CN109297947A - 一种光致荧光或散射光测量装置 - Google Patents

一种光致荧光或散射光测量装置 Download PDF

Info

Publication number
CN109297947A
CN109297947A CN201811477590.1A CN201811477590A CN109297947A CN 109297947 A CN109297947 A CN 109297947A CN 201811477590 A CN201811477590 A CN 201811477590A CN 109297947 A CN109297947 A CN 109297947A
Authority
CN
China
Prior art keywords
optical
light
sphere
spherical cavity
photoluminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811477590.1A
Other languages
English (en)
Other versions
CN109297947B (zh
Inventor
吴雷学
王杰诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Microspectrum Technology Co Ltd
Original Assignee
Shenzhen Microspectrum Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Microspectrum Technology Co Ltd filed Critical Shenzhen Microspectrum Technology Co Ltd
Priority to CN201811477590.1A priority Critical patent/CN109297947B/zh
Publication of CN109297947A publication Critical patent/CN109297947A/zh
Application granted granted Critical
Publication of CN109297947B publication Critical patent/CN109297947B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明实施例公开了一种光致荧光或散射光测量装置,由光学积分球、样品室和测量光路构成;光学积分球包括球形腔体以及球体腔室,球形腔体由基底层和漫反射层构成;样品室由样品区、进样口和出样口构成;进样口和出样口分别位于样品区的两侧;样品区贯穿整个球形腔体,样品区的主体部分位于球体腔室内;样品区采用透光且不透气材料制成;测量光路包括激发光入射口、激发光出射口和通光口,激发光入射口和激发光出射口分别设于样品区的两端,通光口开设于球形腔体上。本发明实施例通过采用光学积分球有效的接收激发光与待分析物质反应所产生的特征荧光或散射光光谱并积分,以及通过通光口形成测量通道,大大提高了测量灵敏度,降低了仪器检出限。

Description

一种光致荧光或散射光测量装置
技术领域
本发明涉及光学测量技术领域,尤其涉及一种光致荧光或散射光测量装置。
背景技术
传统测量光致荧光或散射光(光致荧光是指由光激发所产生的共振荧光或非共振荧光;光致散射光是指光作用后所产生的瑞利散射、米氏散射或拉曼散射)的方法主要是简单的让光检传感器的接收方向和激发光的入射方向正交或成一角度。传统方法只能测量所产生的荧光或散射光中的很少一部分,其他大部分的荧光或散射光被白白的浪费掉,因此其灵敏度和检出限非常受限。
虽然曾有人将光学积分球应用于荧光或散射光的测量,但是其待观测的特征光谱是在积分球之外产生的,然后通过特定的光学器件和光路结构,将所产生的特征光谱导入积分球内进行测量。由于只有极少部分的特征光谱被导入到积分球,因此其灵敏度和检出限与传统的测量方法并无质的区别。
此外,虽然也有人将光学积分球应用于吸收光谱或荧光光谱或散射光谱的测量,且待观测的特征光谱也是在积分球内部产生的,但归纳起来主要有以下几方面的不足:
1、虽然待观测的荧光光谱是在光学积分球内部产生的(例如专利: CN201610192248.1 一种荧光粉量子效率测量装置),但未设置一让剩余激发光(包括被反射和散射的激发光)顺利出射的端口,因此剩余的激发光同样会被积分球接收并积分,因此其只能用于非共振荧光(荧光波长与激发波长不同)的测量,即其是用于测量荧光粉的量子效率。
2、虽然待观测的特征光谱是在积分球内部产生的(例如前苏联1989年的专利:SU1511645A1),但光入射口和出射口共用一个端口,而在沿光入射方向对应于积分球球体的另一侧并未设置一光出射口。光入射至积分球内反应后,剩余的入射光不能顺利的出射至光学积分球之外,而是被光学积分球接收并积分,故测量得到的是扣除光学积分球内部待分析物质吸收之后的剩余光强度,因此其只能用于吸收光谱的测量。
3、虽然在沿光入射方向对应于光学积分球球体的另一侧设置了一光出射口(例如专利:CN201220351137.8 一种用于光谱系统测量气溶胶吸收系数的积分球及样品池),但由于待分析物质充满了整个光学积分球球体腔室,因此在入射光行进区域产生的共振荧光或散射光会被入射光行进区域至积分球球体之间充满的待分析物质严重的吸收掉(吸收效率远大于荧光效率)或发生二次散射影响,因此其只能用于非共振荧光或二次散射影响可忽略不计的场合。
发明内容
本发明实施例所要解决的技术问题在于,提供一种光致荧光或散射光测量装置,以使大幅提高光致荧光或散射光的测量灵敏度,降低仪器的检出限。
为了解决上述技术问题,本发明实施例提出了一种光致荧光或散射光测量装置,由光学积分球、样品室和测量光路构成;
所述光学积分球包括球形腔体以及形成于球形腔体内部的球体腔室,球形腔体由基底层和漫反射层构成;
样品室由样品区、进样口和出样口构成;进样口和出样口分别位于样品区的两侧;样品区贯穿整个球形腔体,且样品区的主体部分位于球体腔室内;样品区采用透光且不透气材料制成;
测量光路包括激发光入射口、激发光出射口和通光口;激发光入射口和激发光出射口分别设于样品区的两端,通光口开设于球形腔体上;激发光入射口的激发光入射方向与激发光出射口的激发光出射方向成一直线;通光口接收光学积分球积分后的光致荧光或散射光的方向与激发光的入射方向或出射方向正交或成一角度。
进一步地,所述球形腔体的漫反射层设于基底层的外侧,基底层采用透光材质制成。
进一步地,所述通光口处的漫反射层镂空或漫反射层与基底层全部镂空。
进一步地,所述球形腔体的漫反射层设于基底层的内侧,或漫反射层和基底层一体成型。
进一步地,所述通光口有多个,分别开设于球形腔体上。
进一步地,还包括对应设于激发光出射口处的光检传感器。
本发明的有益效果为:1)通过特定的构造,实现了在光学积分球内部产生待观测的特征光谱,所产生的特征光谱全部被积分球接收并积分,理论上效率接近100%;2)通过特定的构造,让剩余的激发光顺利的出射至积分球之外而不被接收,成功实现了积分球在光致荧光或散射光测量方面的应用;3)通过特定构造,让激发光行进区域所产生的共振荧光或散射光不会因待分析物质的自吸或二次散射而被大量消耗掉,成功实现了积分球在共振荧光或二次散射影响不能忽略不计散射光测量方面的应用。
本发明实施例通过提出一种光致荧光或散射光测量装置,包括光学积分球、样品室和测量光路,通过采用光学积分球接收激发光与待分析物质反应产生的特征光谱并积分,以及通过通光口形成测量通道,大大提高了测量灵敏度,降低了仪器检出限。
附图说明
图1是本发明实施例的光致荧光或散射光测量装置的结构示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合,下面结合附图和具体实施例对本发明作进一步详细说明。
本发明实施例中若有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中若涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
请参照图1,本发明实施例的光致荧光或散射光测量装置包括光学积分球1、样品室2和测量光路3。
光学积分球1由球体腔室11和球形腔体12构成;球形腔体12由基底层121和漫反射层122构成。
样品室2由样品区21、进样口22和出样口23构成;进样口22和出样口23分别位于样品区21的两侧。样品区21的主体部分设置在球体腔室11内并贯穿整个球体腔室11。样品区21的腔体材料采用透光非透气性材质,通过腔体材料的透光性保证样品区21产生的光致荧光或散射光顺利的入射到球体腔室11;通过腔体材料的非透气性保证样品区21与球体腔室11彼此隔绝,以保证样品只存在于样品区21内,否则样品区21产生的共振荧光或散射光会被样品区21至球形腔体22之间存在的待分析物质强烈的吸收掉或发生二次散射影响;样品区21中的样品形态可以是气体或液体,样品状态可以是静止的或流动的。本发明实施例使光学积分球1内产生待观测的特征光谱,籍此保证所产生的全部特征光谱能被光学积分球1接收并积分,理论上可接近100%;本发明实施例的样品室2的样品区21通过样品区21腔体材料的非透气性与光学积分球1的球体腔室11彼此隔绝的作用为:让样品室2样品区21至光学积分球1球体腔室11之间的空间不存在任何待分析的物质;否则,入射激发光在行进区域与待分析物质相互作用所产生的微弱的共振荧光,往往会被该区间存在的待分析物质强烈的自吸掉,从而导致测量不到任何共振荧光;例如,原子基态的汞会强烈的吸收253.7nm的紫外光而产生特征吸收,同时也会吸收253.7nm的能量而产生253.7nm的共振荧光,但前者的量子效率要远远大于后者的量子效率。
测量光路3包括激发光入射口31、激发光出射口32和通光口33;激发光入射口31和激发光出射口32分别设于样品区21的两端,通光口33开设于球形腔体12上;通光口33接收光学积分球1积分后的光致荧光或散射光的方向与激发光的入射方向或出射方向正交或成一角度。本发明实施例在样品室2样品区21的两端侧,也就是光学积分球1球体的两外侧,分别设置一激发光入射口31和激发光出射口32,激发光入射方向与激发光出射方向成一直线,让剩余的激发光顺利的出射至光学积分球1之外,而不是被光学积分球1接收并积分;否则,简单起见,假设样品室2主体腔室中的待分析物质只产生特征荧光或散射光光谱而不产生特征吸收光谱,光学积分球1的积分效率为100%,根据能量守恒定律,所产生的荧光或散射光强度即是入射激发光所损失的强度,则最终测量得到的只是一个恒定不变的入射激发光强度。测量光路3的激发光出射口32处能够设置一光检传感器,通过测量出射激发光的强度对测量结果进行相应的补偿校正。
作为一种实施方式,球形腔体12的漫反射层122设置在基底层121的球外侧,基底层121的材料采用玻璃或石英玻璃或其他透光材质。
作为一种实施方式,通光口33处的漫反射层122镂空或漫反射层122与基底层121全部镂空,以便设于通光口33处的光检传感器能顺利的接收到被积分球接收并积分的光致荧光或散射光。
作为一种实施方式,球形腔体12的漫反射层122可设于基底层121的内侧,此时基底层121采用的材料不限于透光材质;或基底层121和漫反射层122一体成型,合二为一,此时采用的材料包括但不限于金属或聚四氟。
作为一种实施方式,通光口33有多个,分别开设于球形腔体12上,以形成多通道同时测量。
作为一种实施方式,光致荧光或散射光测量装置还包括对应设于激发光出射口32处的光检传感器,以测量样品的特征吸收光谱。
本发明实施例在传统测量方法基础之上引入特定构造的光学积分球1、样品室2和测量光路3,能够正常并有效的测量激发光与待分析物质反应所产生的全部特征荧光或散射光光谱(理论上效率近100%),大大提高了测量灵敏度(提高1-2个数量级),降低了仪器检出限(降低1-2个数量级)。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同范围限定。

Claims (6)

1.一种光致荧光或散射光测量装置,其特征在于,由光学积分球、样品室和测量光路构成;
所述光学积分球包括球形腔体以及形成于球形腔体内部的球体腔室,球形腔体由基底层和漫反射层构成;
样品室由样品区、进样口和出样口构成;进样口和出样口分别位于样品区的两侧;样品区贯穿整个球形腔体,且样品区的主体部分位于球体腔室内;样品区采用透光且不透气材料制成;
测量光路包括激发光入射口、激发光出射口和通光口;激发光入射口和激发光出射口分别设于样品区的两端,通光口开设于球形腔体上;激发光入射口的激发光入射方向与激发光出射口的激发光出射方向成一直线;通光口接收光学积分球积分后的光致荧光或散射光的方向与激发光的入射方向或出射方向正交或成一角度。
2.如权利要求1所述的光致荧光或散射光测量装置,其特征在于,所述球形腔体的漫反射层设于基底层的外侧,基底层采用透光材质制成。
3.如权利要求2所述的光致荧光或散射光测量装置,其特征在于,所述通光口处的漫反射层镂空或漫反射层与基底层全部镂空。
4.如权利要求1所述的光致荧光或散射光测量装置,其特征在于,所述球形腔体的漫反射层设于基底层的内侧,或漫反射层和基底层一体成型。
5.如权利要求1所述的光致荧光或散射光测量装置,其特征在于,所述通光口有多个,分别开设于球形腔体上。
6.如权利要求1所述的光致荧光或散射光测量装置,其特征在于,还包括对应设于激发光出射口处的光检传感器。
CN201811477590.1A 2018-12-05 2018-12-05 一种光致荧光或散射光测量装置 Active CN109297947B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811477590.1A CN109297947B (zh) 2018-12-05 2018-12-05 一种光致荧光或散射光测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811477590.1A CN109297947B (zh) 2018-12-05 2018-12-05 一种光致荧光或散射光测量装置

Publications (2)

Publication Number Publication Date
CN109297947A true CN109297947A (zh) 2019-02-01
CN109297947B CN109297947B (zh) 2024-01-23

Family

ID=65142041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811477590.1A Active CN109297947B (zh) 2018-12-05 2018-12-05 一种光致荧光或散射光测量装置

Country Status (1)

Country Link
CN (1) CN109297947B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112161942A (zh) * 2020-09-08 2021-01-01 深圳世绘林科技有限公司 一种液质在线测试方法
CN112665826A (zh) * 2019-10-15 2021-04-16 成都辰显光电有限公司 积分球检测器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281990A (ja) * 1997-04-04 1998-10-23 Nikon Corp 光学材料の内部散乱測定装置及び測定方法
CN2501045Y (zh) * 2001-10-12 2002-07-17 上海棱光技术有限公司 近红外光富集接收装置
JP2006125940A (ja) * 2004-10-27 2006-05-18 Nippon Hoso Kyokai <Nhk> フォトルミネッセンス量子収率測定方法およびこれに用いる装置
CN102262071A (zh) * 2011-07-26 2011-11-30 中国科学院安徽光学精密机械研究所 大气气溶胶散射系数谱原位测量装置及测量方法
CN202735238U (zh) * 2012-07-19 2013-02-13 南京信息工程大学 一种用于光谱系统测量气溶胶吸收系数的积分球及样品池
CN103868903A (zh) * 2014-04-08 2014-06-18 哈尔滨工业大学 一种近红外量子剪切绝对光致发光量子效率定量测量方法
US20150355083A1 (en) * 2012-11-20 2015-12-10 Teknologian Tutkimuskeskus Vtt An optical sampling apparatus and method for utilizing the sampling apparatus
CN105738339A (zh) * 2016-03-30 2016-07-06 东南大学 一种荧光粉量子效率测量装置
CN105823731A (zh) * 2016-04-18 2016-08-03 苏州镭旭光电科技有限公司 高效光谱检测仪样品室
JP2016173265A (ja) * 2015-03-16 2016-09-29 国立大学法人九州大学 光測定装置及び光測定方法
CN108827918A (zh) * 2018-05-29 2018-11-16 天津九光科技发展有限责任公司 基于积分球的漫反射光谱测量装置、测量方法及校正方法
CN209198318U (zh) * 2018-12-05 2019-08-02 深圳市微谱科技有限公司 一种光致荧光或散射光测量装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281990A (ja) * 1997-04-04 1998-10-23 Nikon Corp 光学材料の内部散乱測定装置及び測定方法
CN2501045Y (zh) * 2001-10-12 2002-07-17 上海棱光技术有限公司 近红外光富集接收装置
JP2006125940A (ja) * 2004-10-27 2006-05-18 Nippon Hoso Kyokai <Nhk> フォトルミネッセンス量子収率測定方法およびこれに用いる装置
CN102262071A (zh) * 2011-07-26 2011-11-30 中国科学院安徽光学精密机械研究所 大气气溶胶散射系数谱原位测量装置及测量方法
CN202735238U (zh) * 2012-07-19 2013-02-13 南京信息工程大学 一种用于光谱系统测量气溶胶吸收系数的积分球及样品池
US20150355083A1 (en) * 2012-11-20 2015-12-10 Teknologian Tutkimuskeskus Vtt An optical sampling apparatus and method for utilizing the sampling apparatus
CN103868903A (zh) * 2014-04-08 2014-06-18 哈尔滨工业大学 一种近红外量子剪切绝对光致发光量子效率定量测量方法
JP2016173265A (ja) * 2015-03-16 2016-09-29 国立大学法人九州大学 光測定装置及び光測定方法
CN105738339A (zh) * 2016-03-30 2016-07-06 东南大学 一种荧光粉量子效率测量装置
CN105823731A (zh) * 2016-04-18 2016-08-03 苏州镭旭光电科技有限公司 高效光谱检测仪样品室
CN108827918A (zh) * 2018-05-29 2018-11-16 天津九光科技发展有限责任公司 基于积分球的漫反射光谱测量装置、测量方法及校正方法
CN209198318U (zh) * 2018-12-05 2019-08-02 深圳市微谱科技有限公司 一种光致荧光或散射光测量装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐志龙;王忠义;黄岚;刘志存;侯瑞锋;王成;: "农产品光学参数测量的双积分球系统及其应用", 农业工程学报, no. 11, pages 244 - 249 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112665826A (zh) * 2019-10-15 2021-04-16 成都辰显光电有限公司 积分球检测器
CN112161942A (zh) * 2020-09-08 2021-01-01 深圳世绘林科技有限公司 一种液质在线测试方法

Also Published As

Publication number Publication date
CN109297947B (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
US8119996B2 (en) Quantum efficiency measurement apparatus and quantum efficiency measurement method
CN102066905B (zh) 基于空芯波导的拉曼系统和方法
US10557790B2 (en) Carbon isotope analysis device and carbon isotope analysis method
JP5529305B1 (ja) 分光測定装置、及び分光測定方法
US20130286399A1 (en) Imaging Systems for Optical Computing Devices
EP2315004A1 (en) Spectrometer, spectrometry, and spectrometry program
US20100102238A1 (en) Luminescence quantum efficiency measuring instrument
CN209198318U (zh) 一种光致荧光或散射光测量装置
CN109297947A (zh) 一种光致荧光或散射光测量装置
Balabhadra et al. A cost-effective quantum yield measurement setup for upconverting nanoparticles
US7251026B2 (en) Fluorescence detector geometry
Kastengren et al. Application of X-ray fluorescence to turbulent mixing
US8213016B2 (en) Turbidity measuring device and a method for determing a concentration of a turbidity-causing material
CN111103247A (zh) 一种紫外可见分光光度计
ES2834657T3 (es) Procedimiento para la determinación de la luminosidad de una partícula luminiscente
IT201900006954A1 (it) Dispositivo per l’analisi della composizione di gas, e relativo metodo di analisi della composizione di gas.
Ikeyama et al. The fluorescence and the absorption spectra of 1, 8‐diphenyl‐1, 3, 5, 7‐octatetraene. The origin of the transition moments and the interpretation of anomalous intensity distribution
CN105445242B (zh) 基于倏逝波技术的特种光纤生化传感器
CN109001168A (zh) 一种导光毛细管光度仪
Green et al. Silicon photonic gas sensing
CN106404741B (zh) 基于双空芯光纤的增强拉曼光谱液体探测方法
CN103308479B (zh) 一种基于游标效应光学谐振腔生化传感芯片
Klein et al. Development of PSP technique for application on the VFE-2 65° delta wing configuration
Philbrick et al. 1.1 REMOTE SENSING OF CHEMICAL SPECIES IN THE ATMOSPHERE
Brownell et al. Planar laser imaging of differential molecular diffusion in gas-phase turbulent jets

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant