮电大学 一种基于边缘计算的传感器数据处理与协同预测方法
CN110351754A (zh) * 2019-07-15 2019-10-18 北京工业大学 基于Q-learning的工业互联网机器设备用户数据计算卸载决策方法
CN110519776B (zh) * 2019-08-07 2021-09-17 东南大学 一种雾计算系统中的均衡聚类和联合资源分配方法
CN110519776A (zh) * 2019-08-07 2019-11-29 东南大学 一种雾计算系统中的均衡聚类和联合资源分配方法
CN110536264A (zh) * 2019-08-12 2019-12-03 大连理工大学 一种提高5g车联网通信服务质量的边缘计算方法
CN110536264B (zh) * 2019-08-12 2021-08-20 大连理工大学 一种提高5g车联网通信服务质量的边缘计算方法
CN110582072A (zh) * 2019-08-16 2019-12-17 北京邮电大学 蜂窝车联网中基于模糊匹配的资源分配方法及装置
CN110401931A (zh) * 2019-08-23 2019-11-01 重庆大学 一种网络架构和基于该网络架构的资源调度与分配方法
CN110798849A (zh) * 2019-10-10 2020-02-14 西北工业大学 一种超密网边缘计算的计算资源分配与任务卸载方法
CN110784882A (zh) * 2019-10-28 2020-02-11 南京邮电大学 一种基于强化学习的能量采集d2d通信资源分配方法
CN110784882B (zh) * 2019-10-28 2022-06-28 南京邮电大学 一种基于强化学习的能量采集d2d通信资源分配方法
CN110855563B (zh) * 2019-10-29 2021-09-17 南京邮电大学 一种基于链路可靠性和稳定性的车辆分簇方法
CN110855563A (zh) * 2019-10-29 2020-02-28 南京邮电大学 一种基于链路可靠性和稳定性的车辆分簇方法
CN110856227B (zh) * 2019-11-19 2021-08-10 三峡大学 基于贪婪算法和反向拍卖的数据卸载方法
CN110856227A (zh) * 2019-11-19 2020-02-28 三峡大学 基于贪婪算法和反向拍卖的WiFi卸载激励方法
CN110933157B (zh) * 2019-11-26 2022-03-11 重庆邮电大学 一种面向工业物联网的边缘计算任务卸载方法
CN110933157A (zh) * 2019-11-26 2020-03-27 重庆邮电大学 一种面向工业物联网的边缘计算任务卸载方法
CN111142883B (zh) * 2019-12-03 2023-04-28 沈阳航空航天大学 基于sdn架构的车辆计算任务卸载方法
CN111142883A (zh) * 2019-12-03 2020-05-12 沈阳航空航天大学 基于sdn架构的车辆计算任务卸载方法
CN111010684A (zh) * 2019-12-17 2020-04-14 重庆邮电大学 一种基于mec缓存服务的车联网资源分配方法
CN111181611A (zh) * 2019-12-25 2020-05-19 深圳大学 一种数据传输处理方法及系统
CN111240821B (zh) * 2020-01-14 2022-04-22 华南理工大学 一种基于车联网应用安全性分级的协同云计算迁移方法
CN111240821A (zh) * 2020-01-14 2020-06-05 华南理工大学 一种基于车联网应用安全性分级的协同云计算迁移方法
CN111328023A (zh) * 2020-01-18 2020-06-23 重庆邮电大学 一种基于预测机制的移动设备多任务竞争卸载方法
CN111343238A (zh) * 2020-02-10 2020-06-26 深圳清华大学研究院 移动边缘计算中联合计算和带宽资源分配实现方法
CN111372219A (zh) * 2020-02-19 2020-07-03 重庆邮电大学 一种车联网链路选择和资源分配方法
CN111372219B (zh) * 2020-02-19 2022-04-12 重庆邮电大学 一种车联网链路选择和资源分配方法
CN111132077A (zh) * 2020-02-25 2020-05-08 华南理工大学 车联网环境下基于d2d的多接入边缘计算任务卸载方法
CN111314889A (zh) * 2020-02-26 2020-06-19 华南理工大学 车联网中基于移动边缘计算的任务卸载与资源分配方法
CN111354193B (zh) * 2020-02-26 2021-09-10 江苏大学 一种基于5g通信的高速公路车辆异常行为预警系统
CN111354193A (zh) * 2020-02-26 2020-06-30 江苏大学 一种基于5g通信的高速公路车辆异常行为预警系统
CN111314889B (zh) * 2020-02-26 2023-03-31 华南理工大学 车联网中基于移动边缘计算的任务卸载与资源分配方法
CN111246485B (zh) * 2020-02-27 2022-09-20 华南理工大学 一种高密度车载通信环境下的车联网资源分配方法
CN111246485A (zh) * 2020-02-27 2020-06-05 华南理工大学 一种高密度车载通信环境下的车联网资源分配方法
CN111327480A (zh) * 2020-03-02 2020-06-23 河海大学 移动边缘环境下的Web服务多元QoS监控方法
CN111372217A (zh) * 2020-03-02 2020-07-03 厦门大学 车联网环境中的计算任务卸载方法、介质及装置
CN111405569A (zh) * 2020-03-19 2020-07-10 三峡大学 基于深度强化学习的计算卸载和资源分配方法及装置
CN111462487A (zh) * 2020-03-31 2020-07-28 长安大学 一种车联网环境下的最优化边缘计算节点选择方法及系统
CN111479238A (zh) * 2020-04-14 2020-07-31 东华大学 一种车联网信息处理时延优化方法
CN111542074B (zh) * 2020-04-20 2022-08-23 贵州师范大学 一种移动云计算学习的智能异构无线接入方法
CN111542074A (zh) * 2020-04-20 2020-08-14 贵州师范大学 一种移动云计算学习的智能异构无线接入方法
CN111614657A (zh) * 2020-05-18 2020-09-01 北京邮电大学 基于模式选择的移动边缘安全服务方法及系统
CN111835827A (zh) * 2020-06-11 2020-10-27 北京邮电大学 物联网边缘计算任务卸载方法及系统
CN111835827B (zh) * 2020-06-11 2021-07-27 北京邮电大学 物联网边缘计算任务卸载方法及系统
CN113613207A (zh) * 2020-06-12 2021-11-05 南京理工大学 一种基于多智能体强化学习的车联网频谱共享方法
CN111741478B (zh) * 2020-06-19 2022-08-02 哈尔滨工业大学 一种基于大尺度衰落跟踪的业务卸载方法
CN111741478A (zh) * 2020-06-19 2020-10-02 哈尔滨工业大学 一种基于大尺度衰落跟踪的业务卸载方法
CN111741448B (zh) * 2020-06-21 2022-04-29 天津理工大学 一种基于边缘计算策略的分簇aodv路由方法
CN111741448A (zh) * 2020-06-21 2020-10-02 天津理工大学 一种基于边缘计算策略的分簇aodv路由方法
CN111970323A (zh) * 2020-07-10 2020-11-20 北京大学 边缘计算网络中云边多层协作的时延优化方法及装置
US11445400B2 (en) 2020-07-15 2022-09-13 Nantong University Energy-efficient optimized computing offloading method for vehicular edge computing network and system thereof
CN111786839A (zh) * 2020-07-15 2020-10-16 南通大学 一种车载边缘计算网络中能效优化的计算卸载方法及系统
CN111786839B (zh) * 2020-07-15 2021-09-07 南通大学 一种车载边缘计算网络中能效优化的计算卸载方法及系统
CN111918339A (zh) * 2020-07-17 2020-11-10 西安交通大学 移动边缘网络中基于强化学习的ar任务卸载和资源分配方法
CN111918339B (zh) * 2020-07-17 2022-08-05 西安交通大学 移动边缘网络中基于强化学习的ar任务卸载和资源分配方法
CN112203228B (zh) * 2020-07-20 2022-05-03 重庆邮电大学 一种基于车辆数预测的双层蜂窝车联网频谱分配方法
CN112203228A (zh) * 2020-07-20 2021-01-08 重庆邮电大学 一种基于车辆数预测的双层蜂窝车联网频谱分配方法
CN111885155A (zh) * 2020-07-22 2020-11-03 大连理工大学 一种车联网资源融合的车载任务协作迁移方法
CN111885155B (zh) * 2020-07-22 2021-06-18 大连理工大学 一种车联网资源融合的车载任务协作迁移方法
CN112055329A (zh) * 2020-08-03 2020-12-08 广东工业大学 一种适用于rsu覆盖切换的边缘车联网任务卸载方法
CN112055329B (zh) * 2020-08-03 2022-06-14 广东工业大学 一种适用于rsu覆盖切换的边缘车联网任务卸载方法
CN111866811A (zh) * 2020-08-07 2020-10-30 中国联合网络通信集团有限公司 信息传输方法及系统
CN111866811B (zh) * 2020-08-07 2023-04-07 中国联合网络通信集团有限公司 信息传输方法及系统
CN111935677A (zh) * 2020-08-10 2020-11-13 无锡太湖学院 车联网v2i模式任务卸载方法及系统
CN111935677B (zh) * 2020-08-10 2023-05-16 无锡太湖学院 车联网v2i模式任务卸载方法及系统
CN112511614A (zh) * 2020-11-20 2021-03-16 福建师范大学 基于强化学习的车载边缘环境下智能网联车辆任务卸载方法
CN112511614B (zh) * 2020-11-20 2022-12-06 福建师范大学 基于强化学习的车载边缘环境下智能网联车辆任务卸载方法
CN112714416A (zh) * 2020-11-30 2021-04-27 中南大学 一种基于信任的任务卸载方法
CN112698940A (zh) * 2020-12-17 2021-04-23 北京交通大学 用于车路协同的车辆辅助边缘计算任务分配系统
CN112654058A (zh) * 2020-12-17 2021-04-13 中国刑事警察学院 D2d多播网络中的移动边缘计算卸载与资源分配算法
CN112698940B (zh) * 2020-12-17 2023-11-14 北京交通大学 用于车路协同的车辆辅助边缘计算任务分配系统
CN112788605B (zh) * 2020-12-25 2022-07-26 威胜信息技术股份有限公司 基于双延迟深度确定性策略边缘计算资源调度方法和系统
CN112788605A (zh) * 2020-12-25 2021-05-11 威胜信息技术股份有限公司 基于双延迟深度确定性策略边缘计算资源调度方法和系统
CN112822781A (zh) * 2021-01-20 2021-05-18 重庆邮电大学 一种基于q学习的资源分配方法
CN112822781B (zh) * 2021-01-20 2022-04-12 重庆邮电大学 一种基于q学习的资源分配方法
CN112888021A (zh) * 2021-01-29 2021-06-01 重庆邮电大学 一种车联网中避免中断的任务卸载方法
CN112860350A (zh) * 2021-03-15 2021-05-28 广西师范大学 一种边缘计算中基于任务缓存的计算卸载方法
CN112860350B (zh) * 2021-03-15 2022-06-03 广西师范大学 一种边缘计算中基于任务缓存的计算卸载方法
CN113115367A (zh) * 2021-03-23 2021-07-13 三峡大学 基于贪婪助手选择算法的数据卸载激励方法及装置
CN113099418A (zh) * 2021-03-26 2021-07-09 深圳供电局有限公司 一种用于车联网数据传输的区块链任务的优化方法
CN113207081A (zh) * 2021-03-29 2021-08-03 网络通信与安全紫金山实验室 通信的方法、装置、电子设备及介质
CN113207081B (zh) * 2021-03-29 2022-10-21 网络通信与安全紫金山实验室 通信的方法、装置、电子设备及介质
CN113315806A (zh) * 2021-04-14 2021-08-27 深圳大学 一种面向云网融合的多接入边缘计算架构
CN113163368A (zh) * 2021-05-19 2021-07-23 浙江凡双科技有限公司 一种低时延高可靠v2v系统的资源分配方法
CN113163368B (zh) * 2021-05-19 2022-09-13 浙江凡双科技有限公司 一种低时延高可靠v2v系统的资源分配方法
CN113316174A (zh) * 2021-05-26 2021-08-27 重庆邮电大学 一种非授权频谱智能接入方法
CN113316156A (zh) * 2021-05-26 2021-08-27 重庆邮电大学 免授权频段上的一种智能共存方法
CN113364859A (zh) * 2021-06-03 2021-09-07 吉林大学 车联网中面向mec的联合计算资源分配和卸载决策优化方案
CN113364859B (zh) * 2021-06-03 2022-04-29 吉林大学 车联网中面向mec的联合计算资源分配和卸载决策优化方法
CN113473408B (zh) * 2021-06-07 2024-06-07 山东师范大学 一种车联网中实现视频传输的用户关联方法及系统
CN113473408A (zh) * 2021-06-07 2021-10-01 山东师范大学 一种车联网中实现视频传输的用户关联方法及系统
CN113543067A (zh) * 2021-06-07 2021-10-22 北京邮电大学 一种基于车载网络的数据下发方法及装置
CN113543067B (zh) * 2021-06-07 2023-10-20 北京邮电大学 一种基于车载网络的数据下发方法及装置
CN113543271A (zh) * 2021-06-08 2021-10-22 西安交通大学 一种面向有效容量的资源分配方法及系统
CN113411779A (zh) * 2021-06-10 2021-09-17 西南交通大学 一种保证可靠性的车联网用户容量最大化设计方法与装置
CN113423087A (zh) * 2021-06-17 2021-09-21 天津大学 面向车辆队列控制需求的无线资源分配方法
CN113473484A (zh) * 2021-06-30 2021-10-01 中信科移动通信技术股份有限公司 调整小区覆盖范围的方法和装置
CN113472426B (zh) * 2021-07-01 2022-06-28 云南大学 一种公平感知任务调度和资源分配方法
CN113472426A (zh) * 2021-07-01 2021-10-01 云南大学 一种公平感知任务调度和资源分配方法
CN113687875A (zh) * 2021-08-10 2021-11-23 北京科技大学 一种车联网中车辆任务卸载方法及装置
CN113687875B (zh) * 2021-08-10 2024-03-19 北京科技大学 一种车联网中车辆任务卸载方法及装置
CN113747507A (zh) * 2021-08-16 2021-12-03 北京信息科技大学 一种面向5g超密集网络的计算资源管理方法及装置
CN113747507B (zh) * 2021-08-16 2024-01-09 北京信息科技大学 一种面向5g超密集网络的计算资源管理方法及装置
CN113395684A (zh) * 2021-08-17 2021-09-14 南京智能信通科技发展有限公司 一种基于可变带宽信道的分布式运算卸载方法
CN113709705A (zh) * 2021-08-23 2021-11-26 华南师范大学 双向车道行驶车辆的通信网络的频谱分配管理方法及装置
CN113709705B (zh) * 2021-08-23 2023-05-23 华南师范大学 双向车道行驶车辆的通信网络的频谱分配管理方法及装置
CN113743012A (zh) * 2021-09-06 2021-12-03 山东大学 一种多用户场景下的云-边缘协同模式任务卸载优化方法
CN113743012B (zh) * 2021-09-06 2023-10-10 山东大学 一种多用户场景下的云-边缘协同模式任务卸载优化方法
CN113778682B (zh) * 2021-09-13 2023-04-18 电子科技大学 一种mec系统资源分配方法
CN113778682A (zh) * 2021-09-13 2021-12-10 电子科技大学 一种mec系统资源分配方法
CN113965961B (zh) * 2021-10-27 2024-04-09 中国科学院计算技术研究所 一种车联网环境下的边缘计算任务卸载方法与系统
CN113965961A (zh) * 2021-10-27 2022-01-21 中国科学院计算技术研究所 一种车联网环境下的边缘计算任务卸载方法与系统
CN114257988B (zh) * 2021-11-22 2024-05-03 西安电子科技大学 超可靠车联网中面向不完美csi的资源分配方法及系统
CN114257988A (zh) * 2021-11-22 2022-03-29 西安电子科技大学 超可靠车联网中面向不完美csi的资源分配方法及系统
CN114138373B (zh) * 2021-12-07 2023-10-24 吉林大学 一种基于强化学习的边缘计算任务卸载方法
CN114138373A (zh) * 2021-12-07 2022-03-04 吉林大学 一种基于强化学习的边缘计算任务卸载方法
CN114513515B (zh) * 2022-01-12 2022-11-04 重庆大学 一种边缘环境下移动偏差感知的任务迁移方法
CN114513515A (zh) * 2022-01-12 2022-05-17 重庆大学 一种边缘环境下移动偏差感知的任务迁移方法
CN114449478A (zh) * 2022-03-11 2022-05-06 天津理工大学 一种增强车载网络性能的信道资源分配方法
CN114760646A (zh) * 2022-04-18 2022-07-15 北京理工大学 一种基于多层聚合上下文mab的链路决策方法
CN114637608A (zh) * 2022-05-17 2022-06-17 之江实验室 一种计算任务分配和更新方法、终端及网络设备
CN114973673A (zh) * 2022-05-24 2022-08-30 华南理工大学 车路协同系统中结合noma和内容缓存的任务卸载方法
CN114973673B (zh) * 2022-05-24 2023-07-18 华南理工大学 车路协同系统中结合noma和内容缓存的任务卸载方法
EP4297372A1 (en) * 2022-06-21 2023-12-27 Volvo Truck Corporation Method for managing message transmissions between vehicle and off-board system
CN115065964B (zh) * 2022-07-07 2023-09-08 西安电子科技大学 车辆事故信息定向发布方法
CN115065964A (zh) * 2022-07-07 2022-09-16 西安电子科技大学 车辆事故信息定向发布方法
CN115765920A (zh) * 2022-10-12 2023-03-07 西安电子科技大学 基于Nakagami-m参数的二维链路自适应方法及通信方法和设备
CN116257361B (zh) * 2023-03-15 2023-11-10 北京信息科技大学 无人机辅助的易故障移动边缘计算资源调度优化方法
CN116257361A (zh) * 2023-03-15 2023-06-13 北京信息科技大学 无人机辅助的易故障移动边缘计算资源调度优化方法
CN117793805B (zh) * 2024-02-27 2024-04-26 厦门宇树康信息技术有限公司 动态用户随机接入的移动边缘计算资源分配方法与系统
CN117793805A (zh) * 2024-02-27 2024-03-29 厦门宇树康信息技术有限公司 动态用户随机接入的移动边缘计算资源分配方法与系统
CN117979430A (zh) * 2024-03-29 2024-05-03 厦门大学 一种基于v2v链路隐私安全的c-v2x系统资源分配方法

Also Published As

Publication number Publication date
CN109302709B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
CN109302709A (zh) 面向移动边缘计算的车联网任务卸载与资源分配策略
Chen et al. Age of information aware radio resource management in vehicular networks: A proactive deep reinforcement learning perspective
Prathiba et al. Federated learning empowered computation offloading and resource management in 6G-V2X
Li et al. Applications of multi-agent reinforcement learning in future internet: A comprehensive survey
Zhou et al. A deep-learning-based radio resource assignment technique for 5G ultra dense networks
Yang et al. Deep reinforcement learning based massive access management for ultra-reliable low-latency communications
CN109413615A (zh) 车联网下基于mec的能量感知卸载的能量延迟折衷方案
Chen et al. Multiuser computation offloading and resource allocation for cloud–edge heterogeneous network
Shang et al. Deep learning-assisted energy-efficient task offloading in vehicular edge computing systems
Nomikos et al. A survey on reinforcement learning-aided caching in heterogeneous mobile edge networks
CN112512065B (zh) 支持mec的小小区网络中在移动感知下的卸载和迁移方法
CN109451462A (zh) 一种基于半马尔科夫链的车载网络频谱资源分配方法
Mlika et al. Network slicing for vehicular communications: a multi-agent deep reinforcement learning approach
He et al. Reinforcement learning-based computing and transmission scheduling for LTE-U-enabled IoT
Ashtari et al. Knowledge-defined networking: Applications, challenges and future work
Lin et al. Deep reinforcement learning-based task scheduling and resource allocation for NOMA-MEC in Industrial Internet of Things
CN115866787A (zh) 融合终端直传通信和多接入边缘计算的网络资源分配方法
Shabir et al. A federated multi-agent deep reinforcement learning for vehicular fog computing
US20210203396A1 (en) Method and apparatus for controlling beam adaptively in wireless communication sysyem
Elhachmi Distributed reinforcement learning for dynamic spectrum allocation in cognitive radio‐based internet of things
Wang et al. Joint offloading decision and resource allocation in vehicular edge computing networks
Su et al. Efficient task offloading with swarm intelligence evolution for edge‐cloud collaboration in vehicular edge computing
Chen et al. Caching in narrow-band burst-error channels via meta self-supervision learning
Siahpoosh et al. A study on the impact of mobility on caching in non-standalone 5G vehicular networks
Gui et al. Spectrum-Energy-Efficient Mode Selection and Resource Allocation for Heterogeneous V2X Networks: A Federated Multi-Agent Deep Reinforcement Learning Approach

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant