CN109293878A - 一种高绝缘聚氨酯硬泡小球的制备方法 - Google Patents

一种高绝缘聚氨酯硬泡小球的制备方法 Download PDF

Info

Publication number
CN109293878A
CN109293878A CN201811060327.2A CN201811060327A CN109293878A CN 109293878 A CN109293878 A CN 109293878A CN 201811060327 A CN201811060327 A CN 201811060327A CN 109293878 A CN109293878 A CN 109293878A
Authority
CN
China
Prior art keywords
bead
polyurethane
preparation
component
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811060327.2A
Other languages
English (en)
Other versions
CN109293878B (zh
Inventor
邹美帅
张旭东
郭亚莉
李晓东
张雄军
胡平
赵卫生
陈玲飞
赵亚阁
高瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beibao Power Composite Co Ltd
Beijing Institute Of Science And Technology (tengzhou) Research Institute Co Ltd
Beijing Institute of Technology BIT
Original Assignee
Beibao Power Composite Co Ltd
Beijing Institute Of Science And Technology (tengzhou) Research Institute Co Ltd
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beibao Power Composite Co Ltd, Beijing Institute Of Science And Technology (tengzhou) Research Institute Co Ltd, Beijing Institute of Technology BIT filed Critical Beibao Power Composite Co Ltd
Priority to CN201811060327.2A priority Critical patent/CN109293878B/zh
Publication of CN109293878A publication Critical patent/CN109293878A/zh
Application granted granted Critical
Publication of CN109293878B publication Critical patent/CN109293878B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6696Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/36 or hydroxylated esters of higher fatty acids of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/147Halogen containing compounds containing carbon and halogen atoms only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • C08J2203/144Perhalogenated saturated hydrocarbons, e.g. F3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种高绝缘聚氨酯硬泡小球的制备方法,包括以下步骤:(1)以含[‑OH]的聚醚组份、CFCl3发泡剂、泡沫稳定剂、催化剂均匀混合为A组分,以含[‑NCO]的多官能度异氰酸酯组分为B组分,搅拌,发泡,得到低密度聚氨酯硬泡材料;加工成小球;球磨得到聚氨酯硬泡小球;聚氨酯包覆树脂,固化,高绝缘聚氨酯硬泡小球,该方法制备的小球与绝缘性好的聚氨酯树脂复合制成的轻质芯棒,能使当前超特高压用实芯绝缘子的重量降低50%以上,与玻璃钢外壳间粘接力优异,电气绝缘性能优异等特点,极大提高当前超特高压输电线路的使用安全性能。另外还具有制备工艺简单,适合工业化批量生产。

Description

一种高绝缘聚氨酯硬泡小球的制备方法
技术领域
本发明属于电力复合材料领域,具体涉及一种高绝缘聚氨酯硬泡小球的制备方法。
背景技术
超特高压输电具有输电容量大、输送距离远、损耗低、节省输电走廊等显著优势。当前我国超特高压输电线路主要使用实芯复合绝缘子,由环氧树脂与玻璃纤维经拉挤工艺成型,具有结构简单、机械拉伸强度优异、不可击穿、耐污性能卓越等优点,但也存在环氧性脆、尺寸大、笨重、加工困难、界面缺陷多、在线检测困难、使用安全性能差等问题。
为减轻超特高压实芯复合绝缘子的重量,提高其制备和使用安全性能,相关科技人员进行了大量研究,综合起来主要由以下几个途径:
(1)填充SF6
六氟化硫(SF6)气体具有优良的绝缘与灭弧性能,化学性质稳定,而且为气体,密度很低,以其填充可有效降低复合绝缘子的密度。以SF6作为绝缘和灭弧介质的电力设备在110kV以下系统中占绝对主导地位。
但是,SF6气体在超特高压电力设备上应用中存在非常严重的问题。SF6气体通常填充压力为0.5~0.7MPa,密度较大。在超特高压环境下SF6容易分解,分解产物剧毒。一旦泄漏,容易在地表沉积,引发窒息或中毒事故,泄漏后的绝缘子内部为空气填充,绝缘性能显著下降,而且容易进水,不能满足超特高压绝缘要求。另外,SF6为6大限制使用的温室气体之一,其GWP约为CO2的23900倍。国内外在SF6替代气体方面进行了大量研究,自1970年以来,已开发了3代技术,但至今未见SF6及其混合气体在500kV以上电气系统中的应用报道。
(2)聚氨酯泡沫填充
聚氨酯泡沫具有密度极低(小于100 kg/m3),成型工艺简单的优点,而且聚氨酯材料本身具有很好的绝缘和防水性能,作为绝缘子填充材料可显著减轻其重量,并具有一定的绝缘性能。国外未见聚氨酯泡沫应用于复合绝缘子填充材料方面的相关报道。国内有单位将聚氨酯泡沫应用在100kv以下复合绝缘子,但应用效果并不理想。
聚氨酯泡沫不能满足超特高压环境对材料的性能要求。首先其闭孔率仅能达到90%,表面的开孔容易积水,导致绝缘性能显著下降;其次,聚氨酯泡沫的泡孔壁较薄,孔内填充气体为空气,电气绝缘强度较低,容易被击穿;再次,聚氨酯泡沫存在明显的密度梯度,芯部密度低,边缘密度高,存在材料性能不均问题;还有大尺寸绝缘子填充聚氨酯泡沫材料,制备过程中容易出现烧心、开裂等问题。
(3)环氧与玻璃微珠复合填充
国内环氧与玻璃微珠复合低密度材料应用于航空航天、海洋设备和体育器材等工程领域的报道文献很多。文献报道,环氧玻璃微珠复合材料的密度可做到0.50g/cm3以下,具有较好的减重效果。但将该材料应用于超特高压输电领域未见相关报道。
但是环氧与玻璃微珠复合材料应用于超特高压复合绝缘子,仍存在一些问题。首先,玻璃微珠中填充的是空气,耐电强度较低,存在击穿风险;其次,该材料未改善环氧树脂本身的脆性问题和量大情况下的固化过程中剧烈放热导致的烧芯开裂问题。
发明内容
为了解决上述问题,本发明提供一种高绝缘聚氨酯硬泡小球的制备方法,该方法制备的小球与绝缘性好的聚氨酯树脂复合制成的轻质芯棒,作为超特高压绝缘子芯体,密度仅为当前超特高压复合绝缘子使用的环氧玻纤复合材料的1/3,能使当前超特高压用实芯绝缘子的重量降低50%以上,并且具有聚氨酯材料的优异韧性,内部填充密实,缺陷少,与玻璃钢外壳间粘接力优异,电气绝缘性能优异等特点,极大提高当前超特高压输电线路的使用安全性能。另外还具有制备工艺简单,不需要复杂机器设备,制备过程不出现树脂烧芯问题,适合工业化批量生产。
一种高绝缘聚氨酯硬泡小球的制备方法,包括以下步骤:
(1)以含 [-OH] 的聚醚组份、CFCl3发泡剂、泡沫稳定剂、催化剂均匀混合为A组分,以含 [-NCO] 的多官能度异氰酸酯组分为B组分,两者按 [-NCO] 与 [-OH] 的摩尔比为1.0~ 1.2计算称量,待物料颜色均匀一致后停止搅拌,物料在容器中开始发泡,定型固化后得到低密度聚氨酯硬泡材料;
(2)将制备的聚氨酯硬泡材料经泡沫切割机加工成边长约5~8mm的正方体小块;
(3)将步骤(2)得到的正方体小块放入球磨机的球磨罐内,经球磨后得到表面呈球状或椭球状的聚氨酯硬泡小球;
(4)准备好聚氨酯包覆树脂,包覆聚氨酯树脂为与步骤(1)相同配比的A、B组分混合均匀,其中A组分不加CFCl3发泡剂、催化剂和泡沫稳定剂,将步骤(3)得到的聚氨酯硬泡小球放入烧杯形容器内,分批次加入已准备好的聚氨酯包覆树脂,使小球表面均匀包覆,然后将包覆好的小球倒入到表面刷有脱模剂的托盘内,再放入鼓风烘箱内固化,待其表面包覆聚氨酯树脂硬化后,即得到表面包覆的高绝缘聚氨酯硬泡小球,密度约为0.30~0.50 g/cm3
优选地,所述步骤(1)中的聚醚组份为聚氧化丙烯多元醇、聚四氢呋喃多元醇或植物油多元醇中的一种或几种;异氰酸酯组份为聚合二苯基甲烷二异氰酸酯或液化二苯基甲烷二异氰酸酯;泡沫稳定剂选用聚氨酯硬泡用有机硅类泡沫稳定剂;催化剂可为脂肪胺类、脂环胺类、芳香胺类的叔胺化合物。
优选地,所述步骤(1)中的发泡剂CFCl3加入量为聚醚组分的1/7 ~ 1/20,泡沫稳定剂加入量约为聚醚组分质量的0.5%~1.5%、催化剂加入量约为聚醚组分质量的0.5%~1.5%,可控制制备的聚氨酯硬泡的密度在 0.10~0.30 g/cm3范围。
所述步骤(1)中搅拌速度:在2000~3000转/分转速下搅拌10~20s,更快有利于发泡剂在物料中更均匀分散,制备的聚氨酯泡沫的泡孔直径更小、闭孔率更高、泡孔更加均匀。
优选地,所述步骤(3)中的球磨的参数为:球磨机中加入体积1/4 ~ 1/5的3~10mm不同直径的硬质小球,在转速50~500转/分下球磨1~30分钟,至小球磨成球形或椭球形,表面无明显棱角时停止球磨。硬质小球可以是钢球或陶瓷球等。
优选地,所述步骤(4)中分批次加入准备好的聚氨酯包覆树脂,添加量为小球体积的1/5~1/15。包覆树脂每加一次后就旋转容器或用玻璃棒等物缓慢搅拌小球,使小球表面均匀包覆,然后将包覆好的小球倒入到表面刷有脱模剂的托盘内,再放入鼓风烘箱内60~100℃固化1~4小时,待其表面包覆聚氨酯树脂硬化后,即得到表面包覆的高绝缘聚氨酯硬泡小球,控制包覆小球密度在0.30~0.50 g/cm3,可得到较好的包覆效果,同时确保小球起到减重效果。
上述所述方法制备的高绝缘聚氨酯硬泡小球在制备超特高压输电线路用轻质绝缘子芯体中应用。
有益效果
本发明制备高绝缘低密度聚氨酯硬泡小球,与绝缘性好的聚氨酯树脂复合制成的超特高压轻质绝缘子芯体填充材料,其密度小于0.75g/cm3,可使当前超特高压用实芯绝缘子的重量降低50%以上,而且具有韧性好、内部填充密实、缺陷少,与玻璃钢外壳间粘接力优异,电气绝缘性能优异等特点,满足当前超特高压环境复合绝缘子长期安全使用要求。另外还具有制备工艺简单,不需要复杂机器设备,制备过程不出现树脂烧芯问题的优点。
聚氨酯轻质芯体材料填充绝缘子或横担在超特高压输电线路中推广应用,对提高我国超特高压输电线路长期安全运行性,降低发生事故的风险,具有重要的意义。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
一种高绝缘聚氨酯硬泡小球的制备方法,包括以下步骤:
(1)以牌号为NG210的四氢呋喃-环氧丙烷共聚醚15份,精炼蓖麻油45份,聚醚MN500 25份,聚醚4110 12份,二乙二醇3份(共计100份)、CFCl3发泡剂7份、泡沫稳定剂AK8882 0.6份、催化剂 A33 0.4份,均匀混合为A组分,以聚合二苯基甲烷二异氰酸酯(PAPI)为B组分,两者按A/B质量比为1:0.65称取([-NCO]与[-OH]的摩尔比约为1.1),用机械搅拌在3000转/分下快速搅拌10~20s,待物料颜色均匀一致后,停止搅拌,将物料迅速倒入发泡模具内,待其发泡,定型固化后成为密度约0.20 g/cm3的低密度聚氨酯硬泡材料;
(2)将制备的聚氨酯硬泡材料经泡沫切割机加工成边长约5~8mm的正方体小块;
(3)将步骤(2)得到的正方体小块放入球磨机的球磨罐内,经球磨后得到表面呈球状或椭球状的聚氨酯硬泡小球;球磨的参数为:球磨罐中加入其体积1/4~1/5的3~10mm不同直径的硬质陶瓷小球,然后加入待磨聚氨酯小块,填充球磨罐在转速300~350转/分下球磨10~20分钟,至小球磨成球形或椭球形,表面无明显棱角时停止球磨;
(4)准备好步骤(1)得到的A、B组分作为包覆树脂,其中A组分不加CFCl3发泡剂、催化剂和泡沫稳定剂,两者按A/B质量比为1:0.7称取([-NCO]与[-OH]的摩尔比约为1.1)。将步骤(3)得到的聚氨酯硬泡小球放入烧杯形容器内,分3~5批次加入已准备好的包覆树脂,总添加量约为小球体积的1/10。包覆树脂每加一次后就旋转容器或用玻璃棒等物缓慢搅拌小球,使小球表面均匀包覆,然后将包覆好的小球倒入到表面刷有脱模剂的托盘内,再放入鼓风烘箱内80℃固化2小时,待其表面包覆聚氨酯树脂硬化后,即得到表面致密包覆的高绝缘聚氨酯硬泡小球,密度约为0.35 g/cm3
以实施例(1)方法制备高绝缘低密度聚氨酯硬泡小球,填充体积为40%,与绝缘性好的聚氨酯树脂搅拌均匀后,真空除气后浇注到模具中,制成的材料性能如下:
以该种材料作为直径为320mm,壁厚为20mm,壁体材料密度为2.2g/cm3的玻璃钢的特高压复合绝缘子的芯体材料,减重比例可达到51.2%。
实施例2
一种高绝缘聚氨酯硬泡小球的制备方法,包括以下步骤:
(1)精炼蓖麻油52份,聚醚MN500 35份,聚醚4110 10份,二乙二醇3份(共计100份)、CFCl3发泡剂10份、泡沫稳定剂AK158 0.6份、催化剂 A33 0.4份,均匀混合为A组分,以聚合二苯基甲烷二异氰酸酯(PAPI)为B组分,两者按A/B质量比为1:0.8称取([-NCO]与[-OH]的摩尔比约为1.1),用机械搅拌在2000~3000转/分下快速搅拌10~20s,待物料颜色均匀一致后,停止搅拌,将物料迅速倒入发泡模具内,待其发泡,定型固化后成为密度在0.21kg/cm3的低密度聚氨酯硬泡材料;
(2)将制备的聚氨酯硬泡材料经泡沫切割机加工成边长约5~8mm的正方体小块;
(3)将步骤(2)得到的正方体小块放入球磨机的球磨罐内,经球磨后得到表面呈球状或椭球状的聚氨酯硬泡小球;球磨的参数为:球磨罐中加入其体积1/4~1/5的3~10mm不同直径的硬质陶瓷小球,然后加入待磨聚氨酯小块,填充球磨罐在转速300~350转/分下球磨10~20分钟,至小球磨成球形或椭球形,表面无明显棱角时停止球磨;
(4)准备好步骤(1)得到的A、B组分作为包覆树脂,其中A组分不加CFCl3发泡剂、催化剂和泡沫稳定剂,两者按A/B质量比为1:0.75称取([-NCO]与[-OH]的摩尔比约为1.1)。将步骤(3)得到的聚氨酯硬泡小球放入烧杯形容器内,分3~5批次加入已准备好的包覆树脂,总添加量约为小球体积的1/10。包覆树脂每加一次后就旋转容器或用玻璃棒等物缓慢搅拌小球,使小球表面均匀包覆,然后将包覆好的小球倒入到表面刷有脱模剂的托盘内,再放入鼓风烘箱内80℃固化2小时,待其表面包覆聚氨酯树脂硬化后,即得到表面包覆的高绝缘聚氨酯硬泡小球,密度约为0.35 g/cm3
以实施例(2)方法制备高绝缘低密度聚氨酯硬泡小球,填充体积为40%,与绝缘性好的聚氨酯树脂搅拌均匀后,真空除气后浇注到绝缘子芯棒模具中,制成的高绝缘轻质芯体填充材料性能如下:
以该种材料作为直径为320mm,壁厚为20mm,壁体材料密度为2.2g/cm3的玻璃钢的特高压复合绝缘子的芯体材料,减重比例可达到51.1%。
实施例3
一种高绝缘聚氨酯硬泡小球的制备方法,包括以下步骤:
(1)精炼蓖麻油50份,聚醚MN500 35份,聚醚4110 15份(共计100份)、CFCl3发泡剂10份、泡沫稳定剂AK158 0.6份、催化剂 A33 0.4份,均匀混合为A组分,以液化二苯基甲烷二异氰酸酯(C-MDI)为B组分,两者按A/B质量比为1:0.75称取([-NCO]与[-OH]的摩尔比约为1.12),用机械搅拌在2000~3000转/分下快速搅拌10~20s,待物料颜色均匀一致后,停止搅拌,将物料迅速倒入发泡模具内,待其发泡,定型固化后成为密度在0.21 g/cm3的低密度聚氨酯硬泡材料;
(2)将制备的聚氨酯硬泡材料经泡沫切割机加工成边长约5~8mm的正方体小块;
(3)将步骤(2)得到的正方体小块放入球磨机的球磨罐内,经球磨后得到表面呈球状或椭球状的聚氨酯硬泡小球;球磨的参数为:球磨罐中加入其体积1/4~1/5的3~10mm不同直径的硬质陶瓷小球,然后加入待磨聚氨酯小块,填充球磨罐在转速300~350转/分下球磨10~20分钟,至小球磨成球形或椭球形,表面无明显棱角时停止球磨;
(4)准备好步骤(1)得到的A、B组分作为包覆树脂,其中A组分不加CFCl3发泡剂催化剂和泡沫稳定剂。将步骤(3)得到的聚氨酯硬泡小球放入烧杯形容器内,分3~5批次加入已准备好的包覆树脂,总添加量约为小球体积的1/10。包覆树脂每加一次后就旋转容器或用玻璃棒等物缓慢搅拌小球,使小球表面均匀包覆,然后将包覆好的小球倒入到表面刷有脱模剂的托盘内,再放入鼓风烘箱内80℃固化2小时,待其表面包覆聚氨酯树脂硬化后,即得到表面包覆的高绝缘聚氨酯硬泡小球,密度约为0.35 g/cm3
以实施例(3)方法制备高绝缘低密度聚氨酯硬泡小球,填充体积为40%,与绝缘性好的聚氨酯树脂搅拌均匀后,真空除气后浇注到绝缘子芯棒模具中,制成的高绝缘轻质芯体填充材料性能如下:
以该种材料作为直径为320mm,壁厚为20mm,壁体材料密度为2.2g/cm3的玻璃钢的特高压复合绝缘子的芯体材料,减重比例可达到51.1%。
对比例1
北京玻钢院复合材料有限公司以拉挤工艺制备的特高压环境使用的复合材料绝缘子,尺寸为:直径320mm, 长度4500mm,密度为 2.20g/cm3,整体重量 796 kg。测试表面电阻率为6.4×1012 Ω,体积电阻率为5.1×1014 Ω·m,击穿电压为20.8 kv/mm。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (7)

1.一种高绝缘聚氨酯硬泡小球的制备方法,其特征在于,包括以下步骤:
(1)以含 [-OH] 的聚醚组份、CFCl3发泡剂、泡沫稳定剂、催化剂均匀混合为A组分,以含[-NCO] 的多官能度异氰酸酯组分为B组分,两者按 [-NCO] 与 [-OH] 的摩尔比为1.0 ~1.2:1计算称量,待物料颜色均匀一致后停止搅拌,物料在容器中开始发泡,定型固化后得到低密度聚氨酯硬泡材料;
(2)将制备的聚氨酯硬泡材料经泡沫切割机加工成边长约5~8mm的正方体小球;
(3)将步骤(2)得到的正方体小块放入球磨机的球磨罐内,经球磨后得到表面呈球状或椭球状的聚氨酯硬泡小球;
(4)准备好聚氨酯包覆树脂,包覆聚氨酯树脂为与步骤(1)相同配比的A、B组分混合均匀,其中A组分不加CFCl3发泡剂、催化剂和泡沫稳定剂,将步骤(3)得到的聚氨酯硬泡小球放入烧杯形容器内,分批次加入已准备好的聚氨酯包覆树脂,使小球表面均匀包覆,然后将包覆好的小球倒入到表面刷有脱模剂的托盘内,再放入鼓风烘箱内固化,待其表面包覆聚氨酯树脂硬化后,即得到表面包覆的高绝缘聚氨酯硬泡小球。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中的聚醚组份为聚氧化丙烯多元醇、聚四氢呋喃多元醇或植物油多元醇中的一种或几种;异氰酸酯组份为聚合二苯基甲烷二异氰酸酯或液化二苯基甲烷二异氰酸酯;泡沫稳定剂选用聚氨酯硬泡用有机硅类泡沫稳定剂;催化剂可为脂肪胺类、脂环胺类、芳香胺类的叔胺化合物。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中的发泡剂CFCl3加入量为聚醚组分的1/7 ~ 1/20,泡沫稳定剂的加入量为聚醚组分的0.5~2%、催化剂的加入量为聚醚组分的0.5~2%,可控制制备的聚氨酯硬泡的密度在 0.10~0.30 g/cm3范围。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中搅拌的速度为1000~10000转/分转速,搅拌10~20s。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤(3)中的球磨的参数为:球磨机中加入体积1/4 ~ 1/5的3~10mm不同直径的硬质小球,在转速50~500转/分下球磨1~30分钟,至正方体小块磨成球形或椭球形,表面无明显棱角时停止球磨;硬质小球是钢球或陶瓷球。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤(4)中分批次加入准备好的聚氨酯包覆树脂,添加量为小球体积的1/5~1/15,包覆树脂每加一次后就旋转容器或用玻璃棒等物缓慢搅拌小球,使小球表面均匀包覆,然后将包覆好的小球倒入到表面刷有脱模剂的托盘内,再放入鼓风烘箱内60~100℃固化1~4小时,待其表面包覆聚氨酯树脂硬化后,即得到表面包覆的高绝缘聚氨酯硬泡小球,控制包覆小球密度在0.30~0.50 g/cm3
7.一种将权利要求1-6之一所述方法制备的高绝缘聚氨酯硬泡小球在制备超特高压输电线路用绝缘子芯体材料中的应用。
CN201811060327.2A 2018-09-12 2018-09-12 一种高绝缘聚氨酯硬泡小球的制备方法 Expired - Fee Related CN109293878B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811060327.2A CN109293878B (zh) 2018-09-12 2018-09-12 一种高绝缘聚氨酯硬泡小球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811060327.2A CN109293878B (zh) 2018-09-12 2018-09-12 一种高绝缘聚氨酯硬泡小球的制备方法

Publications (2)

Publication Number Publication Date
CN109293878A true CN109293878A (zh) 2019-02-01
CN109293878B CN109293878B (zh) 2020-11-06

Family

ID=65166657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811060327.2A Expired - Fee Related CN109293878B (zh) 2018-09-12 2018-09-12 一种高绝缘聚氨酯硬泡小球的制备方法

Country Status (1)

Country Link
CN (1) CN109293878B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102828A (en) * 1976-04-28 1978-07-25 Texaco Development Corporation Polyurethanes derived from novel novolak polyols
KR20080092114A (ko) * 2007-04-11 2008-10-15 송호성 히팅케이블용 제어기 실링 구조
CN102395612A (zh) * 2009-04-16 2012-03-28 巴斯夫欧洲公司 球形颗粒及其用途
CN102432819A (zh) * 2011-11-23 2012-05-02 吴江明峰聚氨酯制品有限公司 耐高温高阻燃性聚氨酯发泡塑料
CN104479093A (zh) * 2014-12-23 2015-04-01 安徽助成信息科技有限公司 一种阻燃性聚氨酯硬泡的制备方法
CN207302758U (zh) * 2017-07-14 2018-05-01 泰科电子(上海)有限公司 绝缘子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102828A (en) * 1976-04-28 1978-07-25 Texaco Development Corporation Polyurethanes derived from novel novolak polyols
KR20080092114A (ko) * 2007-04-11 2008-10-15 송호성 히팅케이블용 제어기 실링 구조
CN102395612A (zh) * 2009-04-16 2012-03-28 巴斯夫欧洲公司 球形颗粒及其用途
CN102432819A (zh) * 2011-11-23 2012-05-02 吴江明峰聚氨酯制品有限公司 耐高温高阻燃性聚氨酯发泡塑料
CN104479093A (zh) * 2014-12-23 2015-04-01 安徽助成信息科技有限公司 一种阻燃性聚氨酯硬泡的制备方法
CN207302758U (zh) * 2017-07-14 2018-05-01 泰科电子(上海)有限公司 绝缘子

Also Published As

Publication number Publication date
CN109293878B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN101840757A (zh) 一种环保型绝缘子壳体的制作方法
CN103865025B (zh) 一种本质阻燃硬质聚氨酯泡沫塑料
CN102775727B (zh) 一种阻燃固体浮力材料及其制备方法
CN103012738B (zh) 一种改性粉煤灰增强硬质聚氨酯泡沫材料及其制备方法
CN103467694B (zh) 一种聚氨酯板材及其制备方法
CN102146196B (zh) 一种高阻尼环氧树脂复合材料的制备方法
CN109280365A (zh) 一种超特高压用轻质绝缘子芯体的制备方法
CN102020799B (zh) 滚塑发泡制品专用原料组合物及其制备和应用方法
CN105273599A (zh) 一种舰船专用复合阻尼涂料及其制备方法
CN101643534A (zh) 中高压电器用大理石花纹聚酯模塑料及其制备方法
Liu et al. Hollow polymeric microsphere-filled silicone-modified epoxy as an internally insulated material for composite cross-arm applications
CN113248907B (zh) 一种无机填料复合聚氨酯保温板及其制备方法和应用
CN105331045A (zh) 固封极柱用环氧树脂组合物及其制备方法
CN106945375A (zh) 一种吸声阻尼泡沫夹芯复合材料及其制造方法
CN107141564A (zh) 一种pe发泡材料及其制备方法
CN106229170A (zh) 一种绝缘拉杆及其制备方法
CN109293878A (zh) 一种高绝缘聚氨酯硬泡小球的制备方法
CN109192410A (zh) 一种超特高压输电线路用轻质绝缘子芯体及其制备方法
CN111808267A (zh) 一种无卤阻燃聚氨酯泡沫及其制备方法
CN103435777A (zh) 矿山用聚氨酯工程轮胎及其制备方法
CN103497475B (zh) 一种玻璃钢及其制备方法
CN114133856B (zh) 一种低密度多孔全塑型喷涂聚氨酯跑道浆料及其制备、使用方法
CN109627555A (zh) 一种强效耐高温电缆护套及其制备方法
CN110330632A (zh) 一种用于复合绝缘横担的芯体填充材料的制备方法
CN103289055B (zh) 一种抗压耐磨的聚氨酯材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201106